Trees

A binary tree is either empty or it consists of a node, called the root, and two binary trees, called the left subtree and the right subtree.

Tree Traversal

Often we want to do something for each node in a tree.
Denote:
\mathbf{V} - perform the action on the root node
\mathbf{L} - perform the action on the left sub-tree
\mathbf{R} - perform the action on the right sub-tree

Six possible orders: VLR, LVR, LRV, VRL RVL RLV

Each node of a full binary tree is either internal-with two non-empty sub-trees-or a leaf-with two empty sub-trees.

A complete binary tree has all levels full except possibly the last, which is filled from left to right.II

Full

Complete

BinTree.h

Engineering 4892: Trees

Most common orders:
preorder - VLR
inoder - LVR
postorder - LRV

Binary Search Trees

Every node has a key and

1) The key of the root is greater than the key of any node in the left sub-tree.
2) The key of the root is less than the key of any node in the right sub-tree.
3) The left and right sub-trees are binary search trees.

AVL Trees

Goal: Keep binary search tree almost balanced - searching will be faster.
An AVL Tree is a binary search tree in which the heights of the left and right subtrees of the root differ by at most 1 and in which the left and right subtrees are also AVL trees.

Mark each node with a balance factor
left-higher (Symbol: /) — left subtree is higher.
right-higher (Symbol: \backslash)
equal-height (Symbol: -)

AVL Insertion

Case b) Right is Left heavy: double rotate left sub-case i) Left child of Right is balanced:

Case c) Right is balanced: rotate left

Engineering 4892: Trees

Engineering 4892: Trees
July 24, 2002
sub-case ii) Left child of Right is Left heavy:

sub-case iii) Left child of Right is Right heavy:

$\left|F_{h}\right|=1+\left|F_{h-1}\right|+\left|F_{h-2}\right|$
This is a Fibonacci sequence, so
$\left|F_{h}\right|+1 \approx \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{h+2}$
$h \approx 1.44 \log \left|F_{h}\right|$ - in the worst case an AVL tree is 1.44 times as tall as a perfectly balanced tree.

