
Engineering 4892
Data Structures

Dennis Peters
dpeters@engr.mun.ca

http://www.engr.mun.ca/˜dpeters/
EN-3061, 737-8929

Summer 2003

Engineering 4892: Introduction

1

Administrivia

Evaluation: Assignments (6): 15%
Quizzes (2): 30% June 4, July 16

Final: 55%

Lab/Tutorial: Tuesday, 1400-1650 EN-3000/29

Office hour: Wednesday 1400-1500, or by appointment (or not).

Web page: http://www.engr.mun.ca/˜dpeters/4892/

Engineering 4892: Introduction May 5, 2003

2

Textbook

[1] Robert L. Kruse and Alexander J. Ryba. Data Structures and Program
Design in C++. Prentice Hall, 1999.

Software

We will be using ANSI/ISO C++.

We’ll be testing using Cygwin GNU C++, so it’s your responsibility to be
sure your code works with it.

• Available on CD for a small fee.

• Download it from http://sources.redhat.com/cygwin/.

Engineering 4892: Introduction May 5, 2003

3

Assignments

• Mostly programming.

• Due Thursdays at 0900 (9 am).

• Electronic submission using “Web Submit”

• Questions posted on the web page.

• Do your own work!

Engineering 4892: Introduction May 5, 2003



4

Motivation

Consider a product from another Engineering discipline (e.g., building,
bridge, car, boat etc.):

We can consider it from several points of view:

Components

– What are the components?
– What are their specifications?

Implementation How are the components constructed (from raw materials
and other components)?

Architecture Arrangement of components.

Engineering 4892: Introduction May 5, 2003

5

The components are based on well-known (often mathematical) models:
circle, plane, cone, arch, triangle.

Chosen for beauty, simplicity, cost, function.

In software, what are the components?

• Subroutines

• Variables

• Modules

• Types

types are the main topic of this course.

If the implementation of a type is “hidden” it’s called an abstract data type
(ADT).

Engineering 4892: Introduction May 5, 2003

6

Abstract Data Types

By abstract we mean that there’s more than one way that it could be
implemented — which one we use doesn’t matter to the user of the type.

ADT may be built in or user defined.

Consider two implementations of a simple ADT:

class Complex {
private:

double re, im;

public:
// ...
Complex operator +(Complex r);
Complex operator *(Complex r);

};

class Complex {
private:

double mag, theta;

public:
// ...
Complex operator +(Complex r);
Complex operator *(Complex r);

};

Engineering 4892: Introduction May 5, 2003

7

The ADT is defined by what these have in common — their interface.

How would you choose between the implementations?

• Cost of implementing.

• Chance of making errors.

• Cost of use: One is fast for additions, other is fast for multiplications.

• Accuracy.

Engineering 4892: Introduction May 5, 2003



8

Programming in the Large vs. in the Small

In the small . . .

• Creating a single component or a small number of related components.

• E.g., a small program (< 1000 lines)

In the large . . .

• Programming by putting together other components.

• E.g., a medium or large program (> 100, 000 lines) consisting of many
classes.

In programming in the large abstraction is essential to success.

Engineering 4892: Introduction May 5, 2003

9

Big vs. Little Changes

A big change is one that will “break” code (i.e., require changes) in other
modules.

From the C++ FAQ:

Q: How do developers determine if a proposed change will be
big or little?
A: Specification
With proper specification, maintenance programmers can easily
distinguish between big or little changes. Ill-specified systems typically
suffer from “change phobia”: if anyone even contemplates changing
anything, everyone starts sending out their résumés for fear that the
system will collapse. Unfortunately, changes often do make the world
fall apart in ill-specified systems. It’s called maintenance cost, and it
eats software companies alive.

Engineering 4892: Introduction May 5, 2003

10

Objectives

• More advanced programming.

• Architecture: Learn to think about (and solve) programming problems
in terms of separate components.

• Component design: Learn some standard varieties of ADTs

– their interface (specification),
– how to use them, and
– how to implement them.

• Learn some common forms of algorithms (another kind of component).

• Understand abstraction (a.k.a. information hiding, separation of
concerns): Do not let the implementation of components (ADTs and
algorithms) show in the interface.

Engineering 4892: Introduction May 5, 2003


