
1

Remote Procedure Call

• Ideally suited for Client-server structure.

• Combines aspects of monitors and synchronous message passing:

– Module (class) exports operations, invoked with call.
– call blocks (delays caller) until serviced.

• Operations are two-way communications channel (just like local procedure
call).

• call causes a new process to be created on remote (server).

• Client-server synchronization and communication is implicit.

Engineering 8893: RPC & Rendezvous March 18, 2004

2

Terminology / Notation

module: operations, (shared) varibles, local procedures and processes for
servicing remote procedure calls.

interface (specification): describes the operations, parameter types and
return types.
op opname(param types) [returns return type]

server: process created by call to service an operation.

background process: processes running in a module that aren’t created in
response to call.

Engineering 8893: RPC & Rendezvous March 18, 2004

3

Issues

Lookup and registration

• How does client find the server?

• Often server registers (binds) with a naming service (registry).

Engineering 8893: RPC & Rendezvous March 18, 2004

4

Module Synchronization

Synchronization within a module (server) has to be programmed. Two
approaches:

1) Assume mutual exclusion in server (only one server process/background
process executing at a time).

– Similar to monitors
– Still need conditional synchronization (conditions, semaphores).

2) Program it explicitly (i.e., using semaphores, monitors etc.).

Engineering 8893: RPC & Rendezvous March 18, 2004



5

Argument Passing

• Formats may be different on different machines (e.g., size, encodings,
endianess).

• Address space is not shared (pointers & references can’t be passed)

– copy-in/copy-out: reference arguments converted to byte arrays and
reconstructed on the other side.

– proxy objects

Engineering 8893: RPC & Rendezvous March 18, 2004

6

Java Remote Method Invocation (RMI)

• Client objects and server objects are local to different JVM processes.

• Server objects (usually) extend java.rmi.UnicastRemoteObject

• Server objects registered by name with registry service (Naming.bind)

• Client objects obtain references to proxy objects (Naming.lookup)

• Calls to proxy objects communication with skeleton objects in server’s
machine.

• Skeleton objects call server objects.

Engineering 8893: RPC & Rendezvous March 18, 2004

7

Skeleton

Object

Key

Client

Stub
(proxy)

Server

Proc.
(JVM)

Message

Return

Call

Network

(1)

(2)

(4)

(5)

(3)(6)

Engineering 8893: RPC & Rendezvous March 18, 2004

8

• Multiple calls can be serviced at the same time.

• Format is not an issue since al JVMs follwo same data formats.

• Reference arguments (and subsidiary references) are serialize and passed
by copy-in rather than reference. (Except RemoteObjects, in which case
a stub is passed instead.)

Engineering 8893: RPC & Rendezvous March 18, 2004



9

(Extended) Rendezvous

• Like RPC, except call is serviced by existing process.

• Mutual exclusion is implicit – only one call serviced at a time.

in op1(params) and B1 by e1 -> S1;
[] op2(params) and B2 by e2 -> S2;
[] ...
[] opn(params) and Bn by en -> Sn;
ni

• Blocks until one operation succeeds (opi has been called and Bi is true).

• ei is a scheduling expression – invocation that minimizes ei is executed
first.

Engineering 8893: RPC & Rendezvous March 18, 2004

10

Example

module Bounded_buffer {
op deposit(char);
op fetch(char);
body

process Buffer {
char buf[n]; # buffer
int front = 0; # first full slot
int rear = 0; # first empty slot
int count = 0; # number of full slots

while (true) {
in deposit(data) and count < n ->

buf[rear] = data;
rear = (rear+1)% n;
count++;

Engineering 8893: RPC & Rendezvous March 18, 2004

11

[] fetch(data) and count > 0 ->
result = buf[front];
front = (front+1)% n;
count--;

ni
}

}
}

Engineering 8893: RPC & Rendezvous March 18, 2004


