
Components Class Design Choosing Classes Generalization

Components

Hardware analogy: Consider a PC

• Consists of mechanical and electronic components (drives,
boards, etc.) held together by standard interfaces (e.g. PCI
bus).

• Boards consist of ICs conforming to standard interfaces
(sockets).

• ICs often consist of numerous standard cells.

• Each standard cell consists of transistors.

Components are units of: Design, Sale, Reusability, Maintenance,
Documentation, Responsibility, Change, Sharing.

0Thanks to Theodore S. Norvell for much of this lecture.

Components Class Design Choosing Classes Generalization

Interface

Set of assumptions that the “clients” of a component may make
about how to “use” the component.
Consider a particular IC — a 7400 TTL in a DIP package.
Aspects of its interface:

• Physically it has 14 pins in precise physical positions.

• Pin 7 is ground. Pin 14 is 5VCC.

• Voltage levels are as defined in the TTL standard.

• Pins 3, 6, 8, 11 are outputs.

• All other pins are inputs.

In a sense the above are “syntactic” aspects of the interface.

Components Class Design Choosing Classes Generalization

Syntax and Semantic Interface

The semantics (behaviour) of the 7400:
The output on pin 3 is (after a given maximum delay) the NAND
of the inputs on pins 1 and 2. And likewise for pins 6, 4, & 5, pins
8, 9, & 10, and pins 11, 12, & 13.
This distinguishes the 7400 from other ICs with similar “syntax”
(e.g., 7408).
Syntax — form.
Semantics — meaning.

• The use of a part with the wrong syntactic interface can be
detected with a minimum of intelligence.

• Detecting the use of a part with the wrong semantic interface
requires an understanding of the system and some intelligence.

Components Class Design Choosing Classes Generalization

Implementation

The interface of the IC does not tell us

• Whether it was designed with VHDL, Verilog, or etc.

• Whether the IC contains Bipolar or field effect transistors
(except indirectly as this affects voltage levels, current drain,
and other observable quantities.)

• How many transistors it has.

These do not affect the suitability of the IC for its purpose and
thus are not considered part of the interface.
They are considered matters of implementation.
Separating matters of interface from matters of implementation is
a key concept in (software) engineering.
The interface abstracts what we need to know to use the device.

Components Class Design Choosing Classes Generalization

Components in Software

Various entities may serve as components.1

• Source files

• Variables

• Statements

• Subroutines (procedures, functions , methods, operations)

• Classes / Types / Interfaces

• Modules / Packages / Libraries

• Subsystems

• Programs

• Resources (e.g. icons and other data)

1Some writers use other terms for this (e.g., module) and some mean
something particular by component.

Components Class Design Choosing Classes Generalization

Component Hierarchy

Many components contain other components. For example:

• Programs contain subsystesm or packages

• Subsystems contain packages

• Packages contain other packages, classes, types, variables,
subroutines

• Classes contain variables (members), subroutines (methods),
& other classes

• Subroutines contain variables and (depending on language)
other subroutines

Is this hierarchy a tree?
Often the same component will be included in multiple programs
— sharing.
But generally speaking the hierachy is a tree.

Components Class Design Choosing Classes Generalization

Class Design

• In Object-Oriented design a fundamental component is
objects.

• Objects represent the key nouns (roles, physical objects,
concepts) in the problem (or solution).

• A class is a specification for objects:
• Name
• A set of attributes (a.k.a. fields).
• A set of operations (a.k.a. methods).

• Constructors: initialize the object state
• Accessors: report on the object state
• Mutators: alter the object state
• Destructors: clean up

Components Class Design Choosing Classes Generalization

Class Diagram

In UML a class is represented by a box with three sub-sections:

Note that UML can be used for many purposes:

software design — classes usually correspond to classes in the
code.

domain (requirements) analysis — classes represent real objects in
the problem domain.

Components Class Design Choosing Classes Generalization

Class in Java

// F i l e Student . j a v a
c l a s s Student { // c l a s s name i s Student

// A t t r i b u t e s
pr i va te long studNum ;
pr i va te S t r i n g name ;

// Ope ra t i on s
pub l i c Student (long sn , S t r i n g nm) {

studNum = sn ; name = nm;
}

pub l i c S t r i n g getName () { return name ; }
pub l i c long getNumber () { return studNum ; }

}

Components Class Design Choosing Classes Generalization

Relationships between Classes

• Associations

• Aggregation

• Composition

• Dependence

• Generalization

Components Class Design Choosing Classes Generalization

Association

• If one or more instances of one class play a role w.r.t.
instances of another class then the classes are associated.

• Can be helpful to name the role, but only do it when it adds
clarity.

• Arrowheads indicate navagability (none indicates both
directions).

Components Class Design Choosing Classes Generalization

Multiplicities

Indicate how many objects play a particular role:

Notation Meaning
n Exactly n
∗ Any number

0..1 Optional (0 or 1)
n..m Between n and m

Components Class Design Choosing Classes Generalization

Aggregation and Composition

• Both can be said “is part of.”

• An object should only be part of at most one object.

• Composition indicates that one cannot exist without the other
— the lifetime of the component and that of the whole are
the same.

• (Rose doesn’t support composition.)

Components Class Design Choosing Classes Generalization

Choosing Classes

• Candidates are nouns in the problem/solution description.

• Refine this by assigning responsibilities to each class:
• Information hiding — a design decision is encapsulated in the

implementation.
• Services — classes provide services to each other (verbs in the

methods).

• Identify collaborations — interactions with other classes to
carry out its responsibility.

Components Class Design Choosing Classes Generalization

Class-Responsibility-Collaboration (CRC) Cards

• Use index cards or post-it notes etc. to illustrate each class.

• Lines (e.g., on a whiteboard) of position (on a table) to
indicate collaborations

• Not part of UML, but a very useful technique.

Class Name

responsibility collaboration

responsibility collaboration

.

Components Class Design Choosing Classes Generalization

Kinds of Classes

1 Information storage

Service: An abstract interface to the information.
Secret: The data structures used.

Examples: Classes representing sequences, sets, finite
functions, chess boards, maps of rooms.

2 Algorithmic

Service: Performing some manipulation of data.
Secret: The algorithm used.

Examples: Sort a sequence, find shortest path in a graph,
determine best move in a chess game, plot best
course through a room.

Components Class Design Choosing Classes Generalization

Kinds of Classes (cont’d)

3 Device interface

Service: Provide access to an external device.
Secret: The nature of the device and the protocols for

using it.
Examples: Sensing the input from a touch sensitive chess

board, moving a robotic arm to a specific
location, outputting to a console (or console
window).

4 OS interface

Service: Services provided via the OS.
Secret: The OS being used and the means to

communicate with it.
Examples: Interacting with the file system or window

system or process system.

Components Class Design Choosing Classes Generalization

Kinds of Classes (cont’d)

5 Formatting and Parsing Classes

Service: Input and output of data in specific formats.
Secret: The format.

Examples: Input and output filters in word-processors.
Configuration file reading and writing.

6 Adaptation Classes

Service: Representing other classes in a way conforming
to a given interface.

Secret: Which classes are being represented.
Examples: Event listener classes (e.g. ActionListeners in

Java). Iterator classes (e.g. Enumerations in
Java).

Components Class Design Choosing Classes Generalization

Kinds of Classes (cont’d)

7 Structural classes

Service: Providing a single interface to a number of
objects.

Secret: The details of those objects.
Examples: Façade classes. Container classes in Java’s

AWT.

8 Creators

Service: Creating objects needed by other classes.
Secret: The method of creation and the concrete class

of the objects.
Examples: Factory classes (later).

Components Class Design Choosing Classes Generalization

Kinds of Classes (cont’d)

9 Arbitrary facts

Examples: Numerical constants, rules for financial
calculations, rules or games, rules for formatting
dates and monetary amount, strings
corresponding to messages, names of provinces
and countries, rules for checking validity (e.g. of
postal codes, credit card number), etc. These
facts tend to change as software is used in other
countries and languages (internationalization).

Components Class Design Choosing Classes Generalization

Generalization

• Sub/super-type relationship (i.e., “is a kind of”).

• Attributes and operations of the super-class are inherited by
the sub-class.

• Sub-class extends (adds to) the behaviour/interface of the
super class.

• Perhaps the most talked about association in early OO design.

• Use with caution:
• The “wrong” generalization can make system difficult to

modify.
• Be wary of too deep generalization structures.
• Principle of substitutability

• Any instance of the sub-class should be substitutable for an
instance of the super-class.

• Any statement that you’d make about the super-class should
be true of all sub-classes.

Components Class Design Choosing Classes Generalization

Generalization Example

Components Class Design Choosing Classes Generalization

Generalization Example

pub l i c c l a s s Remo t eP l a y e rCon t r o l l e r
extends c o n t r o l l e r . P l a y e r C o n t r o l l e r {

pub l i c void takeTurn () {
// imp l ementa t i on o f takeTurn

}

pub l i c void s e tAdd r e s s (S t r i n g i p) {
// imp l ementa t i on o f s e tAdd r e s s

}
}

Components Class Design Choosing Classes Generalization

Design By Contract

• Principle is that the interface to a component forms a
contract between the client and supplier.

• The implementer of other components (client) is told what
she must supply, the component implementer (supplier) says
what will be the supplied.

• For classes, the public interface declaration is the syntactic
interface.

• The semantic (behavioural) interface is given by pre- and
post-conditions for each public method.

• Pre-condition is required to be true before a method starts
execution — it is the client’s duty to ensure this.

• Post-condition is assured to be true when a method finishes
execution — it is the supplier’s duty to ensure this.

Components Class Design Choosing Classes Generalization

Design by Contract (cont’d)

• (Class) invariant — a condition that is required to be true in
all consistent states of the component (i.e., when no methods
of the component are executing).

• Can help implementer and future modifiers to understand
component (and therefore get it right).

• Conjoin (logical and) with pre-condition and post-condition.

Components Class Design Choosing Classes Generalization

Substitutability and DBC

Susbstitutability implies that:

• Assertions can only increase the responsibility of a sub-class.

• Sub-class can:
• weaken pre-conditions.
• strengthen post-conditions.
• strengthen invariants.

	Components
	Class Design
	Choosing Classes
	Generalization

