
Engineering Process Software Qualities Software Architectural Design

Engineering Process

We need to understand the steps that take us from an idea to a
product.

• What do we do?

• In what order do we do it?

• How do we know when we’re finished each step?



Engineering Process Software Qualities Software Architectural Design

Production process

Typical steps in production process for any engineering project:

1 Requirements analysis — what problem are we to solve?

2 Design — how will we solve the problem?

3 Analysis — will our proposed solution solve the problem?

4 Implementation/construction — build the solution.

5 Validation — did we solve the problem (and will the customer
buy it)?

6 Production — make copies of the product.

7 (Maintenance — make sure the solution keeps running.)



Engineering Process Software Qualities Software Architectural Design

Is Software Different?

• Requirements are less stable.

• Nature (physics) plays a smaller role.
• Doesn’t (necessarily) fail in predictable ways.
• Interpolation and extrapolation are rarely valid.

• No obvious natural decomposition.

• Complexity can be very high.

• Production (not implementation) is trivial.



Engineering Process Software Qualities Software Architectural Design

“Traditional” Software Process

1 Requirements — describe “what” not “how”

Analysis/elicitation What does the client really want?
Specification Precisely describe the behaviour of the system.

2 Design

Architectural design — what classes/components/modules
will make up the system?

• What role does each play?
• What are its relationships (interactions, sub-classing,

associations) with other modules?
• What is its interface (including behaviour)? Abstract:

independent of the implementation.
• How can it be tested?

Module design — how will each module be implemented.

3 Implementation — write the code.



Engineering Process Software Qualities Software Architectural Design

Traditional Software Process (cont’d)

4 Verification
• Unit test — behaviour of each module.
• Integration test — interaction between modules.
• System test — behaviour of the whole system.

5 Maintenance — modify the system.

• Each phase results in a product (document, code), which is
the input to the next phase.

• If a phase is carried out rigorously, its product can be verified
against the products of the previous phase(s) (analysis).

• Validation (Is this what the customer wants?) can be carried
out early and after each phase.



Engineering Process Software Qualities Software Architectural Design

When does the “Traditional” Process work well?

• Large teams — Components can be reasonably worked on in
parallel.

• Few unknowns
• Requirements are stable.
• Technology is well known.
• The team has solved similar problems before.

• Implementation and design are clearly distinct tasks.

• Implementation is a significant portion of development.

• Components can be effectively tested independently.



Engineering Process Software Qualities Software Architectural Design

Incremental/Unified/Spiral Software Development

• Software system is developed through a sequence of short,
fixed length (e.g., four week) increments.

• Each includes requirements analysis, design, implementation,
testing

• The endpoint of each increment is a functioning system.
• You can objectively determine if you’ve met the goals of the

increment by the behaviour of the system.
• Usually all behaviour of previous increments is also exhibited in

later increments — there is progress towards the final goal.

• Documents are updated as part of each increment so they
remain accurate. (live documents)

• Having an executable system makes it possible to get early
and frequent feedback (validation).

• Feedback allows the design to be adapted as requirements are
better understood or change.



Engineering Process Software Qualities Software Architectural Design

Major phases of Incremental Development

The whole developement period is divided into four major phases,
each of which may contain one or more increments.

Inception approximate vision, scope, vague estimates

Elaboration refined vision, incremental implementation of core
architecture, resolution of high risks

Construction implementation of lower risk elements

Transition beta test, deployment



Engineering Process Software Qualities Software Architectural Design

How to plan for and execute incremental development

• Identify a set of distinct system behaviours (use cases).

• Assign each system behaviour to a particular increment.

• Candidates for early increments:
• Highest priority (from the customer’s point of view).
• Highest risk (i.e., least well understood).

• Focus on what is needed for the current increment only (if it’s
not needed in this increment, then don’t do it).

• Constantly track progress
• If it looks like you won’t meet a target date, drop behaviour

rather than move the date.



Engineering Process Software Qualities Software Architectural Design

When and Why to use Incremental Development

• Requirements are not well understood.
• Developers get a better understanding by solving parts of the

problem.
• Users can give feedback on early increments.

• Technological uncertainty.
• Early increments used to test if/how well technology is working

to solve the problem.

• Schedule uncertainty.
• Lack of experience makes it difficult to know how long it will

take to do some parts.
• Constant reflection makes adjusting the schedule easy.



Engineering Process Software Qualities Software Architectural Design

When and Why (cont’d)

• Design/interface uncertainty.
• Constant integration ensures that interfaces are understood.

• Important to deliver something quickly.
• Time to market can be critical in some industries.
• Gives management/customers confidence that progress is

happening.

• Small team.
• Parallel development of components isn’t feasible.
• Directs energy, avoids “thrashing.”



Engineering Process Software Qualities Software Architectural Design

Common mistakes

• An actual progress report from a previous student:

“Increment 1 is 80% complete, increment 2 is 50%
complete and increment 3 is 20% complete.”

• This student clearly missed the point.
• Each increment should be finished before the next is started.

• Failure to refactor.
• At each increment consider the design and how it can evolve

into the next increment.
• If it isn’t right for the next increment fix it now before it

becomes an albatross around your neck.



Engineering Process Software Qualities Software Architectural Design

Mistakes (cont’d)

• Focusing on components rather than behaviour.
• Increments are defined by the behaviour they deliver, not the

development that goes into them.
• Keep your eyes on the bottom line (behaviour), not the

components.

• Over design.
• There is a strong tendency to want to make an “elegant

design” (e.g., more flexible, configurable . . . ).
• The best designs are the simple designs (KISS = Keep It

Simple, Stupid).

• Failure to make a plan and communicate it.
• Write down what behaviour is in each increment.
• Make sure everybody has the plan.
• Keep the plan current.



Engineering Process Software Qualities Software Architectural Design

Software Qualities: Exernal

Qualities: What makes good software?
External qualities: What the user cares about.

• Usefulness — does it do what the user wants?

• Performance — speed, size.

• Correctness — does it meet its specification? (assumes
precise specification)

• Reliability — does it do what the user wants most of the time?

• Robustness — does it respond well to error/failures of other
systems?

• Usability — is it easy to use?

• Interoperability — does is conform to relevant
standards/formats etc.?

• User documentation.



Engineering Process Software Qualities Software Architectural Design

Software Qualities: Internal

What future developers will care about. Attributes of source code
and documentation.

• Correctness — internal documentation consistent with itself
and the code.

• Changeability — Can the most likely changes be made easily?
Can other changes be made reasonably?

• Understandability — Is code & documentation
understandable?

• Reusability — Can components be reused in other projects?



Engineering Process Software Qualities Software Architectural Design

Software Qualities: Process

What managers care about.

• Cost — production and maintenance.

• Timeliness — When will it be ready?

• Traceability — Can the progress of the production be
monitored?



Engineering Process Software Qualities Software Architectural Design

Principles to achieve quality

Rigour/Formality
• Precision and exactness in descriptions and processes.
• Software is only correct when it is clear what it means to

be correct.
• Should not inhibit creative process—sketch then design.
• Formal means that content and meaning (syntax and

semantics) are governed by mathematical laws.

Separation of Concerns
• Time: concentrate on different aspects of system at

different times.
• Qualities: e.g., verify correctness without considering

efficiency.
• Views: Choose appropriate technique for examining

different aspects of system (e.g., class diagram vs.
interaction diagram).

• Components: modularity.



Engineering Process Software Qualities Software Architectural Design

Quality Principles (cont’d)

Modularity (a.k.a., classes)

• Simplify a difficult task by breaking it into smaller
components.

• Correct parts imply a correct whole.
• Keep each part simple.
• High cohesion — all elements of the same module are

strongly related.
• Low coupling — elements in a module do not depend

heavily on elements in other modules (except what is in
the interface).

Abstraction

• Hide details to enable understanding (separation of
concerns)

• The interface of a component is more simple than its
implementation.



Engineering Process Software Qualities Software Architectural Design

Quality Principles (cont’d)

Anticipation of change

• Change is inevitable and often predictable.
• Encapsulate anticipated changes in modules (classes).
• Unanticipated changes ruin modularity.
• Unanticipated changes will be much harder to get right.

Incrementality

• Identify useful subsets of system.
• Get something running early and keep it running.



Engineering Process Software Qualities Software Architectural Design

Software Architectural Design

Goal is to define a set of components (classes, packages, modules)
and their interelations/interactions.

• Information hiding — define components in terms of their
secret(s): information that the implementer of the component
needs to know, but implementers of other components don’t
need to know.

• Design for change — choose the component secrets to be
those that are most likely to change.

• algorithms
• data representation
• underlying machine (hardware, OS)
• peripheral devices/external interfaces
• external environment (e.g., bussiness rules)
• increments
• product families



Engineering Process Software Qualities Software Architectural Design

Relations On Components

Uses – if M1 requires the presence of M2 then M1 uses M2

(a.k.a. is a client of).

• not the same as calls or associated with (these
are specializations of uses)

• if it is not a hierarchy then all components in
cycle must be implemented together (strong
coupling)

• sub-trees in hierarchy indicate possible
increments/family members

• aim for low fan-out and high fan-in

is part of – (a.k.a. aggregation)

passes data to

specialization of — (a.k.a. inheritance)



Engineering Process Software Qualities Software Architectural Design

Component Interface

The interface to M is the set of assumptions about M that can be
made by programmers/designers of other components.

• public methods, their signatures and externally observable
behaviour

• public data, constants etc.

• other assumptions (e.g., response time, side effects,
limitations)

Try to make interface small, simple and effective.
Make sure that the interface is well documented. This is
particularly important for aspects that aren’t obvious from the
syntax.
In incremental development pay particular attention to interfaces
to components that will be enhanced in later increments.



Engineering Process Software Qualities Software Architectural Design

Stepwise Refinement

In stepwise refinement problem is solved by defining a sequence of
steps to solve the solution.
The steps are refined by adding details until the right level of detail
is reached.

• Emphasis on the algorithm not the data (objects).

• Sub-problems are considered in isolation.

• Information hiding is not used (except w.r.t. algorithm steps).

• ’Top level’ algorithm is assumed.

• Early commitment to control structure.



Engineering Process Software Qualities Software Architectural Design

Object Oriented Design

Solution is developed as a model of the problem domain.

• Key nouns in the problem are realized by objects.

• Objects have behaviour and attributes that model their role in
the solution.

Strong emphasis on information hiding and on particular relations
on classes:

Generalization/Specialization (a.k.a., inheritance)

Association

Aggregation (is composed of)


	Engineering Process
	Is software different?
	``Traditional'' Software Process
	Incremental/Unified/Spiral Software Development

	Software Qualities
	Principles to achieve quality

	Software Architectural Design
	Relations On Components


