Critical Section

```
process CS[i = 1 to n] {
    while (true) {
        entry protocol;
        critical section
        exit protocol;
        noncritical section;
    }
}
```

Assume process entering CS will evenutally leave it

Coarse Grained Solution

```
bool lock = false;
# bool in[1:n] = { false } -- 'thought' variable
## INV: |{ j | in[j] }| <= 1 /\ lock = (E)j.in[j]
process CS[i = 1 to n] {
    while (true) {
        <await (!lock) lock = true;
        # in[i] = true
        >
        ## in[i]
        critical section
        < # in[i] = false
        lock = false; >
        noncritical section;
    }
}
```

Mutual Exclusion: At most one process in a critical section at at time.
Absence of Deadlock: If two or more processes are trying to enter, one will succeed.

Absence of Unnecessary Delay: Process gets to enter CS without unnecessary delay.
Eventual Entry: A process trying to enter CS will eventually succeed.

Note: $\langle\mathrm{S}\rangle$ is implemented by:
CSenter;
S
CSexit;
(Assuming that all other non-independent statements are similarly protected.)

Hardware Solution: Test \& Set

Modern CPUs offer instructions to aid mutual exclusion. Test-and-set is one:
$\mathrm{TS} \mathrm{r}_{\mathrm{i}} \mathrm{r}_{\mathrm{j}} \stackrel{\text { df }}{=}\left\langle\mathrm{r}_{\mathrm{i}}:=\mathrm{M}\left[\mathrm{r}_{\mathrm{j}}\right] ; \mathrm{M}\left[\mathrm{r}_{\mathrm{j}}\right]:=\right.$ true $\left.;\right\rangle$
Implement above coarse grained solution as:

```
bool lock = false;
process CS[i = 1 to n] {
    while (true) {
        do { r1 := &lock;
            TS r0 r1;
        } while (r0);
        critical section;
        lock = false
        noncritical section;
    } }
```


After-you Algorithm

```
int t := 0;
## INV: t == 0 \/ t == 1
```

```
process P0 { process P1 {
    while (true) { while (true)
        t := 1;
        < await (t == 0) >
        ## t == 0;
        critical section
    }
```

\}

- Enforces mutual exclusion
- Deadlock free
- Causes unnecessary delay
- Doesn't ensure eventual entry

To prove mutual exclusion we want to find assertions A0 and A1 such that:

- AO is true whenever PO is in its critical section
- A1 is true whenever P1 is in its critical section.
- Both can't be true at once: $\neg(\mathrm{A} 0 \wedge \mathrm{~A} 1)$ I

A first try:

$\mathrm{A} O \stackrel{\mathrm{df}}{=} \mathrm{r}[0] \wedge \neg \mathrm{r}[1]$
$A 1 \stackrel{\text { df }}{=} r[1] \wedge \neg r[0]$

Is there interference?

Safe-Sluice Algorithm

```
bool r[2] := {false, false};
process P0 {
    r[0] := true;
    < await (!r[1]) >
    ## AO
    critical section;
    r[0] := false;
|
```

- Enforces mutual exclusion
- Deadlocks

A second try:

Introduce a "thought variable" (auxiliary variable) t such that if $\mathrm{r}[0] \wedge \mathrm{r}[1]$ then $\mathrm{t}=i$ indicates that process i was the first to set its request flag.

```
bool r[2] := {false, false};
```

int $\mathrm{t}:=0$; \# thought variable
process P0 \{
$<r[0]$:= true; t := 1; >
process P1 \{
< r[1] := true; t := 0 >
< await (!r[1]) >
\#\# AO
critical section;
$r[0]$:= false;
\}
$\mathrm{A} 0 \stackrel{\text { df }}{=} \mathrm{r}[0] \wedge(\neg \mathrm{r}[1] \vee \mathrm{t}=0)$
< await (!r[0]) >
\#\# A1
critical section;
r[1] := false;
\}
$\mathrm{A} 1 \stackrel{\mathrm{df}}{=} \mathrm{r}[1] \wedge(\neg \mathrm{r}[0] \vee \mathrm{t}=1)$

- interference?
- $\mathrm{A} 0 \wedge \mathrm{~A} 1 \Leftrightarrow$ false?

Eliminating Deadlock

We can use to eliminate the deadlock in Safe-sluice:

```
bool r[2] := {false, false};
int t := 0; # no longer just a thought variable
```


Let's introduce another thought variable $\mathrm{n}[i]$ to indicate when $\mathrm{P} i$ is between the two assingments:

```
bool r[2] := {false, false};
int t := 0; # turn indicator
bool n[2] = {false, false}
```

```
process P0 { process P1 {
```

process P0 { process P1 {
<r[0] := true; n[0] := true> < r[1] := true; n[1] := true; >
<r[0] := true; n[0] := true> < r[1] := true; n[1] := true; >
< t := 1; n[0] := false > < t := 0; n[1] := false; >
< t := 1; n[0] := false > < t := 0; n[1] := false; >
< await (!r[1] || t == 0) > < await (!r[0] || t == 1) >
< await (!r[1] || t == 0) > < await (!r[0] || t == 1) >
\#\# B0
\#\# B0
critical section; critical section;
critical section; critical section;
r[0] := false;
r[0] := false;
r[1] := false;
r[1] := false;
}
}
}
}
BO \stackrel{df}{=}r[0]^\negn[0]^(\negr[1]\veet=0 \vee n[1])
BO \stackrel{df}{=}r[0]^\negn[0]^(\negr[1]\veet=0 \vee n[1])
B1 }\stackrel{\textrm{df}}{=}\textrm{r}[1]\wedge\neg\textrm{n}[1]\wedge(\neg\textrm{r}[0]\vee\textrm{t}=1\vee\textrm{n}[0]

```
B1 }\stackrel{\textrm{df}}{=}\textrm{r}[1]\wedge\neg\textrm{n}[1]\wedge(\neg\textrm{r}[0]\vee\textrm{t}=1\vee\textrm{n}[0]
```


Splitting the atomic assignment - Peterson's algorithm

If we do it right we don't need to combine the two assignment statements into an atomic action:

```
bool r[2] := \{false, false\};
int \(\mathrm{t}:=0\); \# turn indicator
```

```
process P0 { process P1 {
```

process P0 { process P1 {
r[0] := true; r[1] := true
r[0] := true; r[1] := true
t := 1; t := 0
t := 1; t := 0
< await (!r[1] || t== 0) > < await (!r[0] || t == 1) >
< await (!r[1] || t== 0) > < await (!r[0] || t == 1) >
\#\# BO
\#\# BO
critical section; critical section;
critical section; critical section;
r[0] := false;
r[0] := false;
}
}
We need new assertions B0 and B1 (why?)

```
We need new assertions B0 and B1 (why?)
```


Spin Loops

Note that the await condition $\operatorname{rr}[1] \| t==0$ does not satisfy the AMO property.
Despite this we can still implement it using a spin loop. Think of it this way:
loop \{
exit when !r[1]
exit when $t==0$
\}
\#\# !r[1] || t == 0
Clearly when the loop exits the assertion is true.
This is implemented as
while (r[1] \&\& t ! = 0) /* spin */ ;
Can we implement < await (a \&\& b) > as while (!a \|| !b) /* spin */ ; ?

To be complete we should put in all the assertions and show non-interference.

```
bool r[2] := {false, false};
int t := 0; # turn indicator
bool n[2] = {false, false}
process PO {
    process P1 {
    ## true
    <r[0] := true; n[0] := true> < r[1] := true; n[1] := true; >
    ## r[0] && n[0]
    < t := 1; n[0] := false >
    ## r[0] && !n[0]
    < await (!r[1] || t == 0) >
    ## BO
    critical section;
    r[0] := false;
}
```


Bakery Algorithm

Invariant:

```
\(\forall i, 1 \leq i \leq n \Rightarrow((\mathrm{CS}[i]\) in its critical section \() \Rightarrow(\operatorname{turn}[i]>0 \wedge\)
    \(\forall j,(1 \leq j \leq n \wedge j \neq i) \Rightarrow(\operatorname{turn}[j]=0 \vee \operatorname{turn}[i]<\operatorname{turn}[j])))\)
int \(\operatorname{turn}[1: n]=([n] 0)\);
process CS[i = 1 to n] \{
    while (true) \{
        < turn[i] \(=\max (t u r n[1: n])+1\); >
        for \([j=1\) to \(n\) st \(j\) ! \(=\) i]
            < await (turn[j] == 0 or \(\operatorname{turn}[i]\) < turn[j]) ; >
        critical section;
        turn[i] = 0;
        noncritical section;
    \}
\(\}\)
```


Barrier Synchronization

Typical structure for parallel itterative algorithms:

```
process Worker[i = 1 to n] {
    while (true) {
        code to implement task i;
        wait for all n tasks to complete;
    }
}
```


Mutual Inclusion

```
int \(s[n]:=\{-1\} ;\) int \(c[n]:=\{-1\} ;\)
process Pi \{
    process Pj \{
    for \([\mathrm{r}:=0\) to n\(]\) \{
        \(s[i]:=s[i]+1\);
        Round(i, r);
        \(c[i]:=c[i]+1\);
        Barrier
    \}
\}
        for \([r:=0\) to \(n]\{\)
                                \(s[j]:=s[j]+1\);
        Round (j, r);
        \(c[j]:=c[j]+1\);
        Barrier
    \}
\(\}^{\}}\)
```

Working: $\mathrm{s}[i]>\mathrm{c}[i]$
In barrier: $\mathrm{s}[i]=\mathrm{c}[i]$
While process i is working on round k, process j must be finished round
$k-1$ and not yet started round $k+1$.
Desired invariant:Is $[i]>\mathrm{c}[i] \Rightarrow \forall j, \mathrm{c}[j] \geq \mathrm{c}[i] \wedge \mathrm{s}[j] \leq \mathrm{s}[i]$

Flags and Coordinators

```
int arrive[1:n] = {0};
int continue[1:n] = {0};
process Worker[i = 1 to n] {
    while (true) {
        code to implement task i;
        arrive[i] = 1;
        < await (continue[i] == 1); >
        continue[i] = 0;
}
}
```

process Coordinator {

```
process Coordinator {
    while (true) {
    while (true) {
        for [i = 1 to n] {
        for [i = 1 to n] {
            < await (arrive[i] == 1); >
            < await (arrive[i] == 1); >
            arrive[i] = 0;
            arrive[i] = 0;
        for [i = 1 to n] continue[i] = 1;
        for [i = 1 to n] continue[i] = 1;
    }
    }
}
```

```
}
```

```

\section*{Shared Counter}
```

process Worker[i = 1 to n] {
process Worker Li
code to implement task i;
< count = count + 1; >
< await (count == n); >
}
}
|

```

How to ensure that count \(=0\) at the start of each itteration?

\section*{Flag Synchronization Priciples}
- A process that waits for a synchronization flag to be set should be the one to clear the flag.
- A flag should not be set until it is known to be clear.

\section*{Inefficiencies}
- Extra process for Coordinator
- Coordinator is slower for more processes.
- Solutions
- Combining Tree Barrier
- Symmetric Barrier

\section*{Data Parallel Algorithms}
```

Parallel Prefix: }\foralli,0\leqi<n=>\operatorname{sum}[i]=\mp@subsup{\sum}{j=0}{i}\textrm{a}[j
int a[n], sum[n], old[n]
process Sum[i = 0 to n-1] {
int d = 1; \# distance
sum[i] = a[i]; \# initialize to a
barrier(i);
while (d < n) {
old[i] = sum[i];
barrier(i);
if ((i-d) >= 0) sum[i] += old[i-d];
barrier(i);
d += d; \# double distance
}
}

```

\section*{Bag of Tasks}
while (bag is not empty) \{ get task from the bag;
execute the task, possibly generating new ones;
\}
- Task is independent unit of work.
- Bag represents collection of tasks.
- Scalable - set number of workers to number of processors.
- Load balanced - if a tasks takes longer, other workers will do more tasks.

\section*{Jacobi Iteration (Laplace's eqn):}
```

int grid[n+1,n+1], newgrid[n+1,n+1];
bool converged = false;
process Grid[i = 1 to n, j = 1 to n] {
while (!converged) {
newgrid[i,j] = (grid[i-1,j] + grid[i+1,j] +
grid[i,j-1] + grid[i,j+1]) / 4
converged = (test for convergence)
barrier(i);
grid[i,j] = newgrid[i,j];
barrier(i);
}
}

Example: Adaptive Quadrature

```
process Worker[w = 1 to PR] {
    double left, right, fleft, fright, lrarea;
    double mid, fmid, larea, rarea;
    bool done = false;
    while (!done) {
        < idle++;
            done = (idle == PR && bag is empty); >
            if (!done) {
            < await (size > 0)
                get task (left, right, fleft, fright, lrarea)
                    from bag;
            idle--; >
        mid = (left+right)/2;
        fmid = f(mid);
        larea = (fleft + fmid) * (mid - left) / 2;
        rarea = (fmid + fright) * (right - mid) / 2;
        if ((abs(larea+rarea) - lrarea) > EPSILON) {
```

put (left, mid, fleft, fmid, larea) into bag; put (mid, right, fmid, fright, rarea) into bag;
else \{
total += lrarea;
\}
\}
\} \}

