
Expressions Page 1 of 5

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/variables/expressions.htm 2004.01.23

Arithmetic expressions in C++ are based on normal algebra and so will look quite
familiar.

Nevertheless, there are important differences. For instance, computers implement
different arithmetic for integers and doubles.

We characterize C++ operators as being

1. Unary (one operand): + -
2. Binary (two operands) + - * /

where * and / signify respectively multiplication and division

In double arithmetic, all operands are double and the result is always double

Notice the similarity between the C++ equation and the algebraic equation it
represents.

The integer operators are

1. Unary (one operand): + -
2. Binary (two operands) + - * / %

where * and / signify respectively multiplication and division

In integer arithmetic, all operands are int and the result is always int

expression_eval_double.cpp

expression_eval_int.cpp

int main(){
 double x = 2.4 ;
 double y;

 y = x*x + 2.0 * x + 1.5 ;
 cout << "y is " << y << " when x is " << x << '\n' ;
 return 0;
}

int main() {
 int i = 5;
 int j = 3;

Expressions Page 2 of 5

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/variables/expressions.htm 2004.01.23

The results are what you would expect until you get to division.

In normal arithmetic 5/3 would be 1.6. However, the result of an integer
operation is always an integer.

So why not 2?

C++ int arithmetic doesn't round. Instead it gives us two int division operators.

1. / gives us the integer part.
2. % gives us the remainder

ints and doubles are different types. Computers can

� do double arithmetic
� do int arithmetic

They can't do mixed arithmetic. Instead, they convert from one type to the other.

In the example evaluation of the term 2 * x requires an implicit conversion.

The 2 is automatically converted to a double yielding 2.0 * x and then a
double multiply is called.

expression_evaluation.cpp

 cout << "A demonstration of integer arithmetic." << endl;
 cout << "i is " << i << " & j is " << j << endl;
 cout << "i + j = " << i + j << endl;
 cout << "i + -j = " << i + -j << endl;
 cout << "i * j = " << i * j << endl;
 cout << "i / j = " << i / j << endl;
 cout << "i % j = " << i % j << endl;
 return 0;
}

/******* Expression Evaluation ********

 A simple line equation

***/
#include <iostream> // info from standard library
using namespace std; // cout is in the std namespace

int main(){
 double x = 2.4 ;
 double y;

 y = x*x + 2 * x + 1;
 cout << "y is " << y << " when x is " << x << '\n' ;
 return 0;
}

Expressions Page 3 of 5

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/variables/expressions.htm 2004.01.23

A programmer can also force a conversion explicitly by doing a type cast

int y = 2 * (int) x;

Here the operator (int) is an int type cast applied to the double variable x
coercing it to an int.

This is known as a downcast because precision is lost.

When a double is converted to an int, it is not rounded, it is truncated.

The fractional part is discarded

This is consistent with the integer / operator's behaviour.

Here's how you round positive nos.

The technique has to be ammended for negative nos. We'll show you how later.

The assigmnet operator is for storing a value in a variable:

x = expression;

The value of the expression on the right is computed and stored in the variable
specified on the left (x).

downcast.cpp

rounding.cpp

int main(){
 double x = 3.7 ;
 int i;
 i = 3 * (int) x;
 return 0;

int main() {

 double x = 3.4999 ;
 double y = 3.6 ;

 cout << "Force " << x << " to int: " << (int)x << endl;
 cout << "Force " << y << " to int: " << (int)y << endl;
 cout << "Round " << x << " to int: " << (int)(x + .5) << endl;
 cout << "Round " << y << " to int: " << (int)(y + .5) << endl;

 return 0;
}

Expressions Page 4 of 5

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/variables/expressions.htm 2004.01.23

It is not an equal sign!

expression may contain x —the 'old' value is used:

x = x + 1; —Increase the value in x by 1.

Always think of the = as a replacement operator

x <- x+1;

One way to think of this is that

1. On the right side of the equation we are reading the current value of x
2. The assignment operator causes the new value to be written into the bin

specified on the left (which is again x).

Here is something we see on exams

What is the error?

This is a nasty one because if you don't understand it you may still get it right half
the time!

The order of evaluation in compound expressions is determined by

1. Parenthesis ()
2. Precedence

replacement.cpp

bad_assignment.cpp

int main(){
 int x = 7;
 x = x + 1;
 return 0;

#include <iostream>
using namespace std;

/* This is an example of an assignment statement used incorrectly */

int main(){
 double x;
 double y;
 cout << "Please input a value for x: " ;
 cin >> x;
 x = y; // Here is where the error occurs
 cout << "\nAfter setting the variables equal to each other, y is " << y << endl;
 return 0;

Expressions Page 5 of 5

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/variables/expressions.htm 2004.01.23

This page last updated on Friday, January 16, 2004

unary - , + Highest (evaluated first)

*, /, %

-, + Lowest (evaluated last)

precedence.cpp

int main() {
 cout << "5 + 6 * 2 = " << 5 + 6 * 2 << endl;
 cout << "(5 + 6) * 2 = " << (5 + 6) * 2 << endl;
 cout << "10 / (2 * 5) = " << 10 / (2 * 5) << endl;
 cout << "10 / 2 * 5 = " << 10 / 2 * 5 << endl;
 cout << "5 + -6 * 2 = " << 5 + -6 * 2 << endl;
 cout << "5.0 / 2.0 = " << 5.0 / 2.0 << endl;
 cout << "5 / 2 = " << 5 / 2 << endl;

 return 0;
}

