
Flow of Control Page 1 of 5

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/flow_of_control.html 2004.02.16

The bulk of this lecture is still in power-point form

Flow of Control Page 2 of 5

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/flow_of_control.html 2004.02.16

In many of the syntax definitions we use to define flow-of-control you will see the
term statement

It is important to understand that whenever you see it it can mean

1. a single statement
2. a block of statements (surrounded by { })

These can be slightly tricky to define. Here's a partial grammar for various kinds of
statements

Flow of Control Page 3 of 5

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/flow_of_control.html 2004.02.16

We've seen the declaration-statement in the section on variables.

statements :

1. declaration-statement:

Type Identifier ; |
Type Identifier = Value ;

2. executable-statement:

expressionopt ;|

return expressionopt ;|

other executable statement

3. single-statement:

declaration-statement |
executable-statement

4. statement-sequence:

single-statement |
statement-sequence
single-statement

5. statement-block:

{statement sequenceopt}

6. statement:

executable-statement |
statement-block

Example:

{ // open block
 double pi=3.14159; //dec
 cout << pi; // exec
} // close block

Interpretation: The second line is a declaration-statement.
The 3rd line is an executable statement. 2 and 3 together
constitute a statement-sequence and lines 1-4 are a
statement-block. Thus line 3 is a statement as is lines 1-4
taken together.

Flow of Control Page 4 of 5

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/flow_of_control.html 2004.02.16

Let's just take a little more extensive example:

double pi = 3.14159;
double r = 2.4;
double y;
y = 4*pi*r*r/3;
cout<<"The area is " << y << endl;

Now we try to categorize it according to the grammar

1. By Rule 1 the 1st and 2nd lines are declaration statements (of the second
type)

2. By Rule 1 the 3rd line is a declaration statement of the first type
3. By Rule 2 the 4th line is an expression followed by a ; and so is an

executable statement of the first type.
4. The 5th line is less obvious. Actually it's the same as the 4th because

cout<<"The area is " << y << endl is technically an
expression!

Now it gets interesting

5. By Rule 3 every one of the five lines is also a single statement.
6. By Rule 4 (1st type) the 1st line (and actually all the others) is a statement

sequence.
7. By Rule 5 (2nd type) line 1 & 2 together also form a statement sequence
8. Applying Rule 5 recursively, we see that lines 1,2 & 3 also form a statement

sequence and we keep going until we run out of lines at which point
9. All 5 lines together form a statement sequence

Here are a bunch of examples. Try to decide, based on the grammar above, exactly
what each of them corresponds to (it may be more than one).

{}

;

{
y=3.5;
}

x

1. declaration-statement
2. executable-statement
3. single statement
4. statement-sequence
5. block

taken together.

Flow of Control Page 5 of 5

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/control_flow/flow_of_control.html 2004.02.16

6. statement
7. none of the above (syntax error?)

This page last updated on Monday, February 2, 2004

