
1

Recursion

Recall factorial: n! df= n× (n− 1)× . . .× 2× 1

Written more formally:

n! df=
{

1 if n = 0
n× (n− 1)! if n > 0

This is a recursive definition — n! is defined in terms of (n− 1)!

In programming we say that a function (subroutine) is recursive if, when
called, it may be called again before it returns.

Engineering 4892: Recursion June 7, 2002

2

int factorial(int n)
{

int result = 1;
if (n > 0) {

result = n * factorial(n-1);
}
return result;

}

Note: if foo calls bar and bar calls foo then they’re both recursive.

Engineering 4892: Recursion June 7, 2002

3

Stack Frame/Invocation Record

When a function calls another function, the system must save:

• local variables,

• registers,

• instruction to return to

— called the invocation record.

This information is needed in LIFO order, so it’s stored on a stack (in most
programming languages).

Stack frame — the state of the stack of invocation records at a particular
time. (Note: sometimes the location of the top of the stack is called the
stack frame or stack frame pointer.)

Engineering 4892: Recursion June 7, 2002

4

Aside: Trees and Graphs

A graph is a set of vertices, V , and edges, E, which are pairs of verticies
(i.e., e = (v1, v2)).

Two vertices are adjacent if there is an edge connecting them.

Two vertices are connected if there is a sequence of edges leading from one
to the other.

A graph is connected if every vertex is connected to every other one.

A cycle is a sequence of edges leading from a vertex back to itself in which
no edge appears more than once.

A tree is a connected graph with no cycles.

Engineering 4892: Recursion June 7, 2002



5

Call Trees
Illustrate the execution of an algorithm by a tree:

• each vertex represents an invocation of a function,

• each edge represents a function (the parent) calling another (the child),

• the root of the tree is the starting point of the algorithm (e.g., main) —
it has no parent.

siblings are vertices with the same parent

leaf vertices have no children.

The number of verticies on the longest path from the root to a leaf is the
height of the tree.

The depth of a vertex is the number of branches on a path from the root
to the vertex.

Engineering 4892: Recursion June 7, 2002

6

Factorial Call Tree

n!

(n-1)!

(n-2)!

.

.

.

1!

0!

Engineering 4892: Recursion June 7, 2002

7

Fibonacci Numbers

F (n) df=

 0 if n = 0
1 if n = 1
F (n− 1) + F (n− 2) if n > 1

F(2)

F(1) F(0)

F(2)

F(1) F(0)

F(3)

F(2)

F(1) F(0)

F(1)F(3)

F(1)

F(4)

F(5)

Engineering 4892: Recursion June 7, 2002

8

Towers of Hanoi

• 3 pegs, n disks, all different sizes

• Start with all disks on peg #1, ordered so that smaller disks are on top.

• Goal is to move all n disks to peg #2, subject to:

– Move one disk at a time.
– A larger disk can never be on top of a smaller disk.

If we can move the top n − 1 disks to the spare peg (#3) then we can
simply move the largest disk to #2 and then move the other disks back on
top of it.

Engineering 4892: Recursion June 7, 2002



9

Algorithm Hanoi n, source, dest , spare

if n > 0 then
Move top n− 1 disks from source to spare using dest
Move disk n from source to dest
Move top n− 1 disks from spare to dest using source

end if

Call tree

(1, 3, 2)

4

3

2

1 (3, 2, 1) (2, 1, 3) (1, 3, 2) (3, 2, 1) (2, 1, 3) (1, 3, 2) (3, 2, 1)

(1, 2, 3) (2, 3, 1) (3, 1, 2) (1, 2, 3)

(1, 3, 2) (3, 2, 1)

(1, 2, 3)

Engineering 4892: Recursion June 7, 2002

10

Recursion Principles

We need two things:

1) Base case — a simple instance of the problem that we know how to
solve without recursion (e.g., 0!, 1 disk Towers of Hanoi).

2) Recursive step — a means of solving a given instance of the problem by
reducing it to one or more more simple instances.

– Important that each recursive step only uses more simple instances.
– A variant expression is a natural number expression that is smaller in

recursive calls.
– If there is a variant expression the recursion cannot be infinite.
– variant expression = 0 is the base case.

See: ListR.h.

Engineering 4892: Recursion June 7, 2002

11

Tail Recursion

A recursive function in which the last thing it does is a recursive call to
itself is tail recursive.

Tail recursion can be converted to iteration by re-assigning the values of
local variables and using a loop.

int factorial(int n)
{

int result = 1;
for (int i = n; i > 0; i--) {

result *= i;
}
return result;

}

Engineering 4892: Recursion June 7, 2002

12

Backtracking

Algorithm Maze (start , end)
mark start as seen

done = (start == end)

if ¬done ∧ forward is accessible and unseen then
Move forward

done = Maze(forward , end)

if ¬done then
Move backward

end if
end if
if ¬done ∧ left is accessible and unseen then

Move left

done = Maze(left, end)

if ¬done then
Move right

end if
end if

Engineering 4892: Recursion June 7, 2002



13

if ¬done ∧ right is accessible and unseen then
Move right

done = Maze(left, end)

if ¬done then
Move left

end if
end if
return done

Engineering 4892: Recursion June 7, 2002


