
Constraint Specification OCL

Constraint Specification

Consider the UML diagrams as we’ve seen them so far:

• Could an programmer be tasked with writing the code based
only on the UML?

• Could we use it for design verification?

• Could we use it to define test cases and expected results?

• Could we automatically generate the code from it?

These are all things we should be able to do with a complete
model.

Constraint Specification OCL

Constraints (cont’d)

Although the UML diagrams are precise, they’re not complete —
we need to add more information.

• Class diagrams should define
• Initial values;
• Restrictions on values, associations, multiplicities;
• Relationships between values, either static or dynamic;
• Meaning of operations;
• Derived quantities.

• Interaction diagrams need
• Conditions,
• Actual parameter values.

• State diagrams need
• Guards,
• Restrictions on states,
• Targets of actions,
• Change events,
• Actual parameter values.

• Use cases need pre and post conditions.

Constraint Specification OCL

Object Constraint Language

• Part of UML.

• Both constraint and query language.
• A constraint is a restriction on one or more values of (part of)

an object-oriented model or system.
• A query is an expression that defines a value or collection of

values in a model. (A Boolean query can be used as a
constraint.)

• Mathematically based but uses few special symbols.

• Strongly typed — all expressions have a type. It is an error to
use expressions of the wrong type (e.g., use int where Boolean
is expected).

• Declarative — specifies what rather than how.

Constraint Specification OCL

Context

• All OCL expressions are with respect to a context — the
model entity for which the expression is defined.

• Usually the context is a class, interface, datatype or
component.

• Could also be an operation, attribute or instance.

• The type of the context is called the contextual type.

• OCL expressions are evaluated with respect to an instance —
the contextual instance.

• self is an OCL expression (keyword) whose value is the
contextual instance.

Constraint Specification OCL

OCL Expressions

Initial values — expressions that give initial value to attributes.
context Credit::grade
init: 0

Derivation rules — expression that defines how the value of a
derived attribute or association is computed.
context Student::average
derive: Credit.grade->sum() / Credit->size()

Query Operations — expressions that define the value for
operations that don’t change state of system.
context Student::enrolledCourses(yr : integer,
sem : integer) : Set(Course)
body: self.enrolledIn->select(year = yr and
semester = sem)->collect(Course)

Constraint Specification OCL

OCL Expressions (cont’d)

Attribute Definitions — Expression that defines an attribute in
addition to those in the diagrams.
context Credit
def: points : integer =
if grade >= 80 then 4
else if grade < 80 and grade >= 65 then 3
else if grade < 65 and grade >= 55 then 2
else if grade < 55 and grade >= 50 then 1
else 0
endif

Constraint Specification OCL

OCL Expressions (cont’d)

Invariants — Constraint that must be true

• upon completion of the constructor and
• upon completion of every public operation

context Section
inv qualifiedInstructor:
instructor.canTeach->includes(Course)

Pre-condition — Constraint that must be true immediately before
an operation starts its execution.

Post-condition — Constrint that must be true at the moment
when an operation ends its execution. (Note: use @pre to
denote value at start.)
context Student::enroll(sec : Section) : void
pre: Credit.Section.Course->includesAll(

sec.Course.prerequisite)
post: enrolledIn->includes(sec)

Constraint Specification OCL

OCL Elements

Every OCL expression has a type.

Basic types: Integer, Real, String and Boolean.

Collection types: Set, Bag, OrderedSet, Sequence.

User defined types (in model):

• Query operations — those that don’t change the state of
any object.

• Instance attributes: instance.attribute
• Class attributes/operations: Class::attribute
• Associations and aggregations — use role name or type

name as attribute. (Multiplicity greater than one gives
collection.)

Constraint Specification OCL

Boolean Operators

a or b
a and b
a xor b
not a
a = b
a <> b

a implies b
if bool expr then expr else expr endif

Constraint Specification OCL

Integer and Real operators

a = b
a <> b
a < b
a > b
a <= b
a >= b
a + b
a - b
a * b
a / b

a.mod(b)
a.div(b)
a.abs()
a.max(b)
a.min(b)
a.round()
a.floor()

Constraint Specification OCL

String operators

s1.concat(s2)
s1.size()

s1.toLower()
s1.toUpper()

s1.substring(s, f)
s1 = s2
s1 <> s2

Literals written with enclosing single quotes.

Constraint Specification OCL

Collections

Set Unordered, no duplicates.

OrderedSet Ordered, no duplicates.

Bag Unordered, may contain duplicates.

Sequence Ordered, may contain duplicates.

Collection Constants
Define explicit instances:
Set { 1, 2, 3, 99 }
OrderedSet { ’John’, ’Mary’, ’Jane’ }
Sequence { ’ape’, ’nut’ }
Bag { 1, 3, 4, 3 5 }
Collection Types A type that is “collection of type”:
Set(Student)

Constraint Specification OCL

Collections (cont’d)

Collection Operations Standard operations defined on collections.
Denoted by collection->operation
Basic operations
c->count(o) Number of occurances of o in c
c->excludes(o) True iff o is not an element of c
c->excludesAll(c2) True iff all of c2 are not in c
c->includes(o) True iff o is an element of c
c->includesAll(c2) True iff all of c2 are in c
c->isEmpty() True if c contains no elements.

c->notEmpty() True if c contains one or more elements.

c->size() number of elements in c
c->sum() Addition of all elements in c

Constraint Specification OCL

Operations with variant meaning

c1 = c2 c1 and c2 contain same elements (in the
same order for ordered collections)

c1 <> c2 Not equals.

c1 - c2 Remove elements in c2 from c1 if present
(Set and OrderedSet only)

c->flatten() Merge collection of collection into ’flat’ col-
lection (default behaviour). For ordered
collections of unordered collections (e.g.,
Sequence of Sets) the resulting order is non-
deterministic.

c->excluding(o) Remove all occurances of o from c.
c->including(o) Add o to c. (No change for Set or Ordered-

Set already containing o).

Constraint Specification OCL

Operations with variant meaning (cont’d)

c1->union(c2) Merge collections. Or-
dered collections can only
be unioned with ordered col-
lections (append c2 to c1).

c1->intersection(c2) Only elements in both c1
and c2. Not valid for or-
dered collections.

c1->symmetricDifference(c2) sets only. Gives collection
of elements in exactly one of
c1 or c2.

Constraint Specification OCL

Operations with variant meaning (cont’d)

c->asBag() Convert to bag (order is lost)

c->asOrderedSet() Convert to ordered set (duplicates lost,
random order if c is unordered)

c->asSequence() Convert to sequence (random order if c
is unordered).

c->asSet() Convert to set (order and duplicates lost)

Constraint Specification OCL

Operations on ordered collections

c->append(o) Append to end.

c->prepend(o) Insert at begining.

c->at(i) ith element.

c->first() first element.

c->last() last element.

c->indexOf(o) Index of first occurance of o (in-
dexed from 1)

c->insertAt(i, o) Insert o at index i.
c->subOrderedSet(l, u) OrderedSet only.

c->subSequence(l, u) Sequence only.

Constraint Specification OCL

Iterators

Evaluate expresssion on elements of collection.
Iterator variable can be declared in exp:
Course.prerequisites->collect(c | c.number)
c->exists(exp) True iff there is at least one element in c

for which exp is true.

c->forAll(exp) True iff exp is true for every element in c.
c->isUnique(exp) True iff exp has a unique value for every

element in c.
c->one(exp) True iff there is exactly one element in c

for which exp is true.

c->any(exp) A random element for which exp is true.

Constraint Specification OCL

Iterator

collection->iterate(element : Type1;
result : Type2 = <expr1> |
<expr2>)

• element is iterator variable

• Type1 is type of elements in collection

• result is accumulator

• <expr1> is initial value for result

• <expr2> is an expression including element and result.

• Semantics: for each element in collection, <expr2> is
evaluated using ’previous’ value of result.

Set(1, 2, 3)->iterate(i:Integer, sum:Integer = 0 |
sum+i)

Constraint Specification OCL

Collection Constructors

c->collect(exp) All objects resulting from exp on el-
ements of c.

c->collectNested(exp) Colletion of collectiosn resulting
from exp on elements of c.

c->reject(exp) Subcollection of c containing ele-
ments for which exp is false.

c->select(exp) Subcollection of c containing ele-
ments for which exp is true.

c->sortedBy(exp) Ordered Subcollection of c with ele-
ments ordered according to increas-
ing exp.

Constraint Specification OCL

Local varialbles

Help to make expressions easier to read:
let <var> : <Type> = <defn>

in <expr>

• <var> is a variable name.

• <Type> is a type.

• <defn> is an expression of type <Type>.

• <expr> is an expression involving <var>.

• More than one var can be defined.

Constraint Specification OCL

Tuples

A collection of named parts (think struct in C):
Tuple { <name1> : <Type1> = <val1>,

<name2> : <Type2> = <val2>, ...}
TupleType(<name1> : <Type1>, <name2> : <Type2>,
...)
Type casting
o.oclAsType(Type2) — evaluates o with type Type2.
Only applicable when Type2 is a subtype of the type of o.

Constraint Specification OCL

Postconditions

In postconditions we need to express what has been changed by
the operation — we need to compare two states (before and after
operation execution).
Postcondition constructs:
a@pre The value of a at the start of execution of the

operation.

result The value returned by the operation.

v->oclIsNew() True iff v is constructed during execution of
the operation.

a^op(arg) isSent: True iff the operation has sent (called)
op(arg) on a during its execution. Argument
value may be unspecified — denoted by “?”.

a^^op(arg) message operator: The sequence of mes-
sages sent that match op(arg) during
the execution of the operation. Type is
Sequence(OclMessage).

Constraint Specification OCL

OclMessage Operations

• Special type OclMessage

• Wraps any operation call or signal transmission.

• Signal is asynchronous (no return value).

• Operation can be synchronous or asynchronous.

m.hasReturned() True iff m has finished executing.

m.result() Return value of m.
m.isSignalSent() True iff m is a signal.

m.isOperationCall() True iff m is an operation call.

Constraint Specification OCL

OclAny Type

OclAny is a supertype for all types.
Operations on OclAny (inherited by all subtypes)
o.oclIsUndefined() True iff o is undefined.

o.oclIsTypeOf(<Type>) True iff o of type <Type>.
o.oclIsKindOf(<Type>) True iff o.oclIsTypeOf(<Type>)

or o is an instance of a subtype of
<Type>.

o.oclInState(<sname>) True iff o is in the state named
<sname>. o must have associated
state chart.

type::allInstances() The set of all instances of type.
(usage discouraged)

Constraint Specification OCL

References

[1] Jos Warmer and Anneke Kleppe.
Object Constraint Language: Getting Your Models Ready for
MDA.
Addison-Wesley, second edition, 2003.

	Constraint Specification
	OCL
	Object Constraint Language

