Monitors

Abstract data types (classes) that ensure mutual exclusion between
operations (methods).

Can't access 'permanent’ (member) variables except through operations.

Operations cannot access variables outside monitor (i.e., can only access

permanent variables, local variables and parameters).

Permanent variables are initialized before any operation can be invoked
(constructor).
Mutual exclusion is implicit. At most 1 process occupies the monitor.

Implementation: Processes calling a monitor method are delayed on an

“entry queue” until the monitor is unoccupied.

Conditional Synchronization through condition variables.

Engineering 8893: Monitors

Monitor Invariant

MI — an assertion

MI should be true whenever the monitor is “unoccupied”

Capture consistency (sanity, invariant) properties of data.

In terms of permanent variables only.

Ensure that initialization makes it true.

Ensure that {MI} op {MI} (all public methods keep it true)

Ensure that it is true at any wait points.

Engineering 8893: Monitors

February 19, 2004

February 19, 2004

Example: Time of Day
monitor TOD {
int hr =0 , min = 0 , sec = 0 ;
Inv: O <= hr < 24 /\ 0 <= min < 60 /\ 0 <= sec < 60

procedure set(int h, int m, int s) {
Pre: 0 <= h <24 /\ 0 <=m < 60
/\ 0 <= s < 60
hr :=h ; min :=m ; sec := s ; }

procedure get(int &h, int &m, int &s) {
h :=hr ; m := min ; s := sec ; }

procedure tick() {

sec += 1 ;
min += sec / 60 ; sec := sec % 60 ;
hr += min / 60 ; min := min % 60 ;

hr := hr % 24 ; } }

Engineering 8893: Monitors

Condition Variables

cond c¢; — only used within monitor.

wait(c) Wait for the condition to be signalled

— Unoccupy monitor
— Wait on c’s condition queue.

signal(c) Indicate condition is true

Engineering 8893: Monitors

February 19, 2004

February 19, 2004

Signaling Disciplines

What happens when signal is called?

Signal and Wait (SW): Signaller moves to entry queue, signalled process
immediately enters monitor.

Signal and Urgent wait (SU): Signaller moves to front of entry queue,
signalled process immediately enters monitor.

Signal and Exit (SX): Signaller leaves monitor immediately.

Signal and Continue (SC): Signaller retains occupancy, signalled process
is moved to entry queue.

Engineering 8893: Monitors February 19, 2004

7

e Since occupancy of the monitor passes from the signaller to the waiter
without interruption, if P is true prior to every signal(c) it will also be
true after each wait(c).

e Local variables of the processes are unaffected.
e Since waiting yeilds occupancy, we must ensure MI is true before waiting.

e Since the signaller reenters when the monitor becomes unoccupied, it
can assume MI after the signal is complete.

e Since, if the wait queue is empty signalling leaves the monitor unoccupied,
we should ensure MI is true before signalling.

| | Obligation of montor | Benefit to monitor |

signal(c) || Ensure MI A P, before | MI is true after
wait(c) Ensure MI before P. A Ml is true after

Engineering 8893: Monitors February 19, 2004

Signal and Wait

Since occupancy of the monitor is passed seamlessly from the signaller to
the signallee, any facts about the monitor's data will remain true between
the start fo the signal and end of the wait.

Semantics We assume the following:

e P_ is an assertion associated with condition variable c.
e MI is the monitor invariant.

e L is an assertion that only involves variables local to the process.

signal axiom: {P. A MI A L}signal(c){MIA L}

wait axiom: {MI A L}wait(c){P. AMIAL}

Engineering 8893: Monitors February 19, 2004

Example: Bounded Buffer e

monitor Bounded_buffer {
char buf[n]; # buffer
int front = 0; # first full slot
int rear = 0; # first empty slot
int count = 0; # number of full slots
cond not_full; # signaled when count < n
cond not_empty; # signaled when count > 0O
MI: O <= front < n /\ 0 <= rear < n /\ 0 <= count <= n /\
(front+count) % n == rear

procedure deposit(char data) {
if (count == n) wait(not_full);
MI /\ count < n
buf [read] = data;
rear = (rear+1)’ n;
count++;
signal (not_empty) ;

Engineering 8893: Monitors February 19, 2004

procedure fetch(char data) {

if (count == 0)

wait (not_empty);

MI /\ count > O
result = buf [front];
front = (front+1)¥% n;

count--;

signal(not_full);

Engineering 8893: Monitors

Example: Bounded Buffer (SC version)

February 19, 2004

11

monitor Bounded_buffer {

char buf [n]; #
int front = 0; #
int rear = 0; #
int count = 0; #
cond not_full; #
cond not_empty; #
MI: O <= front

buffer

first full slot

first empty slot

number of full slots

signaled when count < n

signaled when count > 0O

<n /\ 0<=rear <n /\ 0 <= count <= n /\

#i# (front+count) % n == rear

procedure deposit(char data) {

while (count ==

n) wait(not_full);

MI /\ count < n
buf [read] = data;
rear = (rear+1)% n;

count++;

signal (not_empty) ;

Engineering 8893: Monitors

February 19, 2004

Signal and Continue

10

e Signalled process must compete with other processes on the entry queue

e Can't assume that P, is true after wait

e We know that it was “recently” true.

e To ensure that P, is true we check after awaking:

do{wait(c); }while(P.); ##{P.}

while(—P.){wait(c); }##{P.}

Engineering 8893: Monitors

procedure fetch(char data) {
while (count == 0) wait(not_empty);
MI /\ count > O
result = buf[front];
front = (front+1)% n;
count--;
signal (not_full);

Engineering 8893: Monitors

February 19, 2004

12

February 19, 2004

13

Monitors vs. Semaphores

Passing a P operation indicates something happened in the past (i.e., the
semaphore was incremented), but does not say much about the current
state fo the program.

We're often tempted to write:
: P1:

{ B } P(s) |
V(s) ## { B }

The assertion in Pt is not valid — anything could have happened between
V and P.

lngineering 8893: Monitors February 19, 2004

Example: Implementing Semaphores using Monitors ®

monitor Semaphore {
int s = 0; # value of the semaphore
cond not_zero; # signalled when s > 0O
MI: s >= 0

procedure init(int new_s) { ## pre: new_s >= 0
s := new_s; }

procedure V() {
St+;

signal(not_zero);

}

procedure P(O) {
if (s == 0) wait(not_zero); ## s > 0
Chat

} 3

lngineering 8893: Monitors February 19, 2004

14

Passing a wait operation means something is true right now — data
encapsulation ensures that no other process can clobber the assertion.

PO: P1:
{ B } wait(c)

signal(c) # { B}

Monitors are not more powerful than semaphores, but they're easier to use.

lngineering 8893: Monitors February 19, 2004

16

Additional operations

signal_all(c) Move all processes waiting on c to the entry queue.
(Only makes sense in SC.)

length(c) Length of c's queue
empty(c) True iff ¢'s queue is empty
wait(c,rank) Priority wait, lowest rank awakened first
minrank(c) Value of lowest rank waiting
lngineering 8893: Monitors February 19, 2004

17

Java Monitors

e Keyword synchronized declares object (method, section of code) to be
critical section.

e Class with private data and all public methods synchronized is a
monitor.

e No explicit condition variables — just call wait ().
e Signal with notify() or notifyAll().
e Only one queue per object.

e Signal and continue discipline.

Engineering 8893: Monitors February 19, 2004

19

while (count == 0) wait();
char result = buf[front];
front = (front+1)%n;
count--;

notifyAll();

return result;

Engineering 8893: Monitors February 19, 2004

18

Example: Bounded Buffer

class BoundedBuffer
{
private char buf[];
private int front, rear, count, n;
/...
public synchronized void deposit(char data)
throws InterruptedException
{
while (count == n) wait();
buf [rear] = data;
rear = (rear+1)n;
count++;
notifyAll1(Q);
3
public synchronized char fetch()
throws InterruptedException

Engineering 8893: Monitors February 19, 2004

20

Rendezvous: Sleeping Barber Problem

An easygoing town contains a small barber-shop having two doors and a
few chairs. Customers enter through one door and leave through the other.
Because the shop is small, at most one customer or the barber can move
around in it at a time. The barber spends his life serving customers. When
none are in the shop, the barber sleeps in the barber's chair. When a
customer arrives and finds the barber sleeping the customer awakens the
barber, sits in the barber’s chair, and sleeps while the barber cuts his hair.
If the barber is busy when a customer arrives, the customer goes to sleep
in one of the other chairs. After giving a haircut, the barber opens the exit
door for the customer and closes it when the customer leaves. If there are
waiting customers, the barber then awakens one and waits for the customer
to sit in the barber's chair. Otherwise, the barber goes back to sleep until
a new customer arrives.

Engineering 8893: Monitors February 19, 2004

21

Program Structures: Disk Scheduling

e Contol access (read/write) to a disk head.

e Choose order of access to optimize.

Shortest-seek-time: Always select pending request with closest address.
(Unfair)

Elevator Algorithm (SCAN): Move disk heads in only one direction until
all requests have been serviced in that direction, then reverse. (Large
variance in expected waiting time.)

Circular SCAN: Only service requests in one direction.

Engineering 8893: Monitors February 19, 2004

23

Intermediary

Driver process accesses disk, users call disk interface monitor.

public synchronized void diskAccess(int id, Section s)
throws InterruptedException
{
if (granted != 0) {
pending.insert(new Request(id, s));
while (granted != id) wait(Q);
} else {
granted = id;
}
curRequest.set(id, s);
requestReady = true;
notifyAll1();

// Wait for access to complete

Engineering 8893: Monitors February 19, 2004

Separate Scheduler Monitor
e Users call request to access disk, release to release it.

e Users do their own access to disk.

e Requires well behaved users.

22

public synchronized void public synchronized void
request(int id, Section s) release(int id)
throws InterruptedException throws InterruptedException
{ {
if (granted != 0) { if (pending.isEmpty()) {
pending.insert(granted = 0;
new Request(id, s)); } else {
while (granted != id) wait(); Request toDo = new Request();
} else { pending.get(cylinder, toDo);
granted = id; granted = toDo.id;
} }
cylinder = cyl; notifyAll();
} }

Engineering 8893: Monitors

while (!resultsReady) wait();
resultsReady = false;
notifyAll();

3

public synchronized void getNextRequest(Request res)
throws InterruptedException

{
if (pending.isEmpty()) { // no more to grant
granted = 0;
} else {

Request toDo = new Request();
pending.get(cylinder, toDo);
granted = toDo.id;
notifyAl1l(Q);

¥

while (!requestReady) wait();

res.set (curRequest) ;

Engineering 8893: Monitors

February 19, 2004

24

February 19, 2004

requestReady = false;

}

public synchronized void finishedTransfer(int id)
throws InterruptedException
{
results = id;
resultsReady = true;
notifyAll1();

while (resultsReady) wait();

Engineering 8893: Monitors

25 26
Nested Monitor

e Disk transfer monitor called by Disk scheduler monitor.

e Requires open call — when monitor A calls monitor B, exclusion monitor
A is released.

e (Java uses closed call — nested call doesn't release exclusion.)

public synchronized void diskAccess(int id, Section s, int length)
throws InterruptedException
{
request(id, s);
disk.access(id, s, length);
release(id);

}

February 19, 2004 Engineering 8893: Monitors February 19, 2004

