
Functions Page 1 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

Computer programs are among the most complex artifacts engineered by
humankind. Consider the following:

1. A 700 page novel occupies 2.6 MB of disk space.
2. Windows XP takes about 1 GB.
3. A switch built by Nortel in the mid 90's took about 6 million lines of code

How do we manage such complexity? We use a strategy known as Divide and
Conquer, one of the oldest strategies used by humankind.

1. Complex systems are modularized—broken into smaller more manageable
pieces

2. The modules themselves are often broken into smaller modules, and those
into smaller modules again.

3. The set of modules is organized hierarchically to constitute the system

This schema is widely used

Structure of the Roman Army —a rigid hierarchy

Functions Page 2 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

With 6000 men under his command a Roman Legate couldn't know every
legionary. His job was to worry about the big picture. He would give commands like,
"Move the Ist cohort forward" or, "Hold the IIIrd cohort in reserve."

At the bottom level, the centurion would know each of his legionaries. He would
decide who best should be on the critical left edge of the shield wall, who in the
centre. It was his job to sweat the details.

Modern Corporations —A Flexible Hierarchy

���������
	�������
����������������������

�������! ��#"��%$'&�() ��+*-,.&�/)021 $
*

3 ��*+&�4 65.$'798;:9�)&< ��%&<��1 �9=> ��)&

?@ �ACB�1 �) 3 1 �) �=>�

D.1 �) 6B�1 �) ED� ���&�/9�% �*

FHG#B

3 $
=JIK/9,� ��ML.

?9 �&�*+7!��I!

FHG#BON�$'L�1 �D�$��)

PQ1 R21 &S�
4 3 1 &ST

N���IKUH/! �*+&�V 7!$
=

,�I91 �9�) ��+V 7!$
=

W2() ;F�&�4 �
�)&�1 7JX#�%$
/9I

5�(91 �)$Y5. �7)$
�%02*

:94 �8�&��M�6:K�)&< ��%&<��1 �9=- ��!&>XQ�M$
/KI

BZ$
�)0K$
�K[\,�1 �M E5� �7!$
�%0�*>]+�)79V

�������! ��#"��%$
*)V
5. �7)$
�%02*

�������! ��#N^/9*!1 7J]+�)&S ����)��&�1 $��)�
4

W21 => 6B�1 _` 6N�/9*)1 7

3 $
4 /K=JaK1 �6b@$
/K*+ Ec`d�$
1 �)&

L� ��)&�/K�M �e

X#1 ���)&^cZ5� �L�$
4 /)&�1 $
�9eH5� �7!$
�M02*

c`d�$�1 �)&�L� ��)&�/9�% �e

N���L� ��+1 7K8fc�d�$
1 �)&�L� ��)&�/9�%
e

U�Ag �*h&^5� �7!$
�%0�*-c�d�$
1 �!&

L� ��)&�/K�M �e

5�/)_�_\?9�'&�1 $
��5. �7)$��M02*-c�d�$
1 �)&

L� ��)&�/K�M �e

,�/9aji�$
IJ5. �7)$��M02*-c�d�$
1 �)&

L� ��)&�/K�M �e

WK$
=j=-TE".$'TE5� �7!$
�%02*-c`d�$
1 �)&

L� ��)&�/K�M �e

k^l��Zmn����o��

�n";W' �4 �L�1 *!1 $
�J?@ �&SAg$
�+8
b�"�G

3 1 �) �=>�'p

W21 => f�J�
�+�) ��#,�I)$��M&�*

3 $
=> �0KT 3 ��)&��%�
4KcZq9r@s [Z[

t#1 ��7)$
=u$'Av�K*Q$'&�() ��#q9r9sYe
3 ?�?

3 ?�?@wZ_\�

3 ?x?9w�,�]

3 ?�?yb@ ��'024 1 �) 6?9 �Av*
W
"�,
W
?@W

3 �
�%&<$'$���?9 �&<Ag$
�+8

W
/9�+�) �� 3 4 ��*)*!1 7JN2$'L�1 �*

3 $
/9�%&�WKtzcZI!�
�%&�1 ��4!$'Av�) ��+*)(K1 IKe

�2��������	�������
�����������M���'������

b�"�Gz]+�)0K �I! ��)0K ��)&^i'�%$'02/)7!&�1 $
�9*

?9 �A{B�1 �! fWK �4 'L�1 *!1 $
�

W2/9�+�) ��#G#�+1 R21 �)��49i��%$'02/)7)&�1 $
�9*

�����+�) ��#"��%$'&�() ��+*QW' �4 �L�1 *!1 $
�

�����+�) ��#"��%$'&�() ��+*QFH�91 =-��&�1 $
�

| BZ$'$
�) �T;W2/K�) �*

}�~ ���<���

F�&�4 ���)&<�6"��%�'L. �*

F�&�4 ���)&<�6b@��Av8�*

F�&�4 ���)&<�fW2(K�M��*)(! ���*

W
/9�+�) ��#,�I!$
�%&�*

��$���4 0 3 ()��=JIK1 $��9*)(K1 I

�y�% �*h&�4 1 �!R

X�$'$'0KAv1 4 4KX���=- �*

�Q����o��

W21 =- EB�1 _` E".$'$
8�*

".$'$�8.[`$'_Z[`&�()
[\N�$
�!&�(3 4 /9a

cZ=-���)�'RK �0Ya!T6". ��%&< �4 *)=>�
�9�Ke

B�1 &<&�4 ��
"��M$'AO��� 3 $
V

"�/K4 _\1 �!79(Ji'�% �*!*

".��798;".��TE".$'$
8�*

�����+�) ��#".$'$
8.*

G�p�=>$'$
�#b@$�/9*+

�f�������'M�
l��

W
1 =- EN���RK�'�91 �)

B�1 _� 6N���RK�'�K1 �)

D\$
�M&�/9�) 6N2�'RK���91 �)

,�I)$��M&�*>]+4 4 /9*h&��%��&< �0

N2$
�) �T

i� �$
IK4

:K�)&< ��%&<�
1 �9=- ��)&��� � �8.4 T

]+��,�&<T�4

,.$
/)&�() ����JB�1 L�1 �)R

3 $'$
8.1 �)RnB�1 R2()&

W2() Ei����%
�!&>XQ�M$�/9I

Functions Page 3 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

Straightening out the Hierarchy

1. Each corporation creates its own hierarchy, according to its own needs
2. Hierarchies tend to grow organically
3. Nevertheless, chart typical of modern mega-corporation

T

| b@���9�)�
[\"��
�+a! ��%�

� ������l }'� ����l��6�

W
1 =- ;�������) �� 3 �
aK4

c\i��
�% ��)&�1 �)R2�
".��a)T;W'�
4 8.�
".�
a!T

$
�-&�() f�J�'T�e

W
(91 *-G#4 0nb9$
/9*+

W
() 6b@ ���4 &�(Ji'/Ka94 1 *!(91 �)RnXQ�%$
/9I

5. ��
4K,�1 =JIK4

X�$
4 _�N���RK�'�K1 �)

i�$�I9/K4 �
�Q,.7K1 ��)7!

,�8�1

�K��7K()&�1 �)RYN��'RK���91 �)

FH=> ���1 7)���J:)p�IK�% �*)*-i�/9aK4 1 *!(91 �)R

3 $
��I!$
�%��&�1 $
�JcZI!�
�%&�1 ��4

$'Av�! ���*!(91 IK��1 �)794 /)0K �*

W2�%��L� �49�YBZ �1 *!/9�% ��2D\$'$'0Y�

�y1 �) ��
P� �I!���M&�/9�M �*!�

,�8�T�X#/91 0K �e

P 363 $
=J1 7K*

| N�FHP�N2�'RK���91 �)

Functions Page 4 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

4. Each company inside mega-corporation would have its own org chart
(hierarchy)

5. High degree of complexity

Common Features of Hierarchies

1. Drawing shows
modules for a
modern
army—used by
many
countries

2. Really a tree
since an army
has a number
of divisions, a
division a
number of
battalions and
so on

3. Different kinds
of modules at
different levels.

4. Modules
towards top
are bigger,
more complex

5. Modules
towards
bottom are
smaller,
simpler

6. Modules
towards top
have high
overhead—
generals

large size
complex
high overhead

small
simple
low overhead

Functions Page 5 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

Early in 20th century, Americans introduced the squad

Smallest unit of all

Handfull of people under a single corporal (very low overhead)

Very focussed—one job at a time

� Hold south end of the bridge

� Scout that village

� Take that machine gun

In this course we will focus on the squads of computer programming.

1. small amounts of code
2. single well specified task
3. minimal overhead

Programming Modules

Computer programs modularized

require large
staffs to run an
army

7. Modules
towards
bottom have
low
overhead—
one lieutenant
and one
sergeant to run
a platoon

low overhead

Functions Page 6 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

Teaching Machine

Typical medium scale program

1. 7000 programming hours
2. 14 packages
3. 14 sub-packages
4. over 700 classes
5. around 5000 functions

Mini -Programs

Full model too
complex to
teach initially

Concentrate
on a mini-

Functions Page 7 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

An Even Smaller Model

We can reduce the model above even farther by only having the main function

model

Only kind of
modules are
functions—the
squads of the
progamming
world

1. small

2. single
task

3. low
overhead

Every C/C++
program
includes one
(and one only)
function called
main()

main() is
the starting
point of the
program

This is what we
will start with.

Functions Page 8 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

Notice that the instructions above are numbered.

This is to indicate that instructions in a program are executed in sequence.

1. The first instruction is executed
2. Then the second instruction is executed
3. Then the third instruction is executed

and so on.

Computer programs have to be built. We use a number of processes (computer
programs) to build a program

It is important to
remember that
what we are
actually learning
how to do is to
write a single
function

Writing a program
with more than
one function is
not much different

1. each
function will
be wriiten
pretty much
the same

2. Later you
will have to
learn how to
connect the
functions
together.

Functions Page 9 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

An editor is a
specialised word
processor used to
prepare source
modules in the
language of choice
(e.g. C++, Java,
Fortran, Basic)

The precompiler
adds in standard
pre-written code
(boilerplate) from
include files you
specify to produce
a complete source
module.

The precompiler is
like a secretary
that helps you pull
together a full
source document.

The compiler
produces object
code for the target
computer/operating
system.

The compiler is like
a translater that
converts your
module from the
language of your
choice (C++) to
language the
computer (PC,
MAC, Sun)
understands.

Functions Page 10 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

An executable is a program that will run on the computer. The editor, precompiler,
compiler and linker are all executables.

So is your program!

Here is a traditional first program you will see in almost every textbook in C++.

The first line is an instruction to our precompiler "secretary" saying we want to use
the standard input/output system (the iostream). The secretary (the precompiler
program) will go and fetch all the boilerplate code from the iostream file and
insert it right where we wrote the line.

The second line makes reference to where the names we're going to use may be
found. It's a little bit like the statement you might find in the beginning of some
engineering textbooks saying in this book we're going to use the ISO names

The third line is blank, a seperator to help our eye group logical entities together.

The linker ties
multiple modules
together into a
complete program

1. Your module

2. Other
modules from
the same
project

3. Modules from
the library

hello.cpp

#include <iostream>
using namespace std;

int main(){
 cout << "Hello world!";
 return 0;
}

Functions Page 11 of 11

http://www.engr.mun.ca/~mpbl/teaching/2420/lectures/introduction/program_structure.htm 2004.01.14

The fourth line is the beginning of our one and only function, main. Every program
has one (and one only) main function. So if your program has only one module, it's
got to be main.

The fifth line is our first line of active computer code. It is an instruction to the
computer saying, please output the words, "hello world!"

We'll explain the sixth line later.

This page last updated on Thursday, January 8, 2004

