
1

Trees

A binary tree is either empty or it consists of a node, called the root, and
two binary trees, called the left subtree and the right subtree.

Engineering 4892: Trees July 24, 2002

2

Each node of a full binary tree is either internal—with two non-empty
sub-trees—or a leaf —with two empty sub-trees.

A complete binary tree has all levels full except possibly the last, which is
filled from left to right.

Full

Complete

BinTree.h

Engineering 4892: Trees July 24, 2002

3

Tree Traversal

Often we want to do something for each node in a tree.

Denote:

V – perform the action on the root node

L – perform the action on the left sub-tree

R – perform the action on the right sub-tree

Six possible orders: VLR, LVR, LRV, VRL RVL RLV

Engineering 4892: Trees July 24, 2002

4

Most common orders:

preorder – VLR

inoder – LVR

postorder – LRV

Engineering 4892: Trees July 24, 2002



5

Binary Search Trees

Every node has a key and

1) The key of the root is greater than the key of any node in the left
sub-tree.

2) The key of the root is less than the key of any node in the right sub-tree.

3) The left and right sub-trees are binary search trees.

Engineering 4892: Trees July 24, 2002

6

Dennis
L R

Erin
L R

Fred
L R

Harold
L R

James
L R

Izzy
L R

Gillian
L R

Adam
L R

Brad
L R

Cindy
L R

Engineering 4892: Trees July 24, 2002

7

AVL Trees

Goal: Keep binary search tree almost balanced — searching will be faster.

An AVL Tree is a binary search tree in which the heights of the left and
right subtrees of the root differ by at most 1 and in which the left and right
subtrees are also AVL trees.

Mark each node with a balance factor :

left-higher (Symbol: � ) — left subtree is higher.

right-higher (Symbol: �)

equal-height (Symbol: —)

Engineering 4892: Trees July 24, 2002

8

Engineering 4892: Trees July 24, 2002



9

AVL Insertion

B

A

C

D

E

B

A C

A A

B

A

B

C

A

B

C

D

A

B

C

D

E

B

A

C

D

E

R. Left

R. Left

R. Left

F

D

CA

B E

F

Engineering 4892: Trees July 24, 2002

10

K

K

CA

B

D

CA

B

J

D

I

J

GE

FCA

B

D

E

I

H

G

F

E E

D

H

G

F

I

J

K

H

G

F

I

J

K

CA

B

R. Right

R. Left

Engineering 4892: Trees July 24, 2002

11

Rotation

Right

Left

1

2

A

B

31 2

B

A

3

Engineering 4892: Trees July 24, 2002

12

Rebalance Right

Pre-condition: height(r->right) == height(r->left)+2

Case a) Right is Right heavy: rotate left

h

h+1
h h h

h+1

R. Left

1

32 1 2

A B

B

3

A

Engineering 4892: Trees July 24, 2002



13

Case b) Right is Left heavy: double rotate left

sub-case i) Left child of Right is balanced:

h

h h

h

h

h

hh

hh h h

R. Right

R. Left

1

A

C

2 3

4

B

1

A

C

B

2

43

21

B

3 4

A C

Engineering 4892: Trees July 24, 2002

14

sub-case ii) Left child of Right is Left heavy:

h

h h−1

h

h

h

h

hh h

h−1

h−1

R. Right

R. Left

1

A

C

2 3

4

1

A

C

2

4

21

B

4

A

B

3

3

B C

sub-case iii) Left child of Right is Right heavy:

h

h−1 h

h

h

hh

h h hh−1 h−1

R. Right

R. Left

1

A

C

2 3

4

1

A

C

43

1

B

3 4

C

B

B

2 2

A

Engineering 4892: Trees July 24, 2002

15

Case c) Right is balanced: rotate left

R. Left

h

h

h+1

h+1h+1 h+1

1

1

A

3

32

B

2

A

B

Engineering 4892: Trees July 24, 2002

16

Height of an AVL Tree

To determine the worst case number of comparisons needed to find an
element in an AVL tree, we need to know the maximum possible height of
the tree.

What is the minimum number of nodes in an AVL tree of height h?

• Fh denote an AVL tree of height h containing the minimum possible
number of nodes, and

• |Fh| be the number of nodes in that tree

|F1| = 1, |F2| = 2, |F3| = 4

Engineering 4892: Trees July 24, 2002



17

|Fh| = 1 + |Fh−1| + |Fh−2|

This is a Fibonacci sequence, so

|Fh| + 1 ≈ 1√
5

(
1+
√

5
2

)h+2

h ≈ 1.44 log |Fh| — in the worst case an AVL tree is 1.44 times as tall as a
perfectly balanced tree.

Engineering 4892: Trees July 24, 2002


