
1

Transaction Processing

A transaction is a sequence of actions intended to be executed atomically.

start;
Amount bal = balance(accountA);
A.debit(bal);
B.credit(bal);
if (B.checkBal(1000) {

B.debit(1000);
C.credit(1000);
commit;

} else {
abort;

}

Engineering 8893: Transaction Processing March 25, 2004

2

ACID Properties

Atomicity Transaction is either completely done or none of it is done. If
the transaction aborts itself or is aborted because of a failure, then it is
as if the transaction never started.

Consistency The transaction takes the system from one consistent state
to another.

Isolation The intermediate results of the transaction are not revealed to
any other transaction.

Durability Once the transaction is committed, subsequent failures will not
undo it.

Engineering 8893: Transaction Processing March 25, 2004

3

Transaction Primitives

begin transaction mark the start of a transaction

end transaction mark the end of a transaction

abort transaction kill the transaction and restore the old values

Engineering 8893: Transaction Processing March 25, 2004

4

Classification of Transactions

Flat — series of operations, satisfying ACID. Don’t allow any partial
commits.

Nested — transaction made up of sub-transactions, each of which may be
further sub-divided (tree). Commit is relative to parent.

Distributed — flat transaction operating on distributed data.

Engineering 8893: Transaction Processing March 25, 2004



5

Aborts

• Self-abort: transaction decides it has failed.

• Failure of server.

• Aborted to resolve deadlock.

• Aborted by parent in nested transaction.

Engineering 8893: Transaction Processing March 25, 2004

6

Durability: Write-ahead Log

• Before any change is made, info about the change is written to a log (on
disk).

• Information in the log must be sufficient to either undo or redo the
change.

• Undo and redo must be idempotent — they can safely be
done too many times (i.e., o.undo(a); o.undo(a) == o.undo(a) and
o.a(); o.redo(a) = o.a().

Also log start, commit and abort operations.

Engineering 8893: Transaction Processing March 25, 2004

7

To execute an operation:

1) Read object state

2) Calculate the new state

3) Write the write-ahead log

4) Write to the object

It is important that the write goes first and is written to disk.

Engineering 8893: Transaction Processing March 25, 2004

8

Checkpointing

Periodically

• Write a checkpoint record to the log including a list of all active
transactions.

• Force all object data to disk.

Engineering 8893: Transaction Processing March 25, 2004



9

Crash Recovery

After a system crash:

• Recover object state from disk.

• Transactions committed before the last checkpoint — no action.

• Transactions committed since the last checkoint — redo from last
checkpoint.

• Transactions not committed — undo to last checkpoint, restart.

Engineering 8893: Transaction Processing March 25, 2004

10

Concurrency Control

Consider two transactions:

start
co

A.debit(1000)
//

B.credit(1000)
oc
commit

start
co

x := A.read()
//

y := B.read()
oc
stmt.print(x+y)
commit

• For efficiency we’d like to run them concurrently.

• Concurency is available both within and between the transactions.

• Anomictiy means that the effect of running the transactions should be
as if they were run sequentially in some order.

Engineering 8893: Transaction Processing March 25, 2004

11

• Model transaction as directed acyclic graph:

– Nodes are atomic actions on objects
– Edges express ordering constraints

Two operations on the same object are conflicting if they don’t commute
(i.e., o.a(); o.b() != o.b(); o.a())

Given a set of transactions we add edges between conflicting operations
from different transactions to impose a total order on the operations.

Engineering 8893: Transaction Processing March 25, 2004

12

Two-phase Locking
Locking is not sufficient:
Lock(A)
x := A.read()
Unlock(A)

Lock(A)
A.debit(1000)
Unlock(A)
Lock(B)
B.credit(1000)
Unlock(B)

Lock(B)
y := B.read()
Unlock(B)
Lock(Stmt)
Stmt.print(x+y)
Unlock(Stmt)

Engineering 8893: Transaction Processing March 25, 2004



13

Locking phase Transactions acquire locks as they need them.

Unlocking phase No lock is released until all locks needed have been
acquired.

Result: Transactions can not interfere since conflicting pairs are scheduled
in the same order.

Strict two-phase locking: Locks are only released as part of commit or
abort.

Engineering 8893: Transaction Processing March 25, 2004

14

Lock(A)
x := A.read()

Lock(A) delays . . .
Lock(B)
y := B.read()
Lock(Stmt)
Stmt.print(x+y)
Unlock(A)

acquire lock . . . A.debit(1000)
Lock(B) delays . . .

Unlock(B)
acquire lock B.credit(1000)

Unlock(Stmt)
Unlock(A)
Unlock(B)

Engineering 8893: Transaction Processing March 25, 2004

15

Deadlocks

Prevention — Every transaction obtains locks in the same order.

Detection — Look for “wait-for cycle” using a resource-allocation graph.
Nodes for resources and transactions, edges

– from locked resource r to transaction t that holds the lock.
– from transaction t to resource r when t is waiting for a lock on r.

Also assume deadlock if obtaining a lock times out.

Resolution Abort transactions.

Engineering 8893: Transaction Processing March 25, 2004

16

Time Stamp Ordering (TSO)

Each transaction, T is assigned a unique1 timestamp, ts(T ), corresponding
to the start time of that transaction.

Each object, o, is assigned timestamps, tsRD(o) and tsWR(o) corresponding
to the timestamp of the transaction that most recently read or wrote it,
respectivly.

If T wants to read o:

lock(o)
if ts(T ) < tsWR(o) then # o has been written since T started

unlock(o); abort(T )
else

read; tsRD(o) := max(ts(T ), tsRD(o)); unlock(o)
end if
1See “Lamport’s logical clocks algorithm” to see how this can be done.

Engineering 8893: Transaction Processing March 25, 2004



17

If T wants to write o:

lock(o)
if ts(T ) < tsRD(o) then # o has been read since T started

unlock(o); abort(T )
else

write; tsWR(o) := max(ts(T ), tsWR(o)); unlock(o)
end if

Engineering 8893: Transaction Processing March 25, 2004

18

Optimistic Concurrency Control

At commit time, the history of actions on each object is inspected.

• If histories of all objects are consistent with some serializatioon order
then commit succeeds.

• Otherwise commit fails, transaction is aborted.

Transaction phases:

1) Execute: make shadow copies of objects and execute operations on
those, recording history of actions.

2) Validate: following commit, check the history for consistency with some
serialization order.

3) Update: write objects to persistent store.

Engineering 8893: Transaction Processing March 25, 2004

19

Last phase is inefficient since it must be done atomically.

Alternatively, write objects non-atomically but then another transaction
might start with an inconsistent set of objects: only allow commit if

• at start time all objects were consistent, and

• its hisotry is consistent with a serialization order.

Engineering 8893: Transaction Processing March 25, 2004

20

Distributed (Two-phase) Commit

We want an operation to be performed on each of a distributed set of
processes (process group) or none at all.

Use a coordinator process to initiate the commit.

1) Coordinator sends Vote request to all participants.

2) Participant, upon receiving Vote request, replys with Vote commit if it
is prepared to commit the transaction, or Vote abort otherwise.

3) If coordinator receives Vote commit from all participants then it sends
Global commit to all. If one or more replied Vote abort then sends
Global abort.

4) Particpants take action (commit/abort) upon receiving Global commit
or Global abort.

Engineering 8893: Transaction Processing March 25, 2004



21

Coping with failures

Nodes or links may fail — Use timeout mechanism to avoid indefinite waits.

Consider states where messages may not be received:

Coordinator

Wait missing Vote * — broadcast Global abort

Participant

Init no Vote request — send Vote abort

Engineering 8893: Transaction Processing March 25, 2004

22

Ready no Global * — need to figure out what the global vote was.

– Could simply wait for coordinator to recover/timeout and re-send.
– Could ask other participants what they got.

Engineering 8893: Transaction Processing March 25, 2004


