Recursion

Recall factorial: $n!\stackrel{\text { df }}{=} n \times(n-1) \times \ldots \times 2 \times 1$
Written more formally:

$$
n!\stackrel{\text { df }}{=}\left\{\begin{array}{lll}
1 & \text { if } & n=0 \\
n \times(n-1)! & \text { if } & n>0
\end{array}\right.
$$

This is a recursive definition - n ! is defined in terms of $(n-1)$!
In programming we say that a function (subroutine) is recursive if, when called, it may be called again before it returns.

Stack Frame/Invocation Record

When a function calls another function, the system must save:

- local variables,
- registers,
- instruction to return to
- called the invocation record.II

This information is needed in LIFO order, so it's stored on a stack (in most programming languages).

Stack frame - the state of the stack of invocation records at a particular time. (Note: sometimes the location of the top of the stack is called the stack frame or stack frame pointer.)

```
int factorial(int n)
{
    int result = 1;
    if (n > 0) {
        result = n * factorial(n-1);
    }
    return result;
}
```

Note: if foo calls bar and bar calls foo then they're both recursive.

Aside: Trees and Graphs

A graph is a set of vertices, V, and edges, E, which are pairs of verticies (i.e., $e=\left(v_{1}, v_{2}\right)$).

Two vertices are adjacent if there is an edge connecting them.
Two vertices are connected if there is a sequence of edges leading from one to the other.

A graph is connected if every vertex is connected to every other one.
A cycle is a sequence of edges leading from a vertex back to itself in which no edge appears more than once.

A tree is a connected graph with no cycles.

Call Trees

Illustrate the execution of an algorithm by a tree:

- each vertex represents an invocation of a function,
- each edge represents a function (the parent) calling another (the child),
- the root of the tree is the starting point of the algorithm (e.g., main) it has no parent.
siblings are vertices with the same parent
leaf vertices have no children.
The number of verticies on the longest path from the root to a leaf is the height of the tree.

The depth of a vertex is the number of branches on a path from the root to the vertex.

Fibonacci Numbers

$F(n) \stackrel{\text { df }}{=}\left\{\begin{array}{lll}0 & \text { if } & n=0 \\ 1 & \text { if } & n=1 \\ F(n-1)+F(n-2) & \text { if } & n>1\end{array}\right.$

Algorithm Hanoi n, source, dest, spare
if $n>0$ then
Move top $n-1$ disks from source to spare using dest
Move disk n from source to dest
Move top $n-1$ disks from spare to dest using source end if

Call tree

Recursion Principles

We need two things:

1) Base case - a simple instance of the problem that we know how to solve without recursion (e.g., 0!, 1 disk Towers of Hanoi).
2) Recursive step - a means of solving a given instance of the problem by reducing it to one or more more simple instances.

- Important that each recursive step only uses more simple instances.
- A variant expression is a natural number expression that is smaller in recursive calls.
- If there is a variant expression the recursion cannot be infinite.
- variant expression $=0$ is the base case.

See: ListR.h.

Backtracking

```
Algorithm Maze (start, end)
    mark start as seen
    done \(=(\) start \(==\) end \()\)
    if \(\neg\) done \(\wedge\) forward is accessible and unseen then
        Move forward
        done \(=\operatorname{Maze}(\) forward, end \()\)
        if \(\neg\) done then
            Move backward
        end if
    end if
    if \(\neg\) done \(\wedge\) left is accessible and unseen then
    Move left
    done \(=\operatorname{Maze}(\) left, end \()\)
    if \(\neg\) done then
        Move right
        end if
    end if
```

if \neg done \wedge right is accessible and unseen then
Move right
done $=$ Maze $($ left, end $)$
if \neg done then Move left
end if
end if
return done

