
1

Terminology

state — the value of all program variables (including implicit, e.g., program
counter).

– Assume independent registers for each process.

atomic action — indivisible program step (examine or change state).

history (a.k.a. trace) — sequence of states representing execution of
concurrent program (transitions are atomic actions).

– Execution of concurrent program results in interleaving of actions
executed by each process.

– Program describes a (huge) set of possible histories.
– Synchronization constrains the possible histories.

Engineering 8893: Processes & Synchronization January 12, 2004

2

property — an attribute that is true of all possible histories of a program.

– safety property — program never enters a particular (bad) state (e.g,
mutual exclusion).

– liveness property — program eventually enters a particular state (e.g.,
termination).

partial correctness — the final state is correct, assuming termination.

total correctness — partial correctness and guaranteed termination.

Engineering 8893: Processes & Synchronization January 12, 2004

3

Independence

Read set — the set of variables an operation (part of a program) reads,
but does not alter.

Write set — the set of variables an operation changes the value of (and
may read).

(By variable, we mean any value that is written or read atomically.)

Two parts of a program are independent if the write set of each is disjoint
from both the read and write sets of the other part.

If program parts are independent, then they’re candidates for concurrent
execution.

Engineering 8893: Processes & Synchronization January 12, 2004

4

Example: Searching in a file

string line[2];
int r = 0;
read line of input into line[0];
while (!EOF) {

co look for pattern in line[r];
if (pattern is in line[r])

write line[r];
// read line of input into line[(r+1)%2]
oc
r = (r + 1) % 2;

}

• Two parallel tasks are independent so this is equivalent to program where
they are done sequentially.

• This pattern is called “co inside while”.

Engineering 8893: Processes & Synchronization January 12, 2004

5

• To reduce overhead (process creation) we can transform to “while inside
co” — requires synchronization.

string line[2];
bool full[2] = { false }; # true if line[i] is full
bool done = false;
co # process 1: check for pattern

int l = 0; # the line to search in
while (!done) {

wait for full[l] or done;
if (done) break;
look for pattern in line[l];
if (pattern is in line[l])

write line[l];
full[l] = false; # done with this line
l = (l+1) % 2;

}
// # process 2: read next line

Engineering 8893: Processes & Synchronization January 12, 2004

6

int r = 0; # line to read into
while (!EOF) {

wait for !full[r]; # wait for line[r] to be checked
read next line into line[r];
full[r] = true; # signal that line[r] is full
r = (r+1) % 2;

}
done = true;

oc
}

Engineering 8893: Processes & Synchronization January 12, 2004

7

Atomicity

fine-grained atomicity — implemented directly by the hardware (e.g.,
variable read/write).

(Assume private registers and stack per process.)

x = e will appear to be atomic if e doesn’t reference any variable changed
by another process.

int y = 0, z = 0;
co x = y+z; // y = 1; z = 2; oc;

int x = 0, y = 0;
co x = y+1; // y = y+1; oc;

Engineering 8893: Processes & Synchronization January 12, 2004

8

At Most Once Property

critical reference — a reference in an expression to a variable that is changed
by another process.

x = e satisfies the At Most Once property if either:

1) e contains at most one critical reference and x is not read by another
process, or

2) e contains no critical references.

Assignments satisfying AMO will appear to be atomic.

For expressions that are not assignment statements, AMO is satisfied if it
contains no more than one critical reference.

Engineering 8893: Processes & Synchronization January 12, 2004

9

Coarse-Grained Atomicity — Synchronization

To describe one or more statements that execute atomically:

〈await (B) S; 〉

B is a condition (no side effects),
S is a statement block (one or more statements), that is guaranteed to
terminate.

• Will not execute until B is true (conditional synchronization).

• No parts of S may be interleaved with statements from other processes.

• May not be efficiently implemented in all cases, but useful for describing
algorithms.

Engineering 8893: Processes & Synchronization January 12, 2004

10

Special cases

Mutual Exclusion — B = “true”, so it is omitted: 〈S; 〉

Conditional Synchronization — S is empty, so it is omitted: 〈await (B)〉

– If B satisfies AMO, can be implemented by spin loop:
while (!B) ;

Engineering 8893: Processes & Synchronization January 12, 2004

11

Example: Producer/Consumer

Copy a[n] into b[n], using buf.

Synchronization requirement: c ≤ p ≤ c + 1

int buf, p = 0, c = 0;

process Producer {
int a[n];
while (p < n) {

< await (p == c); >
buf = a[p];
p++;

}
}

process Consumer {
int b[n];
while (c < n) {

< await (p > c); >
b[c] = buf;
c++;

}
}

Engineering 8893: Processes & Synchronization January 12, 2004

12

Axiomatic Semantics

Axioms: A distinguished set of formulae that are assumed to be true.

Inference rule:
H1,H2, . . . ,Hn

C
If all of Hi (the hypotheses) are true, then we can infer that C (the
conclusion) is true.

Proof: Sequence of lines, each of which is an axiom or can be derived from
previous lines by inference rules.

Theorem: A line in a proof.

Engineering 8893: Processes & Synchronization January 12, 2004

13

Interpretation: Maps each formula to true of false.

Soundness: (w.r.t. an interpretation)

– Axiom is sound iff it is true.
– Inference rule is sound iff its conclusion is true assuming all the

hypotheses are true.
– Logic is sound iff all axioms and inference rules are sound. (The

interpretation is a model for the logic.)

Completeness: A logic is complete (w.r.t. an interpretation) iff any formula
that is true is a theorem (i.e., can be proven in the logic).

Gödel’s incompleteness theorem: Any logic that includes arithmetic cannot
be complete.

Engineering 8893: Processes & Synchronization January 12, 2004

14

Programming Logic

• Formula are (Hoare) triples of the form {P} S {Q}

• P and Q are predicates referring to the values of program variables in S
(assertions).

• S is one or more program statements.

• Interpretation: {P} S {Q} is true iff, whenever execution of S starts in
a state satisfying P and execution of S terminates, the resulting state
satisfies Q. (partial correctness)

• P is called a pre-condition

• Q is called a post-condition

Engineering 8893: Processes & Synchronization January 12, 2004

15

Axioms/Rules for Sequential Programs

Assignment Axiom: {Px←e} x = e {P}

Composition Rule:
{P} S1 {Q}, {Q} S2 {R}

{P} S1; S2 {R}

If Statement Rule:
{P ∧ B} S {Q}, (P ∧ ¬B) ⇒ Q

{P} if (B) S; {Q}

While Statement Rule:
{I ∧ B} S {I}

{I} while (B) S; {I ∧ ¬B}

Rule of Consequence:
P′ ⇒ P, {P} S {Q}, Q ⇒ Q′,

{P′} S {Q′}

Engineering 8893: Processes & Synchronization January 12, 2004

16

Inference for Concurrent Execution

Await Statement Rule:
{P ∧ B} S {Q},

{P} < await (B) S; > {Q}

Co Statement Rule:
{Pi}Si{Qi} are interference free

{P1 ∧ . . . ∧ Pn} co S1; // . . . // Sn; oc {Q1 ∧ . . . ∧Qn}

Engineering 8893: Processes & Synchronization January 12, 2004

17

Interference

• A process interferes with another process if it invalidates an assertion in
the other process.

• assignment action — an assignment statement or an await statement
containing one or more assignment statements.

• critical assertion — a pre-condition or post-condition not within an await
statement.

Consider assignment action a, it’s pre-condition pre(a), and a critical
assertion C, from another process.

If {C ∧ pre(a)}a{C}, then a and C are non-interfering.

i.e., if executing a doesn’t change the truth of C.

Engineering 8893: Processes & Synchronization January 12, 2004

18

Techniques for avoiding interference

Disjoint variables — Write set of one process is disjoint from reference
set (variables in the assertions) of the other process.

Weakened assertions — Take into account effects of concurrent
execution. Example:

{x == 0}
co ## { x == 0 \/ x == 2 }

< x = x + 1; >
{ x == 1 \/ x == 3 }

// ## { x == 1 \/ x == 1 }
< x = x + 2; >
{ x == 2 \/ x == 3 }

oc
{ x == 3 }

Engineering 8893: Processes & Synchronization January 12, 2004

19

Global invariants — true initially, and preserved by all assignment actions.

• Assertions in proof of each process, Pj, in form I ∧ L, where
– I is global invariant
– L references only local variables in Pj or global variables that Pj is

the only process to assign to.
• Proofs are interference free.
• Good general technique for concurrent program design.

Synchronization — combining sequences of statements into await
statements:

• ignore effects of individual statements w.r.t. interference,
• internal assertions can’t be interfered with.
• Two techniques:

1) ‘Hide’ assertions via mutual exclusion.
2) Strengthen pre-condition via conditional synchronization.

Engineering 8893: Processes & Synchronization January 12, 2004

20

Safety Properties

A property characterizes a set of executions.

A program has (or satisfies) a property if every possible execution (history)
of the program is in the set.

Safety property: Something must always be true (set of executions in
which no undesirable states, or sequences of states, occur).

• e.g.,

- partial correctness (don’t terminate in invalid state)
- absence of deadlock
- mutual exclusion

• finitely refutable: violations occur at an instant

• characterized by negation of ‘bad’ things

Engineering 8893: Processes & Synchronization January 12, 2004

21

Proving Safety

Let B characterize undesirable (sequences of) states

• Show that for any critical assertion C, C ⇒ ¬B, or

• Show that ¬B is a global invariant.

– ¬B is true initially,
– {¬B} S {¬B} is true for all program statements S

Engineering 8893: Processes & Synchronization January 12, 2004

22

Special Case: Exclusion of Configurations

co # process 1
... ; { preS1 } S1; ...

// # process 2
... ; { preS2 } S2; ...

oc

If

• preS1 and preS2 are not interfered with, and

• preS1 ∧ preS2 ≡ false

then the state preS1 ∧ preS2 is impossible.

Engineering 8893: Processes & Synchronization January 12, 2004

23

Liveness Properties

Something must eventually become true (set of executions which all contain
some state, or sequence of states).

• e.g.,

- termination: process must eventually stop
- absence of starvation (processes must eventually get serviced)

• non finitely refutable: any execution can be extended to satisfy the
property.

Engineering 8893: Processes & Synchronization January 12, 2004

24

Fairness

An atomic action is eligible if it’s the next atomic action in a process that
could be executed.

scheduling policy — determines which eligible action will be executed next.

bool continue = true;
co while (continue) ;
// continue = false;
oc

Engineering 8893: Processes & Synchronization January 12, 2004

25

Degrees of fairness:

unconditional: Every unconditional atomic action that is eligible is
executed eventually.

weak: Unconditionally fair & every conditional atomic action for which the
condition is continuously true (until it is executed), will eventually be
executed.

strong: Unconditionally fair & every conditional atomic action for which
the condition is true infinitely often, will eventually be executed.

bool continue = true, try = false;

co while (continue) { try = true; try = false; }
// < await (try) continue = false; >
oc

Engineering 8893: Processes & Synchronization January 12, 2004

