
1

Generalized List

Description A list.

State l: A sequence of type T.

Operations
– list() — Constructor.

Post: l = , l is the empty sequence.
– l̃ist() Destructor.
– push front(T x) — Mutator. Adds x to the front of the list.

Post: l′ = x l, x has been inserted at the begining of l.
– pop front() — Mutator. Removes the front element.

Pre: |l| > 0, l is not empty.
Post: l′ = l{1,...|l|−1}, The front element of l has been removed.

– push back(T x) — Mutator. Adds x to the back of the list.
Post: l′ = lx , x has been appended to the end of l.

Engineering 4892: Linked Lists May 23, 2003

2

– pop back() — Mutator. Removes the back element.
Pre: |l| > 0, l is not empty.
Post: l′ = l{0,...|l|−2}, The last element has been removed from l.

– insert(T x , int i) — Mutator. Inserts x in the i th position of the
list.
Post: l′ = l{0,...i−1}x l{i,...|l|−1}, l contains x at position i , the
elements before i are unchanged, and those after i are shifted right
by 1.

– erase(int i) — Mutator. Removes the i th element.
Pre: |l| > 0, l is not empty.
Post: l′ = l{0,...i−1,i+1,...|l|−1}, Elements of l before i are not changed,
the length of l is one less, and elements after i are shifted left by one.

– T front() — Accessor. Returns the front element of the list.
Pre: |l| > 0, l is not empty.
Post: Result = l0 ∧ l′ = l, Result is the first element of l.

Engineering 4892: Linked Lists May 23, 2003

3

– T back() — Accessor. Returns the back element of the list.
Pre: |l| > 0, l is not empty.
Post: Result = ln ∧ l′ = l, Result is the last element of l.

– Bool empty() — Accessor. Returns True if the list is empty, false
otherwise.
Post: Result = (|l| = 0), Result is true if l is empty, false otherwise.

Engineering 4892: Linked Lists May 23, 2003

4

Iterators

ADT representing position in a sequence.

• list<int>::iterator i — i is a position in a list of ints.

• i++ — increment i to the next position.

• i-- — decrement i to the previous position.

• *i — the item at the ith position (like a pointer).

• list<int>::const_iterator i — i is a position in a const list of ints.

• l.begin() — returns an iterator pointing to the first element in l.

• l.end() — returns an iterator pointing to one past the end of l.

See iterator.cpp

Engineering 4892: Linked Lists May 23, 2003

5

Linked Lists

Implementing lists using arrays may be inefficient in terms of memory — if
the maximum list sized is much larger than needed most of the time.

A linked list is a data structure formed by a sequence of Nodes, each of
which contains a pointer to one or more other Node.

class Node {
public:

char data;
Node* next;

};

Aside this is the same as:
struct Node {

char data;
Node* next;

};

Engineering 4892: Linked Lists May 23, 2003

6

The pointers connect the Nodes to form a list. E.g., the list {′A′, ′B′, ′C′}:

data = ’A’

next

data = ’C’

next

data = ’B’

next

head

Insert by creating new node and setting the pointers.

Delete by fixing the pointers then deleting the unused node.

Engineering 4892: Linked Lists May 23, 2003

7

Linked List Stack

template <class T> class Stack
{

// ...
private:

struct Node {
T data;
Node* next;

};

Node *head; // Pointer to begining of the stack.
};

Engineering 4892: Linked Lists May 23, 2003

8

Doubly-linked List

data = ’A’

next

prev

data = ’C’

next

prev

data = ’B’

next

prev

head

class Node {
public:

char data;
Node* next;
Node* prev;
Node(char d = 0, Node *p = 0, Node *n = 0)

: data(d), prev(n), next(n) { }
};

Engineering 4892: Linked Lists May 23, 2003

