
1

Searching

Many of the data structures we’re considering are containers — they hold
collections of some other data.

Often the data we’re holding is in the form of records with many fields
(e.g., student records containing name, student number, address, grades
etc.).

In order to find a particular record, we often are given the value for one field
— called the key field (e.g., student number to find a student’s record).

As a minimum we need to be able to compare keys to see if they are the
same (override operator== on the key type if necessary).

Engineering 4892: Searching & Analysis June 21, 2002

2

Sequential Search

Assume records stored in a sequential structure (e.g., List).

Algorithm

i = begin
while i != end AND i−>key != key we’re looking for do

i++
end while
if i != end then

result = *i
else

Doesn’t exist
end if

Engineering 4892: Searching & Analysis June 21, 2002

3

Analysis

How long does sequential search take to execute if the key we’re looking for
isn’t in the list?

On a particular machine and compiler, a× list.length + b, where a and
b are positive constants.

We say that this algorithm is linear or O(N) (“order N”), where N is the
length of the list.

Engineering 4892: Searching & Analysis June 21, 2002

4

Execution Time
The actual execution time depends on

• The details of the computer

• The compiler and language (and options)

• The “size” of the input

• The value of the input.

For the sequential search algorithm above,

• a and b relate to the first two bullets,

• list.length is a measure of the input size, and

• input value determines if the key is in the list, and if so where.

For large list, the b term is insignificant, so the time is proportional to the
length of the list.

Engineering 4892: Searching & Analysis June 21, 2002



5

Average Case

What about if the item is in the list?

• If it’s the first item, only one comparision is required.

• If it’s the last item, list.length comparisons are required.

• If it’s the middle item, list.length
2 comparisons are required.

What is the average number of comparisons?

Assume that each position is equally likely, and let N = list.length.

Tavg = f(1+2+3+...+N
N )

= N(N+1)
2N

= 1
2(N + 1)

Engineering 4892: Searching & Analysis June 21, 2002

6

Binary Search
Algorithm: Find k in L

Pre: L is sorted in non-decreasing order
Post: b is the index of k if it is in L.
b = 0, e = L.length− 1
while b < e do
// Invariant: L [b] ≤ k ≤ L [e]
// Variant: e− b
m = bb+e

2 c
if L[m] < k then // look in second half of L
b = m + 1

else // look in first half of L
e = m

end if
end while
result = e

Engineering 4892: Searching & Analysis June 21, 2002

7

How many comparisons are needed to search using the binary search?

Each time through the loop:

• one comparison is made

• the length of the list is cut in half.

Let C(N) be the number of comparisons to search a list of length N .

C(N) = 1 + C(dN
2 e)

= 1 + 1 + C(dN
4 e)

= 1 + 1 + 1 + C(dN
8 e)

= 1 + lg N

Engineering 4892: Searching & Analysis June 21, 2002

8

Binary Search 2
Algorithm: Find k in L

b = 0, e = L.length− 1, found = false
while not found and b < e do
// Invariant: L [b] ≤ k ≤ L [e]
// Variant: e− b
m = bb+e

2 c
if L[m] == k then // found it
found = true
result = m

else if L[m] < k then // look in second half of L
b = m + 1

else // look in first half of L
e = m− 1

end if
end while

Engineering 4892: Searching & Analysis June 21, 2002



9

How many comparisons are required by this second version?

Each time through the loop:

• two comparisons are made

• the length of the list is cut in half.

Let C(N) be the number of comparisons to search a list of length N .

If the element is not found: C(N) = 2 + C(dN
2 e)

= 2 + 2 + C(dN
4 e)

= 2 + 2 + 2 + C(dN
8 e)

= 2 lg(N + 1)
≈ 2 lg N

If the element is found, average case: C(N) ≈ 2 lg N − 3 (see text).

For large N , the lg N term dominates, and the multiplier is significant.

Engineering 4892: Searching & Analysis June 21, 2002

10

Analysis

To compare different data structures for solving the same problem we usually
consider:

Time complexity — the number of computational steps required to solve
the problem.

Space complexity — the amount of memory required to solve the problem.

• Consider the rate of increase in time/space as the problem size increases
(e.g., number of elements in the list).

• Analysis is independent of specific details of the computer etc.

Engineering 4892: Searching & Analysis June 21, 2002

11

Big-Oh Notation

Describe the rate of growth of a function:

“f (n) is in O(g(n))” means f grows slower, or equal to g :

∃C,∃N,∀n, n ≥ N → f (n) ≤ Cg(n)

or another way: limn→∞
f (n)
g(n) is finite.

Technically O(g(n)) is a set of functions — all those that grow slower or
equal to g .

Engineering 4892: Searching & Analysis June 21, 2002

12

Suppose an algorithm takes c× N2 + d× N + e

For large N, the time is essentially proportional to N2 — we say that the
algorithm is quadratic or O(N2) (“order N squared”)

Given an O(N) algorithm and an O(N2) algorithm there exists a size of input
such that the O(N) algorithm is the faster for all equal or greater input
sizes.

When comparing algorithm performance on large inputs we can ignore

• constants

• all but the dominant terms

• base of logarithms

This means we don’t need to consider the details of the computer (which
are subject to change and hard to know).

Engineering 4892: Searching & Analysis June 21, 2002



13

Examples f(N) Is in
2N2 + N + 1 O(N2)
2N2 + N + 1 O(N3)

kN lg N O(N lg N)
kN lg N O(N2)

k2N
2 + k1N + k0 O(N2)

sequential search O(N)
binary search (either version) O(lg N)

If algorithm A is order f(N) and algorithm B is not, then (on sufficiently
large inputs), A is quicker.

O(1) ⊂ O(lg N) ⊂ O(N) ⊂ O(N lg N) ⊂ O(N2) ⊂ O(N3) ⊂ O(2N)

Constant, logarithmic, linear, superlinear, polynomial, exponential

Engineering 4892: Searching & Analysis June 21, 2002

14

Comparison of compexity

Assume each operation takes 1 µs.

N 10 50 100 1000

N lg N 33 µs 282 µs 664 µs 10 ms
N2 100 µs 2.5 ms 10 ms 1 s
N3 1 ms 125 ms 1 s 1000 s
N100 3× 1086 y 2.5× 10182 y 3× 10212 y 3× 10313 y
1.1N 2.6 µs 117 µs 13 ms 8× 1053 y
2N 1 ms 3.5× 1027 y 4× 1042 y 3× 10313 y
N ! 3 s 10× 1076 y 3× 10170 y 1.3× 102580 y

Engineering 4892: Searching & Analysis June 21, 2002

15

List Analysis

n is number of elements in the list.

Array

• Push, pop, retrieve are O(1) (constant) time (except in overflow case).
• Overflow may be O(n) time.
• Insert, delete (in the middle) are O(n) time.
• Space is O(n), but potentially wasteful.

Linked

• Push, pop (front or back) are O(1) (constant) time.
• Insert, retrieve, delete (in the middle) are O(n) time.
• Space is O(n).
• Iteration is O(1) time.

Engineering 4892: Searching & Analysis June 21, 2002

16

Recursion Analysis

Use the call tree to determine time and space complexity (assuming that all
other parts of the algorithm are constant):

Time — depends on the number of vertices in the call tree.

– factorial call tree is line of length n — time complexity of the algorithm
is O(n).

– hanoi call tree is a complete binary tree (i.e., every non-leaf vertex has
two children) with all leaves at the same level — time complexity is
O(2n), where n is the number of disks.

Space — depends on the depth of the call tree.

– Both trees have depth = n, so the space complexity is O(n).

Engineering 4892: Searching & Analysis June 21, 2002


