
1

Critical Section

process CS[i = 1 to n] {
while (true) {

entry protocol;
critical section;
exit protocol;
noncritical section;

}
}

Assume process entering CS will evenutally leave it.

Engineering 8893: Locks & Barriers February 10, 2004

2

Mutual Exclusion: At most one process in a critical section at at time.

Absence of Deadlock: If two or more processes are trying to enter, one
will succeed.

Absence of Unnecessary Delay: Process gets to enter CS without
unnecessary delay.

Eventual Entry: A process trying to enter CS will eventually succeed.

Note: 〈S〉 is implemented by:

CSenter;
S
CSexit;

(Assuming that all other non-independent statements are similarly
protected.)

Engineering 8893: Locks & Barriers February 10, 2004

3

Coarse Grained Solution

bool lock = false;
bool in[1:n] = { false } -- ’thought’ variable
INV: |{ j | in[j] }| <= 1 /\ lock = (E)j.in[j]
process CS[i = 1 to n] {

while (true) {
<await (!lock) lock = true;
in[i] = true
>
in[i]
critical section;
< # in[i] = false
lock = false; >
noncritical section;

}
}

Engineering 8893: Locks & Barriers February 10, 2004

4

Hardware Solution: Test & Set

Modern CPUs offer instructions to aid mutual exclusion. Test-and-set is
one:

TS ri rj
df= 〈ri := M[rj]; M[rj] := true; 〉

Implement above coarse grained solution as:

bool lock = false;
process CS[i = 1 to n] {

while (true) {
do { r1 := &lock;

TS r0 r1;
} while (r0);
critical section;
lock = false;
noncritical section;

} }

Engineering 8893: Locks & Barriers February 10, 2004

5

After-you Algorithm
int t := 0;
INV: t == 0 \/ t == 1

process P0 {
while (true) {

t := 1;
< await (t == 0) >
t == 0;
critical section;

}
}

process P1 {
while (true)

t := 0;
< await (t == 1) >
t == 1;
critical section;

}
}

• Enforces mutual exclusion

• Deadlock free

• Causes unnecessary delay

• Doesn’t ensure eventual entry

Engineering 8893: Locks & Barriers February 10, 2004

6

Safe-Sluice Algorithm

bool r[2] := {false, false};

process P0 {
r[0] := true;
< await (!r[1]) >
A0
critical section;
r[0] := false;

}

process P1 {
r[1] := true;
< await (!r[0]) >
A1
critical section;
r[1] := false;

}

• Enforces mutual exclusion

• Deadlocks

Engineering 8893: Locks & Barriers February 10, 2004

7

To prove mutual exclusion we want to find assertions A0 and A1 such that:

• A0 is true whenever P0 is in its critical section.

• A1 is true whenever P1 is in its critical section.

• Both can’t be true at once: ¬(A0 ∧ A1)

A first try:

A0
df= r[0] ∧ ¬r[1] A1

df= r[1] ∧ ¬r[0]

Is there interference?

Engineering 8893: Locks & Barriers February 10, 2004

8

A second try:

Introduce a “thought variable” (auxiliary variable) t such that if r[0]∧ r[1]
then t = i indicates that process i was the first to set its request flag.

bool r[2] := {false, false};
int t := 0; # thought variable

process P0 {
< r[0] := true; t := 1; >
< await (!r[1]) >
A0
critical section;
r[0] := false;

}

process P1 {
< r[1] := true; t := 0 >
< await (!r[0]) >
A1
critical section;
r[1] := false;

}

A0
df= r[0] ∧ (¬r[1] ∨ t = 0) A1

df= r[1] ∧ (¬r[0] ∨ t = 1)
• interference?

• A0 ∧ A1⇔ false?

Engineering 8893: Locks & Barriers February 10, 2004

9

Eliminating Deadlock

We can use t to eliminate the deadlock in Safe-sluice:

bool r[2] := {false, false};
int t := 0; # no longer just a thought variable

process P0 {
< r[0] := true; t := 1; >
< await (!r[1] || t == 0) >
A0
critical section;
r[0] := false;

}

process P1 {
< r[1] := true; t := 0 >
< await (!r[0] || t == 1) >
A1
critical section;
r[1] := false;

}

Engineering 8893: Locks & Barriers February 10, 2004

10

Splitting the atomic assignment — Peterson’s algorithm

If we do it right we don’t need to combine the two assignment statements
into an atomic action:

bool r[2] := {false, false};
int t := 0; # turn indicator

process P0 {
r[0] := true;
t := 1;
< await (!r[1] || t == 0) >
B0
critical section;
r[0] := false;

}

process P1 {
r[1] := true;
t := 0
< await (!r[0] || t == 1) >
B1
critical section;
r[1] := false;

}

We need new assertions B0 and B1 (why?)

Engineering 8893: Locks & Barriers February 10, 2004

11

Let’s introduce another thought variable n[i] to indicate when Pi is between
the two assingments:

bool r[2] := {false, false};
int t := 0; # turn indicator
bool n[2] = {false, false}

process P0 {
< r[0] := true; n[0] := true>
< t := 1; n[0] := false >
< await (!r[1] || t == 0) >
B0
critical section;
r[0] := false;

}

process P1 {
< r[1] := true; n[1] := true; >
< t := 0; n[1] := false; >
< await (!r[0] || t == 1) >
B1
critical section;
r[1] := false;

}

B0
df= r[0] ∧ ¬n[0] ∧ (¬r[1] ∨ t = 0 ∨ n[1])

B1
df= r[1] ∧ ¬n[1] ∧ (¬r[0] ∨ t = 1 ∨ n[0])

Engineering 8893: Locks & Barriers February 10, 2004

12

Spin Loops

Note that the await condition !r[1] || t == 0 does not satisfy the AMO
property.
Despite this we can still implement it using a spin loop. Think of it this
way:

loop {
exit when !r[1]
exit when t == 0

}
!r[1] || t == 0

Clearly when the loop exits the assertion is true.

This is implemented as
while (r[1] && t != 0) /* spin */ ;

Can we implement < await(a && b) > as while (!a || !b) /* spin */ ; ?

Engineering 8893: Locks & Barriers February 10, 2004

13

Full Proof Outline

To be complete we should put in all the assertions and show non-interference.

bool r[2] := {false, false};
int t := 0; # turn indicator
bool n[2] = {false, false}

process P0 {
true
< r[0] := true; n[0] := true>
r[0] && n[0]
< t := 1; n[0] := false >
r[0] && !n[0]
< await (!r[1] || t == 0) >
B0
critical section;
r[0] := false;

}

process P1 {
true
< r[1] := true; n[1] := true; >
r[1] && n[1]
< t := 0; n[1] := false; >
r[1] && !n[1]
< await (!r[0] || t == 1) >
B1
critical section;
r[1] := false;

}

Engineering 8893: Locks & Barriers February 10, 2004

14

Bakery Algorithm

Invariant:

∀i, 1 ≤ i ≤ n ⇒
((

CS[i] in its critical section
)
⇒

(
turn[i] > 0∧

∀j, (1 ≤ j ≤ n ∧ j 6= i) ⇒ (turn[j] = 0 ∨ turn[i] < turn[j])
))

int turn[1:n] = ([n] 0);
process CS[i = 1 to n] {

while (true) {
< turn[i] = max(turn[1:n]) + 1; >
for [j = 1 to n st j != i]

< await (turn[j] == 0 or turn[i] < turn[j]) ; >
critical section;
turn[i] = 0;
noncritical section;

}
}

Engineering 8893: Locks & Barriers February 10, 2004

15

for (int r = 1; r <= 20; r++) {
turn.val[pid] = 1;
turn.val[pid] = turn.max() + 1;
for (int j = 0; j < n; j++) {

if (j != pid) {
while (turn.val[j] != 0 &&

(turn.val[pid] > turn.val[j] ||
(turn.val[pid] == turn.val[j] && pid > j)))

Thread.sleep((int)Math.round(Math.random()*1));
}

}
// Critical section
// Exit protocol
turn.val[pid] = 0;
// noncritical section

}

Engineering 8893: Locks & Barriers February 10, 2004

16

Barrier Synchronization

Typical structure for parallel itterative algorithms:

process Worker[i = 1 to n] {
while (true) {

code to implement task i;
wait for all n tasks to complete;

}
}

Engineering 8893: Locks & Barriers February 10, 2004

17

Mutual Inclusion

int s[n] := {-1}; int c[n] := {-1};

process Pi {
for [r := 0 to n] {

s[i] := s[i] + 1;
Round(i, r);
c[i] := c[i] + 1;
Barrier

}
}

process Pj {
for [r := 0 to n] {

s[j] := s[j] + 1;
Round(j, r);
c[j] := c[j] + 1;
Barrier

}
}

Working: s[i] > c[i]
In barrier: s[i] == c[i]
While process i is working on round k, process j must be finished round
k − 1 and not yet started round k + 1.

Desired invariant: s[i] > c[i] ⇒ ∀j, c[j] ≥ c[i] ∧ s[j] ≤ s[i]

Engineering 8893: Locks & Barriers February 10, 2004

18

Shared Counter

process Worker[i = 1 to n] {
while (true) {

code to implement task i;
< count = count + 1; >
< await (count == n); >

}
}

How to ensure that count = 0 at the start of each itteration?

Engineering 8893: Locks & Barriers February 10, 2004

19

Flags and Coordinators

int arrive[1:n] = {0};
int continue[1:n] = {0};

process Worker[i = 1 to n] {
while (true) {

code to implement task i;
arrive[i] = 1;
< await (continue[i] == 1); >
continue[i] = 0;

}
}

process Coordinator {
while (true) {

for [i = 1 to n] {
< await (arrive[i] == 1); >
arrive[i] = 0;

}
for [i = 1 to n] continue[i] = 1;

}
}

Engineering 8893: Locks & Barriers February 10, 2004

20

Flag Synchronization Priciples

• A process that waits for a synchronization flag to be set should be the
one to clear the flag.

• A flag should not be set until it is known to be clear.

Inefficiencies

• Extra process for Coordinator

• Coordinator is slower for more processes.

• Solutions

– Combining Tree Barrier
– Symmetric Barrier

Engineering 8893: Locks & Barriers February 10, 2004

21

Data Parallel Algorithms

Parallel Prefix: ∀i, 0 ≤ i < n ⇒ sum[i] =
∑i

j=0 a[j]

int a[n], sum[n], old[n]

process Sum[i = 0 to n-1] {
int d = 1; # distance
sum[i] = a[i]; # initialize to a
barrier(i);
while (d < n) {

old[i] = sum[i];
barrier(i);
if ((i-d) >= 0) sum[i] += old[i-d];
barrier(i);
d += d; # double distance

}
}

Engineering 8893: Locks & Barriers February 10, 2004

22

Jacobi Iteration (Laplace’s eqn):

int grid[n+1,n+1], newgrid[n+1,n+1];
bool converged = false;

process Grid[i = 1 to n, j = 1 to n] {
while (!converged) {

newgrid[i,j] = (grid[i-1,j] + grid[i+1,j] +
grid[i,j-1] + grid[i,j+1]) / 4;

converged = (test for convergence)
barrier(i);
grid[i,j] = newgrid[i,j];
barrier(i);

}
}

Engineering 8893: Locks & Barriers February 10, 2004

23

Bag of Tasks

while (bag is not empty) {
get task from the bag;
execute the task, possibly generating new ones;

}

• Task is independent unit of work.

• Bag represents collection of tasks.

• Scalable — set number of workers to number of processors.

• Load balanced — if a tasks takes longer, other workers will do more
tasks.

Engineering 8893: Locks & Barriers February 10, 2004

24

Example: Adaptive Quadrature
process Worker[w = 1 to PR] {

double left, right, fleft, fright, lrarea;
double mid, fmid, larea, rarea;
bool done = false;
while (!done) {

< idle++;
done = (idle == PR && bag is empty); >

if (!done) {
< await (size > 0)

get task (left, right, fleft, fright, lrarea)
from bag;

idle--; >
mid = (left+right)/2;
fmid = f(mid);
larea = (fleft + fmid) * (mid - left) / 2;
rarea = (fmid + fright) * (right - mid) / 2;
if ((abs(larea+rarea) - lrarea) > EPSILON) {

Engineering 8893: Locks & Barriers February 10, 2004

25

put (left, mid, fleft, fmid, larea) into bag;
put (mid, right, fmid, fright, rarea) into bag;

} else {
total += lrarea;

}
}

} }

Engineering 8893: Locks & Barriers February 10, 2004

