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Constraint Specification

Consider the UML diagrams as we’ve seen them so far:

• Could an programmer be tasked with writing the code based
only on the UML?

• Could we use it for design verification?

• Could we use it to define test cases and expected results?

• Could we automatically generate the code from it?

These are all things we should be able to do with a complete
model.
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Constraints (cont’d)

Although the UML diagrams are precise, they’re not complete —
we need to add more information.

• Class diagrams should define
• Initial values;
• Restrictions on values, associations, multiplicities;
• Relationships between values, either static or dynamic;
• Meaning of operations;
• Derived quantities.

• Interaction diagrams need
• Conditions,
• Actual parameter values.

• State diagrams need
• Guards,
• Restrictions on states,
• Targets of actions,
• Change events,
• Actual parameter values.

• Use cases need pre and post conditions.
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Object Constraint Language

• Part of UML.

• Both constraint and query language.
• A constraint is a restriction on one or more values of (part of)

an object-oriented model or system.
• A query is an expression that defines a value or collection of

values in a model. (A Boolean query can be used as a
constraint.)

• Mathematically based but uses few special symbols.

• Strongly typed — all expressions have a type. It is an error to
use expressions of the wrong type (e.g., use int where Boolean
is expected).

• Declarative — specifies what rather than how.
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Context

• All OCL expressions are with respect to a context — the
model entity for which the expression is defined.

• Usually the context is a class, interface, datatype or
component.

• Could also be an operation, attribute or instance.

• The type of the context is called the contextual type.

• OCL expressions are evaluated with respect to an instance —
the contextual instance.

• self is an OCL expression (keyword) whose value is the
contextual instance.
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OCL Expressions

Initial values — expressions that give initial value to attributes.
context Credit::grade
init: 0

Derivation rules — expression that defines how the value of a
derived attribute or association is computed.
context Student::average
derive: Credit.grade->sum() / Credit->size()

Query Operations — expressions that define the value for
operations that don’t change state of system.
context Student::enrolledCourses(yr : integer,
sem : integer) : Set(Course)
body: self.enrolledIn->select(year = yr and
semester = sem )->collect(Course)
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OCL Expressions (cont’d)

Attribute Definitions — Expression that defines an attribute in
addition to those in the diagrams.
context Credit
def: points : integer =
if grade >= 80 then 4
else if grade < 80 and grade >= 65 then 3
else if grade < 65 and grade >= 55 then 2
else if grade < 55 and grade >= 50 then 1
else 0
endif
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OCL Expressions (cont’d)

Invariants — Constraint that must be true

• upon completion of the constructor and
• upon completion of every public operation

context Section
inv qualifiedInstructor:
instructor.canTeach->includes(Course)

Pre-condition — Constraint that must be true immediately before
an operation starts its execution.

Post-condition — Constrint that must be true at the moment
when an operation ends its execution. (Note: use @pre to
denote value at start.)
context Student::enroll(sec : Section) : void
pre: Credit.Section.Course->includesAll(

sec.Course.prerequisite)
post: enrolledIn->includes(sec)
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OCL Elements

Every OCL expression has a type.

Basic types: Integer, Real, String and Boolean.

Collection types: Set, Bag, OrderedSet, Sequence.

User defined types (in model):

• Query operations — those that don’t change the state of
any object.

• Instance attributes: instance.attribute
• Class attributes/operations: Class::attribute
• Associations and aggregations — use role name or type

name as attribute. (Multiplicity greater than one gives
collection.)
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Boolean Operators

a or b
a and b
a xor b
not a
a = b
a <> b

a implies b
if bool expr then expr else expr endif
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Integer and Real operators

a = b
a <> b
a < b
a > b
a <= b
a >= b
a + b
a - b
a * b
a / b

a.mod(b)
a.div(b)
a.abs()
a.max(b)
a.min(b)
a.round()
a.floor()
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String operators

s1.concat(s2)
s1.size()

s1.toLower()
s1.toUpper()

s1.substring(s, f)
s1 = s2
s1 <> s2

Literals written with enclosing single quotes.
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Collections

Set Unordered, no duplicates.

OrderedSet Ordered, no duplicates.

Bag Unordered, may contain duplicates.

Sequence Ordered, may contain duplicates.

Collection Constants
Define explicit instances:
Set { 1, 2, 3, 99 }
OrderedSet { ’John’, ’Mary’, ’Jane’ }
Sequence { ’ape’, ’nut’ }
Bag { 1, 3, 4, 3 5 }
Collection Types A type that is “collection of type”:
Set(Student)
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Collections (cont’d)

Collection Operations Standard operations defined on collections.
Denoted by collection->operation
Basic operations
c->count(o) Number of occurances of o in c
c->excludes(o) True iff o is not an element of c
c->excludesAll(c2) True iff all of c2 are not in c
c->includes(o) True iff o is an element of c
c->includesAll(c2) True iff all of c2 are in c
c->isEmpty() True if c contains no elements.

c->notEmpty() True if c contains one or more elements.

c->size() number of elements in c
c->sum() Addition of all elements in c
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Operations with variant meaning

c1 = c2 c1 and c2 contain same elements (in the
same order for ordered collections)

c1 <> c2 Not equals.

c1 - c2 Remove elements in c2 from c1 if present
(Set and OrderedSet only)

c->flatten() Merge collection of collection into ’flat’ col-
lection (default behaviour). For ordered
collections of unordered collections (e.g.,
Sequence of Sets) the resulting order is non-
deterministic.

c->excluding(o) Remove all occurances of o from c.
c->including(o) Add o to c. (No change for Set or Ordered-

Set already containing o).
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Operations with variant meaning (cont’d)

c1->union(c2) Merge collections. Or-
dered collections can only
be unioned with ordered col-
lections (append c2 to c1).

c1->intersection(c2) Only elements in both c1
and c2. Not valid for or-
dered collections.

c1->symmetricDifference(c2) sets only. Gives collection
of elements in exactly one of
c1 or c2.
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Operations with variant meaning (cont’d)

c->asBag() Convert to bag (order is lost)

c->asOrderedSet() Convert to ordered set (duplicates lost,
random order if c is unordered)

c->asSequence() Convert to sequence (random order if c
is unordered).

c->asSet() Convert to set (order and duplicates lost)
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Operations on ordered collections

c->append(o) Append to end.

c->prepend(o) Insert at begining.

c->at(i) ith element.

c->first() first element.

c->last() last element.

c->indexOf(o) Index of first occurance of o (in-
dexed from 1)

c->insertAt(i, o) Insert o at index i.
c->subOrderedSet(l, u) OrderedSet only.

c->subSequence(l, u) Sequence only.
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Iterators

Evaluate expresssion on elements of collection.
Iterator variable can be declared in exp:
Course.prerequisites->collect( c | c.number )
c->exists(exp) True iff there is at least one element in c

for which exp is true.

c->forAll(exp) True iff exp is true for every element in c.
c->isUnique(exp) True iff exp has a unique value for every

element in c.
c->one(exp) True iff there is exactly one element in c

for which exp is true.

c->any(exp) A random element for which exp is true.
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Iterator

collection->iterate( element : Type1;
result : Type2 = <expr1> |
<expr2> )

• element is iterator variable

• Type1 is type of elements in collection

• result is accumulator

• <expr1> is initial value for result

• <expr2> is an expression including element and result.

• Semantics: for each element in collection, <expr2> is
evaluated using ’previous’ value of result.

Set(1, 2, 3)->iterate(i:Integer, sum:Integer = 0 |
sum+i)
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Collection Constructors

c->collect(exp) All objects resulting from exp on el-
ements of c.

c->collectNested(exp) Colletion of collectiosn resulting
from exp on elements of c.

c->reject(exp) Subcollection of c containing ele-
ments for which exp is false.

c->select(exp) Subcollection of c containing ele-
ments for which exp is true.

c->sortedBy(exp) Ordered Subcollection of c with ele-
ments ordered according to increas-
ing exp.
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Local varialbles

Help to make expressions easier to read:
let <var> : <Type> = <defn>

in <expr>

• <var> is a variable name.

• <Type> is a type.

• <defn> is an expression of type <Type>.

• <expr> is an expression involving <var>.

• More than one var can be defined.
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Tuples

A collection of named parts (think struct in C):
Tuple { <name1> : <Type1> = <val1>,

<name2> : <Type2> = <val2>, ...}
TupleType(<name1> : <Type1>, <name2> : <Type2>,
...)
Type casting
o.oclAsType(Type2) — evaluates o with type Type2.
Only applicable when Type2 is a subtype of the type of o.



Constraint Specification OCL

Postconditions

In postconditions we need to express what has been changed by
the operation — we need to compare two states (before and after
operation execution).
Postcondition constructs:
a@pre The value of a at the start of execution of the

operation.

result The value returned by the operation.

v->oclIsNew() True iff v is constructed during execution of
the operation.

a^op(arg) isSent: True iff the operation has sent (called)
op(arg) on a during its execution. Argument
value may be unspecified — denoted by “?”.

a^^op(arg) message operator: The sequence of mes-
sages sent that match op(arg) during
the execution of the operation. Type is
Sequence(OclMessage).
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OclMessage Operations

• Special type OclMessage

• Wraps any operation call or signal transmission.

• Signal is asynchronous (no return value).

• Operation can be synchronous or asynchronous.

m.hasReturned() True iff m has finished executing.

m.result() Return value of m.
m.isSignalSent() True iff m is a signal.

m.isOperationCall() True iff m is an operation call.
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OclAny Type

OclAny is a supertype for all types.
Operations on OclAny (inherited by all subtypes)
o.oclIsUndefined() True iff o is undefined.

o.oclIsTypeOf(<Type>) True iff o of type <Type>.
o.oclIsKindOf(<Type>) True iff o.oclIsTypeOf(<Type>)

or o is an instance of a subtype of
<Type>.

o.oclInState(<sname>) True iff o is in the state named
<sname>. o must have associated
state chart.

type::allInstances() The set of all instances of type.
(usage discouraged)



Constraint Specification OCL

References

[1] Jos Warmer and Anneke Kleppe.
Object Constraint Language: Getting Your Models Ready for
MDA.
Addison-Wesley, second edition, 2003.


	Constraint Specification
	OCL
	Object Constraint Language


