
1

Semaphores

A shared integer variable, s, initialized to init, and manipulated only by
two operations:

pass (proberen): P(s) df= 〈await(s > 0)s = s− 1〉

release (verhogen): V(s) df= 〈s = s + 1〉

• s is non-negative

• General semaphore: can take on any nonnegative value.

• Binary Semaphore: either 0 or 1.

Engineering 8893: Semaphores February 12, 2004

2

Fairness: V may release a waiting process

• Weakly fair,

• Strongly fair, or

• FIFO

Unless otherwise stated we’ll assume only weak fairness.

Engineering 8893: Semaphores February 12, 2004

3

Inference Rules

(P ∧ g > 0) ⇒ Qg←(g−1)

{P}P(g){Q}

P ⇒ Qg←(g+1)

{P}V(g){Q}

Engineering 8893: Semaphores February 12, 2004

4

Mutual Exclusion

Coarse-grained
int s = 1;

process CS[i = 1 to n] {
while (true) {

< await(s>0) s--; >
critical section;
< s++; >
noncritical section;

}
}

Fine-grained
sem s = 1;

process CS[i = 1 to n] {
while (true) {

P(s);
critical section;
V(s);
noncritical section;

}
}

Engineering 8893: Semaphores February 12, 2004

5

Barrier Synchronization

signaling semaphore

• Used to signal event (i.e., arrival at some part of the code).

• Usually initialized to 0.

Use two semaphores per process pair:

• one signals arrival at barrier,

• another to control departure

Engineering 8893: Semaphores February 12, 2004

6

Two process case:

sem arrive1 = 0; # Shared
sem arrive2 = 0; # Shared

process Worker1 {
while (true) {

code to implement task 1;
V(arrive1);
P(arrive2);

}
}

process Worker2 {
while (true) {

code to implement task 2;
V(arrive2);
P(arrive1);

}
}

Can be extended to n-processes by appropriate choice of semaphores.

Engineering 8893: Semaphores February 12, 2004

7

Barrier Synchronization: Coordinator
• Workers signal arrival with V(done)

• Wait on P(continue[i])

• Coordinator waits on n× P(done)

• Releases all with V(continue[i])

Worker
sem done = 0;
sem continue[1:n] = ([n] 0);

process Worker[i = 1 to n] {
while (true) {

code to implement task i;
V(done);
P(continue[i]);

}
}

Coordinator

process Coordinator {
while (true) {

for [i = 1 to n] P(done);
for [i = 1 to n] V(continue[i]);

}
}

Engineering 8893: Semaphores February 12, 2004

8

Split Binary Semaphore

• Use semaphores to signal data state rather than process state.

• split binary semaphore — two or more binary semaphores that have the
property that at most one is 1 at any time.

• Initially only one is 1.

• Invariant: 0 ≤ s0 + s1 + . . . + sn ≤ 1

• In every execution path, a P operation on one semaphore is followed
(eventually) by a V on a (possibly different) semaphore.

• Code between P and V executed in mutual exclusion.

Engineering 8893: Semaphores February 12, 2004

9

Producers & Consumers

int buf;
sem empty = 1, full = 0;

process Producer[i = 1 to n] {
while (true) {

P(empty);
deposit to buf;
V(full);

}
}

process Consumer[i = 1 to m] {
while (true) {

P(full);
fetch from buf;
V(empty);

}
}

Engineering 8893: Semaphores February 12, 2004

10

Semaphores as Counters

System with N (identical) resources that are to be shared.

• Use semaphore to represent number available,

• P to obtain one,

• V to release one.

Consider producer-consumer with bounded buffer of size N and multiple
producers and consumers.

Engineering 8893: Semaphores February 12, 2004

11

Producer and Consumer

int buf[0:N];
int front = 0; # next cell to read
int rear = 0; # next cell to write
sem empty = N; # Num. empty cells
sem full = 0; # Num. full cells
sem mutexA = 1;
sem mutexF = 1;

void Add(int x) {
P(empty);
P(mutexA);
buf[rear] = x;
rear = (rear + 1) % N;
V(mutexA);
V(full);

}

int Fetch() {
P(full);
P(mutexF);
int result = buf[front];
front = (front + 1) % N;
V(mutexF);
V(empty);
return result;

}

Engineering 8893: Semaphores February 12, 2004

12

Overlapping Shared Resources

Dining Philosophers
process Philosophers[i = 0 to n] {

while (true) {
think;
acquire forks;
eat;
release forks;

}
}

Wait-for cycle – two or more process such that every one is waiting for
a resource held by another. (e.g., p[0 : n] such that p[i] is waiting for
something held by p[(i + 1)%n] for all i.)

• A necessary condition for deadlock.

• Eliminate by asymetry.

Engineering 8893: Semaphores February 12, 2004

13

Aside: Necessary Conditions for Deadlock

• Serially reusable resources shared under mutual exclusion

• Incremental acquisition

• No pre-emption

• Wait-for cycle

Engineering 8893: Semaphores February 12, 2004

14

Readers/Writers Problem

• Several processes share a database,

• Readers — several can access concurrently.

• Writers — must have exclusive access.

Two solution forms:

1) Mutual exclusion — use semaphore for lock and count the readers.

– First reader in acquires lock, last reader out releases it.
– Writer acquires lock and releases when it’s done.

2) Conditional synchronization — Passing the Baton

Engineering 8893: Semaphores February 12, 2004

15

Reader-Writer Coarse Grained Solution

int nw := 0; # number of writers
int nr := 0; # number of readers
INV: nw == 0 \/ (nw == 1 /\ nr = 0)

process Reader[i = 1 to M] {
while (true) {

< await(nw == 0) nr++; >
read database
< nr--; >

}
}

process Writer[i = 1 to N] {
while (true) {

< await(nr == 0 && nw == 0) nw++; >
write database
< nw--; >

}
}

Engineering 8893: Semaphores February 12, 2004

16

Passing the Baton
A technique to implement general await statements using (split binary)
semaphores:

• sem e = 1; — Control entry to atomic statements.

• For each condition (guard), B:

– A semaphore — to delay processes that do await(B)
– A counter — counts the number of delayed processes.

Global data
int nw := 0, nr := 0; # number of writers/readers
INV: nw == 0 \/ (nw == 1 /\ nr = 0)

sem e := 1; # exclusive access
sem r := 0; # used to delay readers
sem w := 0; # used to delay writers
int dr := 0, dw := 0; # count of delayed readers/writers

Engineering 8893: Semaphores February 12, 2004

17

Signal

if (nw == 0 and dr > 0) {
dr = dr-1; V(r); # Awaken a reader

} else if (nr == 0 and nw == 0 and dw > 0) {
dw = dw-1; V(w); # Awaken a writer

} else {
V(e); # Release entry lock

}

Engineering 8893: Semaphores February 12, 2004

18

process Reader[i = 1 to M] {
while (true) {

P(e);
if (nw > 0) {

dr++; V(e); P(r);
}
nr = nr + 1;
SIGNAL;
read database
P(e);
nr = nr - 1;
SIGNAL;

}
}

process Writer[j = 1 to N] {
while (true) {

P(e);
if (nr > 0 or nw > 0) {

dw++; V(e); P(w);
}
nw = nw + 1;
SIGNAL;
write database
P(e);
nw = nw - 1;
SIGNAL;

}
}

Engineering 8893: Semaphores February 12, 2004

