Constraint Specification

Constraint Specification

Consider the UML diagrams as we've seen them so far:

e Could an programmer be tasked with writing the code based
only on the UML?

e Could we use it for design verification?
e Could we use it to define test cases and expected results?
e Could we automatically generate the code from it?

These are all things we should be able to do with a complete
model.

Constraint Specification

Constraints (cont'd)

Although the UML diagrams are precise, they're not complete —
we need to add more information.

e Class diagrams should define
e [nitial values;
e Restrictions on values, associations, multiplicities;
o Relationships between values, either static or dynamic;
e Meaning of operations;
e Derived quantities.
e Interaction diagrams need
e Conditions,
e Actual parameter values.
e State diagrams need
e Guards,
Restrictions on states,
Targets of actions,
Change events,
Actual parameter values.
e Use cases need pre and post conditions.

Object Constraint Language

e Part of UML.
e Both constraint and query language.

e A constraint is a restriction on one or more values of (part of)
an object-oriented model or system.

o A query is an expression that defines a value or collection of
values in a model. (A Boolean query can be used as a
constraint.)

e Mathematically based but uses few special symbols.

e Strongly typed — all expressions have a type. It is an error to
use expressions of the wrong type (e.g., use int where Boolean
is expected).

e Declarative — specifies what rather than how.

Context

e All OCL expressions are with respect to a context — the
model entity for which the expression is defined.

e Usually the context is a class, interface, datatype or
component.

e Could also be an operation, attribute or instance.
e The type of the context is called the contextual type.

e OCL expressions are evaluated with respect to an instance —
the contextual instance.

e selfis an OCL expression (keyword) whose value is the
contextual instance.

OCL Expressions

Initial values — expressions that give initial value to attributes.
context Credit::grade
init: O

Derivation rules — expression that defines how the value of a
derived attribute or association is computed.
context Student::average
derive: Credit.grade->sum() / Credit->size()

Query Operations — expressions that define the value for
operations that don't change state of system.
context Student::enrolledCourses(yr : integer,
sem : integer) : Set(Course)
body: self.enrolledIn->select(year = yr and
semester = sem)->collect(Course)

OCL Expressions (cont'd)

Attribute Definitions — Expression that defines an attribute in

addition to those in the diagrams.

context Credit

def: points : integer =
if grade >= 80 then 4

else if grade < 80 and grade >= 65 then 3
else if grade < 65 and grade >= 55 then 2
else if grade < 55 and grade >= 50 then 1
else O

endif

OCL Expressions (cont'd)

Invariants — Constraint that must be true
e upon completion of the constructor and
e upon completion of every public operation
context Section
inv qualifiedInstructor:
instructor.canTeach->includes (Course)

Pre-condition — Constraint that must be true immediately before
an operation starts its execution.

Post-condition — Constrint that must be true at the moment
when an operation ends its execution. (Note: use @pre to
denote value at start.)
context Student::enroll(sec : Section) : void
pre: Credit.Section.Course->includesAll(

sec.Course.prerequisite)
post: enrolledIn->includes(sec)

OCL Elements

Every OCL expression has a type.

Basic types: Integer, Real, String and Boolean.
Collection types: Set, Bag, OrderedSet, Sequence.

User defined types (in model):

e Query operations — those that don't change the state of
any object.

e Instance attributes: instance.attribute

e (Class attributes/operations: Class: :attribute

e Associations and aggregations — use role name or type
name as attribute. (Multiplicity greater than one gives
collection.)

Boolean Operators

aorb
a and b
a xor b
not a
a=>,
a<>hb
a implies b
if bool expr then ezxpr else expr endif

Integer and Real operators

a=>bo
a<>hb
a.mod (b)
a<b i
a.div(b)
a>b
a.abs()
a<=b
a.max(b)
a>ob .
a.min(b)
a+b
a-b a.round()
a.floor()
a*xb

a/b

String operators

s1.concat(s2)
sl.size()
s1.toLower)
s1.toUpper ()
sl.substring(s, f)
sl = s2
sl <> s2
Literals written with enclosing single quotes.

Collections

Set Unordered, no duplicates.
OrderedSet Ordered, no duplicates.
Bag Unordered, may contain duplicates.

Sequence Ordered, may contain duplicates.

Collection Constants

Define explicit instances:

Set {1, 2, 3, 99 }

OrderedSet { ’John’, ’Mary’, ’Jane’ }
Sequence { ’ape’, ’nut’ }

Bag { 1, 3, 4, 35}

Collection Types A type that is “collection of type”:
Set (Student)

Collections (cont'd)

Collection Operations Standard operations defined on collections.
Denoted by collection->operation
Basic operations

c—>count (o) Number of occurances of o in c
c—>excludes (o) True iff o is not an element of ¢
c—>excludesAll(c2) | True iff all of c2 are not in c
c—>includes (o) True iff o is an element of ¢
c->includesAl11(c2) | True iff all of c2 arein ¢

c—>isEmpty () True if ¢ contains no elements.
c->notEmpty () True if ¢ contains one or more elements.
c—>size() number of elements in ¢

c—>sum() Addition of all elements in ¢

Operations with variant meaning

cl = c2 cl and c2 contain same elements (in the
same order for ordered collections)

cl <> c2 Not equals.

cl - c2 Remove elements in c¢2 from c1 if present
(Set and OrderedSet only)

c->flatten() Merge collection of collection into 'flat’ col-

lection (default behaviour). For ordered
collections of unordered collections (e.g.,
Sequence of Sets) the resulting order is non-
deterministic.

c—>excluding(o) | Remove all occurances of o from c.
c->including(o) | Add o to c. (No change for Set or Ordered-
Set already containing o).

Operations with variant meaning (cont’d)

cl->union(c?2)

Merge collections. Or-
dered collections can only
be unioned with ordered col-
lections (append c2 to c1).

cl->intersection(c2)

Only elements in both c1
and c2. Not valid for or-
dered collections.

cl->symmetricDifference(c2)

sets only. Gives collection
of elements in exactly one of
cl or c2.

Operations with variant meaning (cont’d)

c->asBag() Convert to bag (order is lost)
c—>asOrderedSet () | Convert to ordered set (duplicates lost,
random order if ¢ is unordered)
c->asSequence () Convert to sequence (random order if ¢
is unordered).

c—>asSet () Convert to set (order and duplicates lost)

Operations on ordered collections

c—>append (o)

Append to end.

c->prepend (o)

Insert at begining.

c->at (i) ith element.
c—>first() first element.
c—>last () last element.

c—>index0f (o)

Index of first occurance of o (in-
dexed from 1)

c—>insertAt(i, o)

Insert o at index 1i.

c->subOrderedSet (1, u)

OrderedSet only.

c—>subSequence(1l, u)

Sequence only.

Iterators

Evaluate expresssion on elements of collection.
Iterator variable can be declared in exp:
Course.prerequisites->collect(¢ | c.number)

c—>exists(exp)

True iff there is at least one element in ¢
for which exp is true.

c->forAll (exp)

True iff exp is true for every element in c.

c->isUnique (exp)

True iff exp has a unique value for every
element in c.

c->one (exp)

True iff there is exactly one element in c
for which exp is true.

c—>any (exp)

A random element for which exp is true.

[terator

collection->iterate(element : Typel;
result : Type2 = <exprl> |
<expr2>)

e element is iterator variable

e Typel is type of elements in collection

e result is accumulator

e <exprl> is initial value for result

e <expr2> is an expression including element and result.
e Semantics: for each element in collection, <expr2> is

evaluated using 'previous’ value of result.

Set(1, 2, 3)->iterate(i:Integer, sum:Integer = 0 |
sum+i)

Collection Constructors

c->collect (exp)

All objects resulting from exp on el-
ements of c.

c->collectNested (exp)

Colletion of collectiosn resulting
from exp on elements of c.

c->reject(exp)

Subcollection of ¢ containing ele-
ments for which exp is false.

c->select (exp)

Subcollection of c containing ele-
ments for which exp is true.

c->sortedBy (exp)

Ordered Subcollection of ¢ with ele-
ments ordered according to increas-

ing exp.

Local varialbles

Help to make expressions easier to read:
let <var> : <Type> = <defn>
in <expr>
e <var> is a variable name.

e <Type> is a type.

<defn> is an expression of type <Type>.
e <expr> is an expression involving <var>.

More than one var can be defined.

A collection of named parts (think struct in C):
Tuple { <namel> : <Typel> = <vall>,
<name2> : <Type2> = <val2>, ...}
TupleType (<namel> : <Typel>, <name2> :
o)
Type casting
0.0clAsType(Type2) — evaluates o with type Type2.
Only applicable when Type2 is a subtype of the type of o.

<Type2>,

Postconditions

In postconditions we need to express what has been changed by
the operation — we need to compare two states (before and after
operation execution).

Postcondition constructs:

alpre The value of a at the start of execution of the
operation.
result The value returned by the operation.

v->o0clIsNew()

True iff v is constructed during execution of
the operation.

a”op(arg) isSent: True iff the operation has sent (called)
op(arg) on a during its execution. Argument
value may be unspecified — denoted by “7".
a~"op(arg) message operator: The sequence of mes-

sages sent that match op(arg) during
the execution of the operation. Type is
Sequence (OclMessage).

OclMessage Operations

Special type OclMessage

e Wraps any operation call or signal transmission.

e Signal is asynchronous (no return value).

e Operation can be synchronous or asynchronous.

m.hasReturned()

True iff m has finished executing.

m.result()

Return value of m.

m.isSignalSent ()

True iff m is a signal.

m.isOperationCall()

True iff m is an operation call.

OclAny Type

OclAny is a supertype for all types.
Operations on OclAny (inherited by all subtypes)

o.0clIsUndefined()

True iff o is undefined.

0.0clIsTypeOf (<Type>)

True iff o of type <Type>.

0.0clIsKindOf (<Type>)

True iff 0.0clIsTypeOf (<Type>)
or o is an instance of a subtype of
<Type>.

o.oclInState(<sname>)

True iff o is in the state named
<sname>. o must have associated
state chart.

type::alllnstances()

The set of all instances of type.
(usage discouraged)

References

[1] Jos Warmer and Anneke Kleppe.

Object Constraint Language: Getting Your Models Ready for
MDA.

Addison-Wesley, second edition, 2003.

	Constraint Specification
	OCL
	Object Constraint Language

