
1

Real Time Systems

• Program must execute within strict time constraints

• Often embedded system—program/computer is part of larger system

• Time may be a parameter in computation (e.g., sampling quantities)

• Often RT system will also include non-RT tasks

• Predictability is more important than speed

Engineering 8893: Real Time March 30, 2004

2

Synchronous scheduling (clock driven)

• Processor time divided into fixed duration frames

• Divide program into segments that can be completed in a single frame

• Static schedule assigns segments (possibly more than one) to frames

• Segment is only started if it will complete (worst case timing) before end
of frame

• Performance guaranteed

• Well suited to continuous, periodic tasks

• Wastage: unused processor time at end of frames

• Periodicity limited to multiples of frame size

• Schedule is very difficult, error-prone and system dependent.

Engineering 8893: Real Time March 30, 2004

3

Asynchronous scheduling (interrupt driven)

• Processes (segments) execute to completion

• Scheduler uses priority (or deadlines) to decide order of execution

• pre-emptive scheduling—an executing process can be interrupted—pre-
empted—to allow a higher priority process to execute.

• Related to time-slicing—all processes have the same priority. Periodic
pre-emption (task switching).

• Possible to get 100% processor utilization

• Overall faster processing

• Performance is dependent on other (higher priority) processes

Engineering 8893: Real Time March 30, 2004

4

Mixed Sync./Async. Scheduling

• Synchronous scheduling of time-critical tasks

• Asynchronous scheduling to fill in gaps (background processes)

Input and Output

• Synchronous is good for devices that require polling

• Asynch. for devices that generate interrupts

Engineering 8893: Real Time March 30, 2004



5

Priority Scheduling

Assume periodic tasks. period of τi = Ti, duration = di.

response time: delay between request to execute and completion

overflow: when a task must execute another cycle before previous one has
completed (i.e., response time > Ti + di)

feasible priority assignment: no overflow

Example: T1 = 2, T2 = 5, d1 = 1, d2 = 2
Feasible assignment: P1 > P2

Infeasible assignment: P2 > P1

Theorem Longest response time occurs when request corresponds to all
higher priority requests.

Engineering 8893: Real Time March 30, 2004

6

Earliest Deadline First

Dynamically assign priority based on closest deadline (time of next request)

Feasible iff
∑

i
di
Ti
≤ 1

Rate Monotonic Scheduling

Assign priority in decreasing order of intervals between requests, i.e.,
Ti < Tj ⇒ Pi > Pj

• Will give a feasible assignment if one exists.

• May waste time.

• Based on fixed duration and repetition rates.

Engineering 8893: Real Time March 30, 2004

7

For n tasks no deadline will be missed if

U =
n∑

i=1

pi

Ti
≤ n(2

1
n − 1)

This converges to ln 2 ≈ 0.693. So if U < 0.69 RMS will work.

Remaining time can be used (with preemption) for non-hard-real-time tasks.

Engineering 8893: Real Time March 30, 2004

8

Priority Inversion

Consider a set of jobs, J1, J2, . . . Jn s.t. J1 is highest priority and Jn is
lowest.

Assume

• A job will not suspend itself

• Critical sections in job are properly nested

• job will release all locks on completion

periodic tasks—sequence of the same type of jobs that must be executed
at regular intervals
aperiodic tasks—sequence of the same type of jobs that are executed at
irregular intervals (e.g., in response to input)

Engineering 8893: Real Time March 30, 2004



9

• Each task, τi, has fixed priority Pi.

• Initially jobs have same priority as the task that contains them

• If several jobs are eligible to run, run the highest priority

• Jobs with same priority executed in FCFS order.

Engineering 8893: Real Time March 30, 2004

10

Priority inversion: Higher priority process is blocked by lower priority process.

Simple example,

• J1 and J2 have mutual critical sections.

• J2 reaches critical section first—J1 will be blocked waiting for J2.

Another example

• J1 is blocked trying to synchronize with J3

• J2 gets to execute, preventing J3 from executing

• J1 is waiting for J2 (arbitrarily long)

Engineering 8893: Real Time March 30, 2004

11

Non-preemptable Critical Sections

• CS must be short

• Results in unecessary blocking:

- J3 enters CS
- J1 is blocked, even if it doesn’t want to enter its CS (assuming

uniprocessor)

Monitors

• Make monitor higher priority than all callers

• Low priority caller can block higher priority caller

Engineering 8893: Real Time March 30, 2004

12

Priority Inheritance

• Each job uses its assigned priority, unless it is in a critical section and
blocks higher priority jobs.

• J inherits the highest priority of the jobs blocked by J .

• When J exits critical section, priority set back to P at entry to CS.

• Inheritance is transitive.

• Priority change operations are atomic.

Guarantees upper bound on total blocking delay (assuming no deadlock).

Problems

1) Can deadlock.

2) Blocking duration can be long.

Engineering 8893: Real Time March 30, 2004



13

Priority Ceiling Protocol

A job in its CS will execute with priority higher than inherited priorities of
all other preempted CS.

• Assign priority ceiling to semaphores = highest priority task that may
use it

• Ji can start CS only if Pi > priority ceiling for all semaphores locked by
other jobs.

Engineering 8893: Real Time March 30, 2004

14

Engineering 8893: Real Time March 30, 2004

15

Engineering 8893: Real Time March 30, 2004

16

RMA Example 1

Task Ti Ci Ui

∑
Ui Sn

τ1 25 5
τ2 100 30
τ3 200 50
τ4 500 100

Engineering 8893: Real Time March 30, 2004



17

RMA Example 2

Task Ti Ci Ui

∑
Ui Sn

τ1 25 5
τ2 90 30
τ3 140 50
τ4 500 40

Engineering 8893: Real Time March 30, 2004

18

Blocking

Assume priority ceiling protocol: Bi = longest time a job may be blocked
(max duration of CS of lower priority job guarded by semaphore with priority
ceiling > Pi).

Task Ti Ci Bi Ui

∑
Ui Sn

τ1 25 5 0
τ2 100 30 2
τ3 200 40 6
τ4 500 100 0

Engineering 8893: Real Time March 30, 2004


