
Software Design & Documentation
Engineering 7800 Guest Lecture

Dennis Peters
dpeters@engr.mun.ca

http://www.engr.mun.ca/˜dpeters/
EN-3061, 737-8929

Spring 2004

Engineering 7800: Software Design & Documentation

1

Motivation

• A large percentage of both EE and CoE projects involve some software.

• Software Design is not intuitive to many.

• Most EE students have had little training in software design.

• SW design documentation is best done using standard notations that
aren’t common with other disciplines.

Outline

1) SW Requirements

2) SW System Decomposition

3) UML Diagrams

Engineering 7800: Software Design & Documentation June 3, 2004

2

How is Software Different from Other Engineering?

• No natural (internal) boundaries.

– Requires special skills to choose designs.
– Components can interact in many ways.

• It’s not constructed from materials that obey physical laws.

– Interpolation is rarely valid.
– Difficult to build in safety margins (can’t extrapolate).
– Doesn’t wear out or break.

• Possible interactions with other systems (e.g., operating system, other
programs etc.) are essentially infinite.

Engineering 7800: Software Design & Documentation June 3, 2004

3

Requirements

• It’s very difficult to get the design right if you don’t know what it should
do.

• Before you start designing your software invest some time in
understanding the requirements.

• Describe “what” not “how”.

• Functional requirements: what is to be done.

• Non-functional requirements: properties of the system that aren’t related
to how it behaves.

• Some useful tools:

– Sketch of user interface.
– Use cases.

Engineering 7800: Software Design & Documentation June 3, 2004



4

Use Cases

Describe the interaction between users (actors) and the system to
accomplish some user-defined goal.

• What actors are involved?

• What is the sequence of steps that occur in the ’normal’ interaction.

• Are there deviations/extensions for special cases?

Engineering 7800: Software Design & Documentation June 3, 2004

5

Example Use case: Robot Rescue

Actors: Rescue commander, victim.
System components: Robot, control station.

1) Robot is initialized at the entrance to a building.

2) Rescue commander enters command on control station for robot to
search for a victim.

3) Control station relays command to Robot.

4) Robot enters building and begins to search.

5) Robot locates a potential victim.

6) Robot takes an image of the victim and sends it to the control station.

7) Control station displays the image.

Engineering 7800: Software Design & Documentation June 3, 2004

6

8) Rescue commander indicates that the image is a victim.

9) Control station relays instruction to Robot.

10) Robot picks up victim.

11) Robot navigates its way out of the building.

Alternatives

At 8 commander indicates that the image is not a victim, robot continues
to search, repeat from 5.

Engineering 7800: Software Design & Documentation June 3, 2004

7

SW System Decomposition

• Goal is to define a set of design entities (modules, classes, packages,
functions)

• Together the entities interact to implement the SW system behaviour.

• For each entity decide (and document):

Name — try to be precise and descriptive.
Responsibilities — what part(s) of the behaviour does it accomplish?
Interface — what other entities know about this entity (for a class the

public operations and attributes).
Relationships with other entities — how is it related to other entities.

Engineering 7800: Software Design & Documentation June 3, 2004



8

Techniques for Decomposition

• Abstraction — The interface to an entity should be much simpler than
the implementation.

• Encapsulation (a.k.a. information hiding) — Each entity should ’hide’ a
design decision, such as

– Implementation of algorithms,
– Interface with some hardware/other system,
– Data representation,
– Increments.

• Strive for simple and small interfaces between entities (low coupling).

• The decisions to hide are the ones that are most likely to change.

Engineering 7800: Software Design & Documentation June 3, 2004

9

Relations On Entities

Uses – if M1 requires the presence of M2 then M1 uses M2 (a.k.a. is a
client of).

• not the same as calls or associated with (these are specializations of
uses)

• if it is not a hierarchy then all modules in cycle must be implemented
together (strong coupling)

• sub-trees in hierarchy indicate possible increments/family members
• aim for low fan-out and high fan-in

is component of – (a.k.a. aggregation)

passes data to

specialization of — (a.k.a. inheritance)

Engineering 7800: Software Design & Documentation June 3, 2004

10

Incremental Design

It often makes sense (particularly so in this course) to approach the SW
design and implementation problem as a sequence of increments.

• Increments occur in sequence — you finish working on one increment
before you start the next.

• Each increment results in a running system.

• The success (or not) of an increment is apparent to the user of the
system — the behaviour that the system should have is clearly defined.

• Increments are fixed in duration and short (two – four weeks).

• Plan for more increments than you expect to accomplish (i.e., some will
be left for “future work”) — if you are successful in the early increments
then you can adjust to do more.

Engineering 7800: Software Design & Documentation June 3, 2004

11

• Make sure that the highest priority parts are done in the early increments
— if you run in to trouble you can survive with an early increment.

Engineering 7800: Software Design & Documentation June 3, 2004



12

UML Diagrams

Class diagram Shows classes, their attributes, operations and relations.

Sequence diagram Shows interactions between objects to accomplish a
particular behaviour.

Engineering 7800: Software Design & Documentation June 3, 2004

13

References

[1] Martin Fowler. UML Distilled: A Brief guide to the Standard Object
Modeling Language. Addison-Wesley, third edition, 2004.

Engineering 7800: Software Design & Documentation June 3, 2004


