Engineering 9867 Advanced Computing Concepts Assignment \#1

Due: Tuesday, March 12 at 0900

1. [10 points] Express the following in predicate logic, using the given predicate symbols and types.
a) [3 points] There is a smallest integer.

Predicates: \leq
Types: Integer
$\exists i$: Integer, $\forall j$: Integer,$i \leq j$
b) [3 points] The array $\mathrm{A}[\mathrm{N}]$ is bitonic. (An array is said to be bitonic iff the elements are in non-decreasing order in some initial portion of the array, and in nonincreasing order for the remainder. For example, $[1,1,2,3,4,4,3,2,1]$ is bitonic, but $[1,1,2,3,4,3,4,2,1]$ is not.) Predicates: $<, \leq,>, \geq$

$$
\exists i, 0 \leq i<\mathrm{N} \wedge(\forall j, 0<j<i \rightarrow \mathrm{~A}[j] \geq \mathrm{A}[j-1]) \wedge(\forall j, i<j<\mathrm{N} \rightarrow \mathrm{~A}[j] \leq \mathrm{A}[j-1])
$$

c) [4 points] The definition of " $\lim _{x \rightarrow a} f(x)=L$ ". (Hint: Quantify variables x, ϵ and δ over Real and relate $|f(x)-L|$ to ϵ and $|x-a|$ to δ.)
Predicates: $<, \leq$
Types: Real

$$
\forall \epsilon: \text { Real, }\left(\epsilon>0 \rightarrow \exists \delta: \text { Real },\binom{\delta>0 \wedge}{\forall x: \text { Real },(0<|x-a|<\delta \rightarrow|f(x)-L|<\epsilon)}\right)
$$

2. [10 points] A permutation of an array is an array containing exactly the same values in another order, i.e., permuation $(a, b) \stackrel{\text { df }}{=}$

$$
\binom{\operatorname{length}(a)=\operatorname{length}(b) \wedge}{\forall i,\left(0 \leq i<\operatorname{length}(a) \rightarrow\binom{\operatorname{card}(\{j \mid 0 \leq j<\operatorname{length}(b) \wedge a[i]=b[j]\})=}{\operatorname{card}(\{j \mid 0 \leq j<\operatorname{length}(a) \wedge a[i]=a[j]\})}\right.}
$$

Prove that the number of permutations of an array of length N is N !.
Proof by natural induction. Let $\operatorname{perm}(N) \stackrel{\text { df }}{=}$ the number of permutations of an array of length N.

Base case $N=1-\operatorname{perm}(1)=1=N!$.
Induction Inductive hypothesis: $\operatorname{perm}(N-1)=(N-1)$!
Let $a_{0}, a_{1}, a_{2}, \ldots a_{N-2}$ denote the values in an array of length $(N-1)$ (in some canonical order). An array of length N contains one additional value, a_{N-1}. There are N possible positions for this in the array (i.e., at the beginning, following the first value, following the second value, ..., at the end). For each of these positions of a_{N-1}, a_{0} through a_{N-2} may be in any of their possible orders, so

$$
\begin{aligned}
\operatorname{perm}(N) & =N \times \operatorname{perm}(N-1) \\
& =N \times(N-1)!\quad \text { by I.H. } \\
& =N!
\end{aligned}
$$

3. [15 points] In this question you are to reason about a $C++$ function int gcd (int x , int y) which returns the greatest common divisor of the natural numbers x and y .
a) [5 points] Give the specification for this function. You may find it helpful to recall that any common divisor, d, of natural numbers x and y, will also be a divisor of the GCD of x and y. You may use the following predicate in your specification:
$\operatorname{divisor}(d, x) \stackrel{\text { df }}{=}(\exists q$: int, $0<q \wedge x=d \times q)$
pre: $\mathrm{x} \geq 0 \wedge \mathrm{y} \geq 0$
post: result $\geq 0 \wedge$ divisor (result, $\left.\mathrm{x}_{0}\right) \wedge \operatorname{divisor}\left(\right.$ result, $\left.\mathrm{y}_{0}\right) \wedge$
$\forall i: \operatorname{int}, i \geq 0 \rightarrow\left(\operatorname{divisor}\left(i, \mathrm{x}_{0}\right) \wedge \operatorname{divisor}\left(i, \mathrm{y}_{0}\right)\right) \rightarrow \operatorname{divisor}(i$, result $)$
b) [10 points] Implement the function in C++ and add comments to your implementation to reason, as formally as possible, that it is correct. You may find it helpful to recall the property of natural numbers, that
$\forall x, y$: int, $(0 \leq x \wedge 0 \leq y) \rightarrow \operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \% y)$
```
int
gcd(int x, int y)
{
    while (y > 0) {
        // INV: gcd(x, y) = gcd(x_0, y_0)
        // VAR: y
        int z;
        // gcd(y, x % y) = gcd(x_0, y_0)
        z = x % y;
        // gcd(y, z) = gcd(x_0, y_0)
        x = y;
        // gcd(x, z) = gcd(x_0, y_0)
        y = z;
    }
    return x;
}
```

4. [15 points] A palindrome is a string that is the same when read forward and backward. Some examples of palindromes are "ABBA", "radar" and "200202202002". In this question you are to reason about a $\mathrm{C}++$ function bool isPalindrome (const string\& s), which returns true if s is a palindrome and false otherwise.
a) [5 points] Give the specification for this function.
pre: true
post: result $=\forall i,(0 \leq i<\operatorname{s.size}() / 2 \rightarrow \mathrm{~s}[i]=\mathrm{s}[$ s.size ()$-1-i])$
b) [10 points] Implement the function in C++ and add comments to your implementation to reason, as formally as possible, that it is correct.
```
bool
isPalindrome(const string& s)
{
    bool result = true;
    int size = s.size();
    int i = 0;
    while (result && i < size/2) {
        // INV: result = (A)j, (0 <= j < i -> s[j] == s[size-1-j])
        // VAR: size/2 - i
        result = (s[i] == s[size-1-i]);
        i++;
    }
    return result;
}
```

