
1

Software Engineering Fundamentals

Q: What makes a good program?

A: A good programmer.
A joke, but . . .

• Studies have shown that productivity of professionals varies by a factor
of at least 10.

• Quality of product also varies greatly.

What makes a good programmer?

• Aptitude

• Attitude — Enthusiasm, professionalism.

• Education

Engineering 4892: Software Engineering Fundamentals May 7, 2003

2

Attributes of good software:

• Utility — is it useful? Does it work? (correctness)

• Performance.

• Cost (of production).

• Modifiability — requirements will change.

• Reusability.

• Understandability (affects correctness, modifiability).

• Documentation (affects modifiability, reusability).

Q: Does it matter if my software is good?

A: Yes! Bad software can, has, and will cost lives and $.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

3

Modularity

Module — A collection of components that together achieve a common
purpose (the service provided by the module).

Many languages have explicit or implicit support for modules:

• Ada — packages

• Modula — modules

• Turbo Pascal — units

• Java — packages, classes

In C a module is usually represented by two files: “.h” (interface) and
“.c”(implementation)

In C++ classes and objects support modular design (also usually in .h and
.cpp files).

Engineering 4892: Software Engineering Fundamentals May 7, 2003

4

Modular Design

• Consider how to decompose system into modules.

– What are the abstract concepts involved in the solution?
– Which design decisions are most likely to change?
– Can we isolate the effect of likely changes?

• Design the interfaces to the modules.

– The interface is defined by the set of assumptions that other modules
may make about a module.

– Try to make the interface small, but effective (what service does the
module provide).

– Be wary of implicit aspects of the interface — those that don’t appear
in the code.

– Document the interface carefully!

• Implement the modules.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

5

Information Hiding

Each module hides one or more “secrets” — things that the implementer
of the module needs to know, but the implementers of other modules don’t
need to know.

This controls complexity: separation of concerns.

Some common varieties of secrets:

• Format of inputs and outputs

• Gross behaviour of the system

• Arbitrary facts (e.g., taxation rules)

• Algorithms

• Machine dependencies

• Methods of data representation (a.k.a. data structures)

Engineering 4892: Software Engineering Fundamentals May 7, 2003

6

Example: Chess Program

Module Service Secret

Command Executes user commands Command meaning
Read Gets commands from the

user
Command input
method/format

Display Displays the board to the
user

Format of display, nature of
display device

Select Selects the move to make Game strategy
MoveGen Produces a list of legal

moves
Rules of the game

Board Records states of the game Method of storing game
state

Engineering 4892: Software Engineering Fundamentals May 7, 2003

7

Advantages of Modular Design

• Reduced complexity

• Units of work

– Design
– Implementation
– Testing/validation

• Simplify change

• Reusability

• Program families

Engineering 4892: Software Engineering Fundamentals May 7, 2003

8

Procedural Abstraction

Get the job done without worrying about how it is done (like management).

Most languages have functions such as sqrt or sin

• we use them knowing what they do (their specification),

• but not how they do it (their implementation).

Another example: void sort(int a[], int n)

We know what it does — rearranges the elements of a in ascending order.

We don’t care how it does it.

Defn: Procedural Abstraction — Describing subroutines (procedures,
functions) in terms of what they do rather than how they do it.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

9

Data Abstraction

• Modularity applied to data representation.

• Goal: localize all code that depends on the method of representing the
data.

• Many languages allow localization to be enforced:

– C: “static” variables
– Java, C++: “private” data members

• ADT: interface to data storage modules is independent of the method of
representing the data.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

10

Objects

An object is a region of memory (a.k.a., variable).

We say an object o is an instance of class c if the type of o is c.

In OOP a class will usually define methods (a.k.a., member functions),
which can be classified as:

Creators (a.k.a., constructors) — create new objects

Destroyers (a.k.a., destructors) — clean up when object is no longer
needed.

Accessors — return information about the object without changing it.

Mutators — change the value stored in an object

Engineering 4892: Software Engineering Fundamentals May 7, 2003

11

Complex ADT

• Creators

– Complex(double r, double i) — Creates a complex number
approximately equal to r + ij

– Complex(const Complex& x) — Creates a complex number that is a
copy of x

– Complex operator+(const Complex& x) — Creates a complex number
approximately equal to x+ this complex number (the recipient).

– . . . similarly for other math operations

• Destroyers

– ~Complex() — Destroys a complex number

Engineering 4892: Software Engineering Fundamentals May 7, 2003

12

• Accessors

– double getReal() — Returns the real part of this complex number.
– double getImaginary() — Returns the imaginary part of this complex

number.
– double getMagnitude() — Returns the magnitude of this complex

number.
– double getPhase() — Returns the phase of this complex number.
– bool operator==(const complex& x) — Returns true if x is

approximately equal to this complex number.

• Mutators

– Complex& operator=(const Complex& x) — (Assignment operator)
Copies the value of x over this complex number.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

13

Comments

A good ADT is:

• Easy to understand without reference to implementation.

• Efficient to implement.

• Useful as a component of a larger program.

In C++ the “public” part of the “class” construct is a good place to
document the ADT.

The “private” part of the “class” construct is a good place to document
the method of representation.

In C++ normally the data members are private, and member functions are
public.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

14

Documentation

• An essential part of Engineering: Design documentation

• Distinct from User documentation

• Audience: other programmers

– Designing/implementing other modules in the system.
– Testing this module.
– Modifying of this module.

• Rarely need to document algorithms (how) — the code describes that.

• Concentrate on the what and why

• Strive for precision and clarity

Engineering 4892: Software Engineering Fundamentals May 7, 2003

15

ADT Documentation

Describe the ADT in abstract terms:
• How is the state of an object represented (usually) in terms of

mathematical types (e.g., integer, real, set, sequence, function)?

– invariant — a predicate that is true whenever no member function is
executing (i.e., before and after each function executes).

• What are the operations on the ADT (creators, destroyers, accessors,
mutators)?

• What is the behaviour of each operation in terms of the abstract state?

– pre-condition — a predicate that the function assumes to be true
before it executes.

– post-condition — a predicate that the function will ensure is true when
it finishes.

This is a design document that is independent of any code.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

16

Example: Chess Board ADT

Description Represents the state of a chess board.

State A set of pairs: Board ⊂ Piece× Location

where Piece df=

BlackPawn1,BlackPawn2, . . . BlackPawn8,
BlackRook1,BlackRook2
. . . (all the chess pieces),
Empty

Location df= {(col , row) ∈ {a . . . h} × {1 . . . 8}}

∪ {Taken}
Invariant Each piece, except Empty, is in exactly one location, and each
location, except Taken, has exactly one piece.
(∀p ∈ Piece, p 6= Empty → |{l | (p, l) ∈ Board}| = 1)∧
(∀l ∈ Location, l 6= Taken → |{p | (p, l) ∈ Board}| = 1)

Engineering 4892: Software Engineering Fundamentals May 7, 2003

17

Operations

– ChessBoard()
Constructor. Initializes the board to contain the pieces in the standard
chess starting positions.
Post: Board = {(WhiteRook1, (a, 1)), . . . (standard positions)}

– C̃hessBoard()
Destructor.

– Piece getPiece(Location l)
Returns the piece at location l on the chess board for any location
except Taken.
Pre: l 6= Taken
Post: (Result , l) ∈ Board ∧Board′ = Board

– Location getLocation(Piece p)
Returns the location of piece p for any piece except Empty.
Pre: p 6= Empty
Post: (p,Result) ∈ Board ∧Board′ = Board

Engineering 4892: Software Engineering Fundamentals May 7, 2003

18

– void setLocation(Piece p,Location l)
Sets the location of p to be l for any piece except Empty.
Pre: p 6= Empty ∧ (Empty, l) ∈ Board
Post: (p, l) ∈ Board′∧

¬(∃l0, (l0 6= l ∧ (p, l0) ∈ Board′))∧
(l 6= Taken → ¬(∃p0, (p0 6= p ∧ (p0, l) ∈ Board′))

Engineering 4892: Software Engineering Fundamentals May 7, 2003

19

Notes
Result refers to the value returned by a function.

The ‘primed’ variables (e.g., Board′) refer to the state after the function
has executed, undecorated variables refer to the state before it’s executed.

Formal (mathematical) notation is very precise, and (if written correctly)
shouldn’t be misunderstood, but

• it’s easy to get it wrong, and

• it can be difficult to express some ideas.

Be formal where you can, but don’t let clarity suffer because of it.

I’d rather get correct informal documentation than incorrect formal.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

20

Class Documentation

Two parts:

Interface (public part)

– What ADT is represented.
– Either give the ADT documentation, or refer to another document

that contains it.

Implementation (private part)

– Relationship between variables and ADT state.
– What other classes are used.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

21

Example

class ChessBoard
{

// ...
private:

Piece board[8][8]; // Piece in each board location
// board[r][int(c-’a’)] = p <-> (p, (c, r)) in Board

list<Piece> taken; // Pieces with location = Taken
};

See chessBoard.h.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

22

Method Internal Documentation

In the implementation (.cpp) file:

• Algorithm should be essentially self-documenting. If not, explain it.

• Explain what each local variable represents (ideally in terms of ADT).

• loop invariant — a predicate that’s true before each iteration of a loop,
and when the loop is exited. It should help to show that the loop
accomplishes its role in the program.

Engineering 4892: Software Engineering Fundamentals May 7, 2003

