Design Patterns

Design Patterns

e Why is an experienced designer more productive than a
novice?

e From experience, a designer builds up a repertoire of general
solutions to problems that occur repeatedly.

e If experienced designers write down their solution structures
then they can share them with others.

e |f we agree on names for these solutions then we can use them
to communicate ideas with other designers.

In the OOD context, a pattern is a named problem/solution pair
that can be applied in new contexts.
Ideas originate in architectural patterns for buildings.

Design Patterns

Pattern Notes

e Patterns are reusable solutions, not code.

¢ Not about designs that can be encoded in a class and used as
s (e.g., linked list, hash table).

e Not complex, domain-specific designs for an entire application
or subsystem.

e No catalog of patterns is complete — there is always a
possibility to define new patterns.

Design Patterns

Pattern Descriptions

Gamma et al [1] (a.k.a., “the gang of four” or "GoF") have
identified a collection of common patterns and a template for
describing them.
Essential components of pattern description:
Name — One or two words that identify the problem &
solution.
Problem — When to apply the pattern.

Solution

Elements that make up the design,
their relationships,

responsibilities, and

collaborations.

Consequences — Results and trade-offs of applying the pattern.

Design Patterns

Pattern Classification

Two criterion:

@ Purpose
Creational — concerned with process of creating objects.
Structural — about the composition of classes or objects.
Behavioural — the way in which classes or objects interact
and distribute responsibility.
® Scope

Class — relationships between classes and their
sub-classes (static, compile-time relationships).
Object — relationships between objects (dynamic,
run-time).

GoF Patterns

GoF Patterns

] | Creational | Structural | Behavioural \
Class Factory Method | Adapter (class) Interpreter
Template method
Object || Abstract factory | Adapter (object) | Chain of responsibility
Builder Bridge Command
Prototype Composite Iterator
Singleton Decorator Mediator
Facade Memento
Flyweight Observer
Proxy State
Strategy
Visitor

GoF Patterns

Pattern Description Template

® Name & Classification
® Intent — what does the pattern do?
©® Also known as

® Motivation — scenario that illustrates the problem and how it
is solved by the pattern.

® Applicability — situations in which the pattern can be applied.

@ Structure — class and/or interaction diagrams.

@ Participants — classes/objects and their responsibilities.

® Collaborations

© Consequences

@ Implementation — pitfalls, hints, or techniques relevant to the
solution implementation.

#® Sample code.

® Known uses — from real systems.

® Related Patterns.

GoF Patterns

Model-View-Controller

Intent Separate issues of graphical presentation, user input
interpretation, and application data/state.
Motivation Previously the GUI code was mixed with the
application, which made it difficult to change either.
GUI code can be quite complcated and is full of
issues that are quite independent of the application.

Applicability The standard pattern for systems with a GUI.

GoF Patterns

Model-View-Controller (cont'd)

Participants

® Model — represents the application data in a manner
independent of its presentation to the user. Normally
doesn’t know about the view or controller.

® View — presents the data to the user. Knows how to get
the information it needs from the Model.

© Controller — interprets user input and passes changes
etc. to Model.

e Not a GoF pattern, but has been around longer.

e Uses many GoF patterns: Observer, Composite, Strategy,
(Factory Method, Decorator).

e Often view is combined with controller — the Model-View
pattern.

GoF Patterns

Model-View Structure

Model
Multiple wiews are possible
<= interface ==
T Modelnterface
' - -
Wiew | ’

View .
ModelFacade

- —[=< interface == g
ModelObserver

+update fvoid

Cancrete model and wiew
details are package scope
and therefare nat shown.

Created with Poseidon for UM L Community Edition. Mot for Commercial Use,

GoF Patterns

Information Transfer in M-V

When the model changes state the views must update. Three
choices

® Object that updated the model tells the view(s) to refresh.
Disadvantage: Every object that might change the model
must know about all the views.

® Model tells the view(s) that it has changed.
Disadvantage: Model must know every view.

© As above, but Model calls through a listener interface.

GoF Patterns

Information Transfer in M-V (cont’d)

Once the view knows about a change how does it get the data to
update its presentation?
@ Push: The message that informs the view of the change also
contains the updated information.
Disadvantage: The information may not be relevant to this
view.

® Pull: The view asks the model for what it needs.

GoF Patterns

M-V Interaction

e Often the view objects update the model.

e The update notification may arrive at the view in the middle
of another call to the model.

e Be careful that the model object is in a consistent state before
updating.

Observer Pattern

<< interface =x
Observer -

GoF Patterns

Subject

+update {ovoid

Fi)

+Motifyvaid

+attach(o: Obzerveriaid
+Detachio: Obzerverkwoid

1

Conorete Observer

ConareteSubject

+get Stateivoid

I oty
forall oin observers {

o.update;
¥

Created with Poseidon for UM L Community Edition. Mot for Commercial Use.

GoF Patterns

Observer Pattern (cont'd)

Applicable whenever multiple objects must be kept consistent.
Subject Knows observers.

e Any number of observers may observe a subject.
e Provides and interface for attaching and detaching
observers.

Observer (interface) defines updating interface for objects that
should be notified of changes.

ConcreteSubject Stores state (model). Notifies observers of
changes.
ConcreteObserver
e Maintains reference to ConcreteSubject.

e Implements Obsever update interface to keep its state
consistent with subject.

GoF Patterns

Observer Consequences (+)

ConcreteSubject may be reused without reusing observers.

Observer classes may be added or removed without modifying
ConcreteSubject or other observer classes.

Observers may belong to higher level in a layered system.

Supports broadcast to many observers

GoF Patterns

Observer Consequences (-)

Cost of update is hidden from subject.

No indication of how subject has changed — may lead to
costly unneeded updates.

Subject must be consistent when it calls notify.

e Too many notifications — every change causes notify.

GoF Patterns

Observer Implementation Issues and Variations

Dangling references Deleting either a subject or observer may
leave dangling references — need to ensure that referring
objects are informed of delete (de-register self before delete).

Update triggering Whose responsibility is it to call update?

e state-setting methods in subject — may lead to too many
updates.
e clients — error prone.

Observing more than one subject — update needs a parameter to
identify itself to the observer.

GoF Patterns

Observer Implementation Issues and Variations (con'd)

Update protocols How is the information about he change
communicated to the observer?

e Push model — subject sends observers detailed
information about the change. Subject needs to know
more about observers.

e Pull model — subject sends minimal information,
observer goes and gets it. May be less efficient.

Specifying changes of interest explicitly Observers register as
being interested in specific kinds of changes.

Change manager Encapsulates particularly complex update
semantics (example of Mediator pattern).

GoF Patterns

Command Pattern (Behavioural)

Intent Encapsulate a request as an object, enabling
parameterized clients, queuing, logging and undoing.
A.K.A. Action, Transaction
Motivation Need to issue requests to objects without knowing
about the operation being requested or the receiver
of the request (e.g., buttons etc. on GUIs).

Command Pattern: Structure

GoF Patterns

Invoker

Client

I’

Rece iver

=< interface »>=
Command

+Exzecutefiwoid

FiN

Conaete Cormmand

+Actiondwvoid

" +Executevoid

Created with Poseidon for UM L Community Edition. Mot for Cammercial Use.

GoF Patterns

Command Pattern: Participants

Command — interface for executing an operation (e.g.,
java.awt.event.ActionListener)

e ConcreteCommand — implements Command interface.
Defines binding between receiver and action.

¢ Client — creates ConcreteCommand object (and sets its
receiver and invoker).

ActionListener loadAction = new LoadAction();
loadMenultem . addActionListener (loadAction);
loadToolBarButton.addActionListener(loadAction);

e Invoker — asks the command to carry out the request (e.g.,
Menultem, ToolBarButton).

¢ Receiver — knows how to perform the operations associated
with carrying out the request.

GoF Patterns

Command Pattern: Applicability

e Parameterize objects by an action to perform (e.g.,
Menultem).

Specify, queue and execute requests at different times.

Support undo — commands store state for reversing effects.

Transaction processing.

GoF Patterns

Composite Pattern (Structural)

Intent Compose objects into tree structures to represent
part-whole hierarchies.

Motivation GUI frameworks build complex GUIs out of
components which contain other components ... Key is
abstract class (Component) that represents both primitives
and their containers.

Participants

e Component — declares interface, implements default
behaviour.

e Leaf — is not a container

e Composite (container) — stores child components,
implements child-related operations.

e Client — manipulates objects in the composition through
the Component interface.

GoF Patterns

Composite Pattern: Consequences

e Clients can deal with only the root — existence of children
can be hidden.

e Extension is easier. Newly defined subclasses work
automatically.

e Can make design overly general. Can't restrict (at compile
time) contents of containers to certain types of components.

GoF Patterns

Proxy Pattern (Structural)

Intent Provide a surrogate or placeholder for another object to
control access to it.

Applicability Whenever there is a need for a more versatile or
sophisticated reference to an object than a simple pointer.

e Remote proxy — local representative of remote object.

e Virtual proxy — delay creation of actual (expensive)
object until needed.

e Protection proxy — control access to object.

e Smart reference — a replacement for pointer that
performs additional actions (e.g., counting references,
locking, loading etc.)

GoF Patterns

Proxy Pattern Example: RMI in Java

Client

(6 Return (3)

(L

Stub
(proxy) Message Skeleton
—=

ﬂ Proc.
@ LIV (5

MNetwords

GoF Patterns

Factory Method Pattern (Creational)

Intent Define an interface for creating an object, but let subclasses
decide which class to instantiate.

Motivation

e We want to design a text editor framework that can edit
a variety of document types (Rich Text Format, HTML,
plain old text, etc.)

e In swing.text the objects that make up a text editor know
an EditorKit object.

e Implementing the new menu item, we ask the EditorKit
object to create a new document.

GoF Patterns

Old Fashioned Solution

e One way to do this involves a single EditorKit class containing:

EditorKit(String textType) {
this . textType = textType

}

Document makeDocument () {
if (textType.equals(rtf) {
return new RTFDocument() ;
} else if (textType.equals(html) {
return new HTMLDocument()

}

1

}

e Problem: To add new document kind, we must edit this class.
Thus it is not reusable.

GoF Patterns

Factory Method Solution

e EditorKit is an abstract class with method

// Factory Method
abstract Document makeDocument() ;

e EditorKit has a number of subclasses

class RTFDocument {

// Factory Method
Document makeDocument() { new RTFDocument(); }

}

e Adding a new document type means creating a new subclass
of Document and a new subclass of EditorKit. It does not
require editing EditorKit, Document, or the code of the text
editor.

e EditorKits are factories for Documents.

Factory Method Structure

GoF Patterns

AbstractProduct

Abstract Creator

i

Conaete Productl

<< Create ==

Conarete Product2

+makeProducti Al stractProduct

i

Conarete Creatorl

+makeProduct {:AbstractProduct

Conarete Creator 2

== create =

+makeProduct{):AbstractProduct

Created with Poseidon for UML Cammunity Edition. Mot far Cammercial Use.

GoF Patterns

Example 2: Factory Methods in Collection Classes

e Package java.util defines a number of

e interfaces (Collection, List, Set) and
e classes (ArrayList, LinkedList, HashSet, TreeSet)

o It also defines a number of Iterator classes for iterating over
these various classes. E.g.

LinkedList list = new LinkedList();

lterator it = list.iterator ();
while(it.hasNext()) {
Object item = it.getNext();

... // do something with item

}

GoF Patterns

Collection Classes (cont'd)

e We can also write generic code. E.g.

int sum(Collection col) {
[terator it = col.iterator();
int s = 0;
while(it.hasNext()) {
Integer item = (Integer) (it.getNext());
s += item.getValue();

}

return s;

Aside: Java 1.5+ method:

int sum(Collection col) {
int s = 0;
for (Integer item : col) {
s += item.getValue();

}

return s;

}

GoF Patterns

Collection Classes (cont'd)

e Each class that implements Collection must implement
iterator() to return an iterator object of the appropriate class.

e Collection classes are factories for iterators.

e We can add new subclasses of Collection and reuse generic
code.

GoF Patterns

Factory Pattern Consequences

(+) Client code can create objects of any of a variety of classes
without depending on any of those classes. Hence it is generic
and reusable.

(+) Connects parallel class hierarchies (e.g. the Container
hierarchy and the Iterator hierarchy).

+) Whether or not an object is created can be hidden from client.
)
E.g. creator could return a previously created object.
(Consider immutable objects)

GoF Patterns

Builder Pattern (Creational)

Intent Separate the construction of a complex object from its
representation so that the same construction process can
create different representations.

Motivation By example:

e XML is a common file format for structured documents.
However different applications require different internal
representations of XML documents.

e E.g. Xylia is a generic editor for XML documents built on
top of the swing.text package. Thus its internal
representation extends swing.text.AbstractDocument.

e But an editor for the Chemical Markup Language (a
specific XML language) might require a much different
internal representation.

e We would like to use a single parser to read XML files for
both these applications.

GoF Patterns

Example Solution

e Normally a parser converts a sequence of characters into an
object (while checking for syntax errors).

e Instead we write a parser that converts a sequence of
characters into a sequence of calls to a pluggable object.

e <xhtml><body><p>hi</p></body></xhtml>

e s converted to calls

obj.startTag(xhtml);
obj.startTag(body);
obj.startTag(p);
obj.content(hi);
obj.endTag() ;

e Here “obj" is a pluggable object.

Builder Structure

GoF Patterns

Sends a series of
command 1o Builder
instructing it to build
a product.

Director

== interface =
Builder

+buildPartl §aaid
+huildPart 2 {ovoid
+etcfvoid

BuilderA

BuilderB

BuilderC

Created with Poseidon for UML Community Edition. Kot for Commercial Use.

GoF Patterns

Builder Example 2: SAX

e SAX (Simple API for XML) uses the Builder strategy to
specify a common standard for XML parsers

e A number of different parsers all use SAX.
e A large number of XML based applications use SAX.
e SAX allows multiple handler (builder) objects.

o Allows different handlers to pay attention to different
commands.

e Content models in XML describe constraints on the sequence
of children an element can have. E.g. (p | table | img)*
describes the (simplified) content model for an xhtml body.

e This is converted to a sequence of calls to a pluggable object
via an interface.

GoF Patterns

Builder Example 2 (cont’d)

The interface is optimized for building trees:

Object finishContentModel(int kind);

Object finishContentModel(int kind, Object regExp);
Object mkPCDATA();

Object mkName(String name);

Object mkAlternation(Object right, Object left);
Object mkSequence(Object right, Object left);
Object mkOptional(Object operand);

Object mkKleeneStar(Object operand);

Object mkKleenePlus(Object operand);

GoF Patterns

Patterns Survey: Abstract Factory (Creational)

Use factory methods to create a family of related objects. (E.g. In
java.awt a factory object creates a set of widgets that work
together (scrollbars, windows, menus)).

GoF Patterns

Patterns Survey: Singleton (Creational)

Ensure that only one instance of a class is created

class Quangle {
private static Quangle singleton = null;

// Constructor is private
private Quangle() { ... };

public static Quangle getlnstance() {
if(singleton=null)
singleton = new Quangle();
return singleton;

}
}

Use with caution. Forcing client code to call static methods
prevents reuse with subclass.

GoF Patterns

Survey of some other patterns (cont'd)

Adapter (Structural) (a.k.a., Wrapper) Use a class to adapt
another class to conform to an expected interface.

e Whereas the Proxy adds functionality while keeping the
same interface, the Adapter changes the interface while
leaving the same functionality.

Facade (Structural) Provide a single interface to a set of objects.
Iterator (Behavioural) Give sequential access to the items of a
collection without exposing its representation.

o Allows generic algorithms to operate on a variety of
collections (sets, lists, maps, etc)

e java.util.lterator

public boolean hasNext ()
public Object next() ; // Mutator

e Issues abound when you consider insertions and deletions
from the underlying data structure.

GoF Patterns

Survey of some other patterns (cont'd)

Mediator (Behavioural) Use an object to mediate all interaction
between two or more other objects.
e The mediator class calls on the other classes so that
neither has to call (and hence depend on) the other.
Strategy (Behavioural) Define a family of algorithms, encapsulate
each one, and make them interchangeable.
e More flexible than template method in that it allows
run-time configuration.

GoF Patterns

Patterns Survey (cont’d): Template Method (Behavioural)

Vary details of algorithm by filling in abstract methods.

abstract class AbstractParent {
public void templateMethod () {
... // part of algorithm
hookMethod () // down call
: // another part of algorithm

protected abstract void hookMethod ();

}

class Childl extends AbstactParent {
protected void hookMethod () {
// implementation 1

I

GoF Patterns

References

@ Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.
Design Patterns: Elements of Reusable Object-Oriented

Software.
Addison-Wesley, 1994.

	Design Patterns
	GoF Patterns

