Generalized List — pop_back() — Mutator. Removes the back element.
Pre: [1] > Ol 1is not empty.
Description A list Post: I’ = 15¢, . |;j—21} The last element has been removed from 1.
' — insert(T z,int i) — Mutator. Inserts x in the i*" position of the
State 1: A sequence of type T. list.
Operations Post: 1 = Lio,...i—13®ly4,. =138 1 contains x at position i, the
— list() — Constructor. elements before 7 are unchanged, and those after i are shifted right
Post: 1 = _J 1 is the empty sequence. by 1.
— list() Destructor. — erase(int i) — Mutator. Removes the ‘" element.
— push_front(T z) — Mutator. Adds z to the front of the list. Pre: |1 > 07 Lis not empty.

Post: I' = lyo, . i—1,i41,...1—1}} Elements of I before 4 are not changed,
the length of 1 is one less, and elements after 4 are shifted left by one.
Pre: [1| > 01 L is not empty. — T front() — Accessor. Returns the front element of the list.

Post: I’ = 1;; _j;—13¥ The front element of 1 has been removed. Pre: [1] > 0 1 is not ?mpty. . _
push_back(T z) — Mutator. Adds z to the back of the list. Post: Result =19 Al = I} Result is the first element of 1.
Post: 1’ = 1z z has been appended to the end of 1.

Post: 1’ = zI§ z has been inserted at the begining of 1.
pop_front() — Mutator. Removes the front element.

Engineering 4892: Linked Lists May 23, 2003 Engineering 4892: Linked Lists May 23, 2003
3 4
— T back() — Accessor. Returns the back element of the list. Iterators
Pre: |1| > 0} 1 is not empty.
Post: Result =1, Al =1} Result is the last element of 1. ADT representing position in a sequence.
— Bool empty() — Accessor. Returns True if the list is empty, false] o)]
otherwise. ® list<int>::iterator i — i is a position in a list of ints.
Post: Result = (|1| = 0)} Result is true if 1 is empty, false otherwise. e i++ — increment i to the next position.

e i-- — decrement i to the previous position.
e xi — the item at the i'" position (like a pointer).

® list<int>::const_iterator i — i is a position in a const list of ints.

1.begin() — returns an iterator pointing to the first element in 1.

e 1.end() — returns an iterator pointing to one past the end of 1.

See iterator.cpp

Engineering 4892: Linked Lists May 23, 2003 Engineering 4892: Linked Lists May 23, 2003

Linked Lists

Implementing lists using arrays may be inefficient in terms of memory — if
the maximum list sized is much larger than needed most of the time.

A linked list is a data structure formed by a sequence of Nodes, each of
which contains a pointer to one or more other Node.

class Node { Aside this is the same as:
public: struct Node {
char data; char data;
Node* next; Nodex* next;
}s };
Engineering 4892: Linked Lists May 23, 2003

Linked List Stack

template <class T> class Stack
{
/]
private:
struct Node {
T data;
Node* next;

};

Node *head; // Pointer to begining of the stack.
};

Engineering 4892: Linked Lists May 23, 2003

The pointers connect the Nodes to form a list. E.g., the list {'A’,'B’,’C’}:
head

data="A’ data="B’ data='C

Insert by creating new node and setting the pointers.

Delete by fixing the pointers then deleting the unused node.

Engineering 4892: Linked Lists May 23, 2003

Doubly-linked List

head
data="A’ data='B’ data="C
next next next “‘7“““‘j:L7
prev. —71—] | prev prev. —] -
class Node {
public:
char data;

Node* next;
Node* prev;
Node(char d = 0, Node *p = 0, Node *n = 0)
: data(d), prev(n), next(n) { }
};

Engineering 4892: Linked Lists May 23, 2003

