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Abstract

In concurrent programming, mutual exclusion algorithms are used to avoid the

simultaneous access of a common resource. Monitors are objects that can be used

safely by more than one thread, as their methods are executed with mutual exclusion.

In order for threads to wait for some condition to be met, monitors also provide a

mechanism for threads to temporarily give up exclusive access. Monitors also have a

mechanism for signaling other threads that some condition has been met.

In this thesis, a general approach to monitors specification and verification code

is developed which can be used for solving synchronization problems in an operating

system. Specifications are given at the level of C code using the annotation language

of Microsoft’s Verifying C Compiler (VCC). VCC takes the annotated C program

and tries to prove that the program meets these specifications. Later the proposed

methodology is demonstrated with example applications.
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Chapter 0

Introduction

0.0 General Background

In order to meet modern-day requirements, software systems are evolving rapidly, and

so is their complexity. Therefore a major challenge for the software developers is to

develop software that is highly reliable. Because of increasing software complexity, the

possibility of errors is increasing. To avoid propagation and compounding of errors, it

is preferable to identify the errors in the earlier stages of software development. One

of the robust ways of error identification is using formal methods. Formal methods

are methods that are languages, techniques and tools based on mathematics.

Computer systems can be shared among many programs and programs to access

any of its resources (main store, consoles, etc.) at any time. Computer designers

construct various scheduling algorithms for these resources. Each class of resource

has its own scheduler. Each scheduler consists of a certain amount of local data as

well as some procedures and functions. The procedures and functions that are called
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by threads that need to acquire and release the resources. Such a combination of data

and procedures are called a monitor [Hoare, 1974]. To handle mutual exclusion, a

data structure named a semaphore [Hoare, 1974] is used. Monitors are built on top

of semaphores which are a more primitive mechaism for mutual exclusion.

A monitor is an object or module in concurrent programming that is built to be

used safely by more than one thread or task. The defining characteristic of a monitor

is that its methods are executed with mutual exclusion. That is, at most one thread

may be executing any of its methods at each point in time. This mutual exclusion

greatly simplifies reasoning about the implementation of monitors compared with

code that may be executed in parallel. Monitors and semaphores often form the basis

of operating system kernels.

VCC (The Verify C Compiler) [Cohen et al., 2009] is a mechanical verifier for

concurrent C programs. As input it takes an annotated (with function specifications,

data invariants, loop invariants, ghost code, etc.) C program. If it succeeds to

prove the annotations correct, then VCC ensures that the program actually meets its

specifications.

In this thesis an approach will be described to verify concurrent programs built

with monitors and semaphores.

0.0.0 Software Specification

A system has a set of properties which are known as system requirements. The cate-

gories of system properties may include behaviour (functional, timing) of the system.

The process that defines these properties is called a specification. A specification can
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be defined in terms of mathematical syntax and semantics.

Norvell [Norvell, 2009] has defined the behavioural specifications as: i) behaviours

the system could engage in and ii) behaviours the system cannot engage in.

He defined signature as a function that maps names to nonempty sets and the

behavioural specification as a pair of Σ, f where Σ is a signature and f is a boolean

function such that b ∈ dom(f) (domain of function f), for all b : Σ (behavior b belongs

to Σ).

If f(b) = true, then the specification (Σ, f) accepts behaviour b.

If f(b) = false, we say that the specification (Σ, f) rejects behaviour b.

0.0.1 States and Behaviours

States of the computer are modeled as mappings from variable names to values.

For example, if the variable names x and y are of type int, then example states

include

i = {“x”�→ 10,“y”�→ 5}

o = {“x”�→ 6,“y”�→ 5}

Behaviour consists of two states, an initial state and a final state. Following is the

example of behaviour,

i † o = {“x”�→ 10,“y”�→ 5,“x′” �→ 6, “y′”�→ 5} ; where i † o is the combination of

two behaviors i & o

Both input and output states belong to the same signature Σ. Therefore behav-

iours belong to Σ† Σ.

2



0.0.2 Examples of specifications

Specifications are often of the form

〈P ⇒ Q〉

P represents an assumption about the input. Here P is called the precondition

and Q is called the postcondition. For inputs, where P is false, the expression is

simplified as follows:

P ⇒ Q

=

false⇒ Q

=

true

For such inputs, the specification imposes no restrictions on the output.

The specification of the problem of computing the minimum of two natural num-

bers (x, y) is as follows:

Σ = {“x”�→ N,“y”�→ N}; where N is a set of natural numbers.

f = 〈x′ = min(x, y)〉 ; where x′ is the result value

The specification of the problem of computing the greatest common denominator

of two natural numbers is as follows:

Σ = {“x”�→ N,“y”�→ N}

gcd(x, y) = {x if y = 0}

gcd(x, y) = {gcd(y, x mod y); otherwise}

f = 〈x′ = gcd(x, y)〉; where x′ is the result value and gcd(x, y) is the function that

returns the greatest common denominator of x & y

3



Let x be the initial value of a program variable and x′ be the final value of the

same variable. Similarly let y be the initial values of program and y′ be the final value

of the variable.

Let Σ = {“x”�→ Z,“y”�→ Z,“x́ ”�→ Z,“ý ”�→ Z}; x, x́, y, ý all are integer variables.

Let f = 〈x′ = 0 ∧ y′ = y〉; where f is the function

(Σ, f) is a specification that accepts behaviour,

{“x”�→ −3,“y”�→ 5,“x́”�→ 0, “ý”�→ 5}

But it rejects behaviour,

{“x”�→ −3,“y”�→ −3,“x́”�→ 1,“ý”�→ −3}

0.0.3 Uses of Specifications

Specifications are useful for a number of purposes [Norvell, 2010]:

• Documentation: Managers of large software projects first started to understand

the importance of having precise documentation for software products as it was

time consuming to obtain reliable software without documentation. Documen-

tation has become the important part of software development.

• Requirements Specification: A specification can be used to describe all the ways

that it is acceptable for a system, which may not yet have been built, to behave.

• Testing: After implementation of software, the required specification can be

compared with its behaviour. If the system does not behave according to the

specification, then an error has occurred. For example, if a behaviour b : Σ is

observed, and the system specification is (Σ, g), then ¬g(b) indicates an error.

4



• Verification: Verification is a kind of engineering activity which can be per-

formed with different levels of confidence as well as in different ways. It is a

tool/technique which ensures software consistency with its formal specifications.

The system is called verified if each behaviour (that the system could engage

in) is acceptable to its specification. For an example the specification (Σ, g)

refines a specification (Σ, f) if

∀b : Σ · g(b) ⇒ f(b) ; where “ ·” means “such that”

So if the above formula is proven then it has been proved that a system described

by(Σ, g) meets the specification (Σ, f).

0.1 Objectives of the thesis:

The aim of the present work is to verify some aspects of kernel code. The main set

of objectives of this thesis is to:

• Develop a method for verifying certain kinds of code using semaphores.

• Develop a method for verifying monitors.

• Demonstrate these methods with example applications.

0.2 Organization of the Thesis

This thesis is composed of five chapters. The first chapter (Chapter 0) addresses the

general background, objective and scope of the proposed research work.

5



Chapter 1 presents a brief review and application of verification of concurrent

programs. The chapter covers the proofs and theorems of concurrent programs. Re-

lated works in the context of operating system verification are presented. Also some

examples of the different VCC annotations are described.

Chapter 2 presents the detailed background of semaphores and monitors using

examples.

Chapter 3 describes the implementation and verification of semaphores and mon-

itors without condition variables. As an example, it presents the verification of Time

of Day example.

Chapter 4 describes the implementation and verification of monitors with con-

dition variables. As an example, it presents the verification of Producer/Consumer

Bounded Buffer.

Chapter 5 summarizes and concludes the findings of the present work. This chap-

ter also lists original contributions of this thesis along with some guide-lines for future

work.

6



Chapter 1

Background and Related Work

In this chapter the background of concurrent programming is described. Evolution

of formal verification is presented in the context of operating system verification.

The verification tool VCC [Cohen et al., 2009] is introduced in this chapter. VCC

annotations and specifications used in this thesis are also described in this chapter in

details using relevant examples.

1.0 Background

A concurrent program is a set of sequential programs, which are designed as collections

of interacting computational processes that may be executed in parallel. On a single

processor, concurrent programs can be executed by interleaving the execution steps

of each computational process. On multi-processors, they can be executed in parallel

by assigning each computational process to one of a set of processors that may be

colocated or distributed across a network.

In general, the term process is usually used in the theory of concurrency whereas

7



the term thread is used in programming languages or libraries. However, there is a

distinction that can be made between the two terms with respect to the address space.

A process runs in its own address space, that is managed by the operating system. A

thread runs within the address space of a single process.

Ensuring the correct sequencing of the interactions or communications between

computational processes and coordinating access to resources that are shared among

processes are the main challenges in designing concurrent programs.

According to Stallings [Stallings, 1992], concurrency arises in three different con-

texts:

• Multiple applications at the same time (which is known as multiprogramming)

allows sharing the processing time among a number of active applications.

• Some programs are structured as a set of concurrent processes, which is an

extension of the principle of modular design and structured programming.

• Operating systems are often implemented as a set of concurrent processes or

threads.

1.0.0 Difficulties with Concurrency

Maintaining synchronization and communication in concurrent programming is an

important goal. A number of different approaches, such as implementing each com-

putational process as an operating system process, or implementing the computational

processes as a set of threads within a single operating system process, can be used.

There are some difficulties in concurrency [Stallings, 1992], such as,

8



• The relative speed of execution of processes depends on the i) activities of other

processes, ii) way in which the operating system handles interrupts as well as

iii) scheduling policies of the operating system.

• If two processes share global variables to read and write, then the order of access

become critical.

• Managing the allocation of resources optimally is the other hard task for the

operating system.

• It is difficult to find errors in programming, as the results are not deterministic

and not reproducible.

1.0.1 Atomic Statements

The concurrent programming abstraction deals with interleaved sequences execution

of the atomic statements. The important property of atomic statements is that, if

there are two processes accessing the same variable simultaneously, the output should

be same as if they had been executed sequentially in some order. It is important

to specify the atomic statements precisely because the correctness of an algorithm

depends on this specification.

1.0.2 Competition Among Processes for Resources

The concepts of concurrent programs become a concern when the conflict of processes

occurs when sharing the same resource. For example, although two processes are

trying to access the same shared resource (such as I/O devices, memory, processor
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time, clock, etc), each process is unaware of the existence of the other processes.

There are three control problems to be concerned within the case of competing

processes [Ben-Ari, 2006]:

• Mutual exclusion: When two or more processes require access to a single non-

sharable resource such a resource is called a critical resource and the part of

program that uses this resource is called a critical section of the program. For

example, one printer used by two or more processes, is a single non sharable

resource. During the course of execution, each process will be sending commands

to the I/O device, receiving status information, sending data, and/or receiving

data. But only one process is allowed in the critical section at a time. In the

case of a printer only one individual process should have control over the printer

while printing the file to prevent the chance of interleaving lines from different

processes.

• Deadlock : The attempt to ensure mutual exclusion may lead to deadlock some-

times. For an example, there are two processes P1 and P2, and two resources

R1 and R2 and both processes need both resources to perform part of their

function. If the operating system assigns R1 to P2 and R2 to P1, then there

is a possibility of the deadlock that is shown in Figure 1.0.

P1 is waiting for R1 and process P2 is waiting for R2. Niether process will

release the resource that is owned by them until they can get access to the other

resource. The scenario is called deadlock.

• Starvation: The final control problem is known as starvation. For example,

there are three processes P1, P2 and P3. Each process requires periodic access
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Figure 1.0: Deadlock in processes

to the resource R. P1 gets the access of the resource and the other two processes

are delayed. When P1 exits its critical section, the operating system allows P3

to access R. In the meantime P1 again requires access before completing the

critical section of P3. If the operating system grants the access to P1 after P3

alternately, then P2 will be indefinitely denied access to the resource and this

is referred to as starvation.

1.0.3 Properties of Concurrent program

There are two kinds of properties in concurrent programming to satisfy: i) Safety

Properties and ii) Liveliness Properties.

1.0.3.0 Safety Properties

Safety properties require that nothing bad will happen during the execution of a

system. Three different examples of safety properties are as follows:

• Partial Correctness: If the precondition is true at the beginning of the program

then the program will never terminate with the false postcondition.
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• Absence of deadlock : The program will not enter such a state in which there is

no possibility of further progress.

• Mutual exclusion: Two different processes can not be enter their critical section

at the same time.

1.0.3.1 Liveness Properties

Liveness properties state that something good eventually does happen, which means

that the program eventually enters a desirable state. Program termination is the most

important liveness property. The lots of formal efforts have been given to handle this

property. Owicki and Lamport [Owicki and Lamport, 1982] have defined some other

kinds of liveness properties. For example:

• Each request for service will eventually be answered.

• A message will eventually reach its destination.

• A process will eventually enter its critical section.

1.1 Related Work

In this section, evolution of formal verification is described in the context of operating

system verification.

1.1.0 Evolution of formal verification

Formal proof comes along with the human error as well. James Reason [Reason,

1990] described that the large, complex, highly detailed formal proofs is the worst
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combination for human error. So it is expected to have errors in large proofs. The

probability is high if the proofs are constructed by hand. This problem can be solved

by machine checked proofs. But then the correctness of the theorem prover comes to

the focus.

With respect to that problem, a number of formal methods tools are developed

carefully. Some of the tools are made based on a formally analyzed algorithm. As

an example, tools in this kind are PVS [Owre et al., 1996], ACL2 [Kaufmann et

al., 2000], the B-tool [Abrial, 1996] and most popular model checkers, first-order

automatic provers and static analysis tools.

Klein [Klein, 2009] has given a brief overview of the operating system verification

projects surveyed in his paper.

a. UCLA

Walker et al. [Walker et al., 1979] presented a report on the specification and

verification of UCLA Secure Data Unix. UCLA Secure Data Unix is an operating

system that was aimed at providing a standard UNIX interface to applications. The

verification effort in this project was focused on the kernel of the OS. All of the

specifications in UCLA Secure Data Unix were represented as state machines which

have a set of possible states, a current state, and a set of possible transitions between

those states. Later Walker et al. proved that the specifications are consistent with

each other.

b. PSOS

The provably secure operating system (PSOS) is a hardware/software co-design

with demonstrable security properties [Neumann and Feiertag, 2003]. To design

PSOS, which basically used a layered architecture, the project initially developed

13



the Hierarchical Development Method (HDM ) [Robinson and Levitt, 1977] with its

specification and assertion language SPECIAL. Principles that are used in implemen-

tation of PSOS such as, encapsulation and information hiding are known as typical

techniques nowadays. The design methodology of PSOS is used for the implementa-

tion of the Kernelized Secure Operating System (KSOS) [McCauley and Drongowski,

1979] by Ford Aerospace. The Secure Ada Target (SAT) [Haigh and Young, 1987]

and the Logical Coprocessor Kernel (LOCK) [Saydjari et al., 1987] are also inspired

by the PSOS design and methodology.

c. KIT

Kit is a small operating system kernel written for a uni-processor computer with

a simple von Neumann architecture [Bevier, 1989]. KIT stands for kernel for isolated

tasks, which is the main service of it. The kernel of KIT consists of 620 lines of

assembler source code and 300 lines of actual assembler instructions. Hence the

kernel is extremely small and purposely very simple. It is also significant because it

is the first formally verified kernel. In KIT, the verification was performed using the

Boyer—Moore theorem prover [Boyer and Moore, 1988] along with the prototype of

the ACL2 prover.

d. VFiasco

The VFiasco (Verified Fiasco) project started in November 2001. Hohmuth et al.

[Hohmuth et al., 2002a] presented the main ideas and the approach of the project in

2002. Fiasco [Hohmuth and Härtig, 2001] is a binary compatible re-implementation of

the high performance, second generation microkernel L4. One of the contributions of

the VFiasco project is the modelling of the C++ language for the verification of low-

level code. The methodology translates a C++ program directly into its semantics
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in the theorem prover PVS.

e. EROS / Coyotos

The EROS (Extremely Reliable Operating System) [Shapiro et al., 1999] system

is a second-generation microkernel. Shapiro & Weber [Shapiro and Weber, 2000] first

formalised and analysed its security model in a pen-and-paper proof. The take-grant

model of capability distribution [Lipton and Snyder, 1977] is used in the model. The

Coyotos project [Shapiro, 2008] is the result where Shapiro designed and implemented

a new kernel, as well as designed the proposed implementation language BitC.

f. Verisoft

In pervasive verification, the correctness of the compiler is verified formally in each

step. There is a complete, unbroken formal chain from hardware to applications. The

Verisoft [Alkassar et al., 2008] project is a significant work which demonstrates the

pervasive formal verification [Bevier et al., 1989] of a whole computer system (both

the hardware & software).

g. L4.verified/seL4

The L4 verification project combines two different projects: i) seL4 and ii)

L4.verified. The seL4 (secure embedded L4) kernel [Elphinstone et al., 2007] is an

evolution of the L4 microkernel [Liedtke, 1995] with efficient support for security and

embedded systems. In the seL4 methodology, the prototype is written in Haskell

[Peyton Jones, 2003], which is a high-level programming language that is efficiently

executable and similar to the notation of the theorem prover. As Haskell is very close

to Isabelle/HOL [Nipkow et al., 2002], it can be automatically translated into the

theorem prover. As an extension of the two projects, a hardware simulator generator

was also developed. The simulator takes an instruction set specification and a simple
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Figure 1.1: Flow diagram of VCC

device description and turns into an efficient instruction-level simulator as well as an

Isabelle/HOL formalisation. This hardware formalisation can then form the source

for assembly level verification.

1.2 VCC Specification

The Verifier for Concurrent C (VCC ) is a verifier tool for concurrent C programs.

It is developed at Microsoft Research, Redmond, USA, and the European Microsoft

Innovation Center (EIMC), Aachen, Germany [Cohen et al., 2009]. Hypervisor is a

thin layer of software between hardware and operating system (OS) that runs directly

on x64 hardware. It turns a single real multiprocessor x64 machine into a number of

virtual multiprocessor x64 machines. VCC is used to verify the Microsoft Hyper-V

hypervisor software [Cohen et al., 2009].
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Figure 1.1 describes the work flow of VCC. VCC extends C with annotations

giving function pre-conditions and post-conditions, assertions, data invariants, loop

invariants and ghost code. Then it attempts to prove the correctness of the annota-

tions. It allows users to add specifications and other annotations directly into the C

source code. Specification (or ghost) code and objects are used to support verification.

The annotated program can be regularly compiled by using conditional compila-

tion. VCC translates the annotated program into the Boogie language [Barnett et

al., 2006]. The Boogie tool generates verification conditions for partial correctness,

passes them to the automatic theorem prover Z3 [De Moura and Bjorner, 2008] and

then Z3 proves the generated verification conditions.

If any error is found, VCC reports that it is unable to verify the correctness of

one or more of the annotations. In this case the code can be inspected usng the VCC

Model Viewer.

In this thesisVCC is used with Microsoft Visual Studio 2008 (VS2008) editor. The

code can be updated and the old syntax of VCC can be compiled and verified using

VS2008. However, the code using new syntex of VCC can not be verified in VS2008.

All the implementations of this thesis (that are verified by VCC ) are compiled from

command line. The interaction with VCC from command line is shown in Figure 1.2.

The /2 option in Figure 1.2 is used to verify the new syntext of VCC. The trigger

inference for the more complex invariant is enabled by the /it flag. Using the /smoke

option is used to do smoke tests which allows to find unreachable code. It is useful

to find the inconsistencies in the specification [Schulte et al., 2010].
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Figure 1.2: Running VCC from command line
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1.2.0 Invariants

C types (structs and unions) can be annotated with single or two-state invariants

[Cohen et al., 2009]. For all closed objects, these invariants are required to hold and

are called system invariants. In the case of single-state invariants, the invariant must

hold in each state of the system. For two-state invariants, invariant must hold for each

pair of successive states. Invariants are the mechanism to enforce data consistency.

The type invariant describes how properly the objects of that type behave.

1.2.0.0 Example with Invariants

Below is an simple example of using invariants in VCC.

typedef struct _MonitoredBuffer{

int buff[CAPACITY];

int size ;

_(invariant \this->size >=0 && \this->size <= CAPACITY)

} MonitoredBuffer;

The MonitoredBuffer structure consists of an array buff of size CAPACITY. The

size parameter is used for the size of the buff. The invariant ofMonitoredBuffer states

that, the size of the buff is in the range from 0 to CAPACITY.

1.2.1 Consistency of an Object

The field \consistent is defined for every object. The invariants need to hold only

when the \consistent field is true. Initially the field is false. It must be set to false
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before disposing objects.

In addition to the \consistent field, each object has an owner field. The owner of

object, obj, is defined as obj->\owner. This field is of type \object, which is a type

of pointers to objects. VCC provides objects, of \thread type, to represent threads of

execution, so that threads can also own objects. If a thread owns the object obj, it

can change the ownership of object obj.

While verifying the body of a function, VCC assumes that the function is being

executed by some particular thread. The \thread object representing it is referred to

as \me.

The followings are some rules of ownership and consistency [Schulte et al., 2010]:

• On every atomic step of the program, the invariants of all the consistent objects

have to hold.

• Only the owning thread can modify fields of an inconsistent object.

• Threads can own themselves.

• Only threads can own inconsistent objects.

From the above rules, objects can be updated in two ways:

In the first case, i) the updated object is consistent, ii) the update is atomic and

iii) the update preserves the invariant of the object.

In the second case, i) the updated object is inconsistent and ii) the update is

performed by the owning thread.
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1.2.2 Wrap/Unwrap Protocol

If any field of an object is annotated with volatile keyword, then that field can be

written also when the object is consistent. The non-volatile fields of an object can

only be changed after it has been made inconsistent. This is performed by the unwrap

operation. As making the object inconsistent is an update, the thread needs to own

it first.

While wrapping an object, VCC does the following steps:

• Assert that the object is unwrapped. Unwrapped objects are owned by me()

(definition is given at section 1.2.4) and are not consistent.

• Assert the invariant is true.

• Set the \consistent field to true.

The unwrap operation does the opposite steps as follows:

• Assert that the object is in the writes set.

• Assert that the object is wrapped.

• Assume the invariant is true.

• Set the \consistent field to false.

• Add the span of the object (i.e. all its fields) to the writes set.
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1.2.2.0 Examples with wrap/unwrap protocol:

As discussed in this section, an example of deposit method is presented in Listing 1.0

to show the use of wrap and unwrap syntax in VCC. The method is used to deposit

a value to the buffer. Here theBuffer is the MonitoredBuffer object. The invariant of

theBuffer is shown below:

_(invariant \this→ size ≥ 0 && \this→ size ≤ CAPACITY )

To change the consistent buffer object; i) the thread needs to unwrap it first, ii)

update the fields and iii) then wrap it again. So the buffer can remain consistent.

0 void deposit(int value, Buffer ∗buf)
_(requires \wrapped(buf))
_(requires buf−>size < CAPACITY)
_(ensures \wrapped(buf))
{

5 _(unwrap &theBuffer);
theBuffer.buff[theBuffer.size] = value;
theBuffer.size = theBuffer.size + 1;
_(wrap &theBuffer);

}

Listing 1.0: Deposit method

1.2.3 Accessing Objects

In different states, the access permissions to objects are different. A mutable object

can be read from or written to. However, write access is only allowed if the object has

become mutable within the current function or is listed in the function’s writes() set.

Unwrapping an object is allowed if the object is listed in the function’s writes() set or

has become wrapped in the current function (by unwrapping its parent object). Closed

objects that are transitively owned by the current thread are considered thread-local

(if no intermediate object has a volatile owns set), and their non-volatile fields can
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be read. Write access to non-volatile fields of closed objects is forbidden. Access to

the volatile fields of closed objects requires a guarantee that the object will not be

opened by some other thread prior to the access.

There are two ways to obtain such a guarantee [Schulte et al., 2010]:

• While the object is transitively owned by the current thread, no other thread

can open it because thread ownership is a precondition to unwrapping.

• While there are claims (described in the next section) on an object, indicated

by a non-zero claim count, it also may not be opened. Thus, a valid claim on

an object can be used to justify a volatile access to an object.

1.2.4 Objects and Ownership

The ownership model in VCC is based on the one that is used in Spec# [Barnett et

al., 2004]. Each object has a special owner field that links to the object which owns

it. This can be either an ordinary object or a thread. Threads are also considered

to be objects. In VCC, only one thread is considered. This thread is called current

thread or me() in VCC.

Objects that are closed and owned by me() are called wrapped. Objects that are

open and owned by me() are called mutable. It is permitted for me() to modify the

non-volatile fields of mutable objects.

Closing an object that is owned by me is called wrapping, whereas the opposite

operation is called unwrapping. All objects that are transitively owned by a closed

object are closed as well.
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Expression Annotation Key Meaning

\set in(o,S) set membership

\old(e) refer to pre-state

_(unchanged e) e ≡ old(e)

Table 1.0: VCC expression annotation constructs

Claims Annotaion Key Meaning

o->\claim_count claim reference count

\make_claim(),\destroy_claim () claim creation / destruction

\claims_obj(c,o) assert target object of a claim

\claims(c,e) assert the property of a claim stays

_(unchanged e) unchanged during claim’s life time

Table 1.1: VCC claims annotation constructs

Ghost Annotation Key Meaning

_(ghost ) ghost parameter, variable, or function

_(ghost \claim) claim ghost parameter

_(out x) by-reference ghost parameter

Table 1.2: VCC ghost annotation constructs
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Object Annotation Key Meaning

_(invariant e) object invariant

\wrap(o),\unwrap(o) opening and closing objects

owner(o), owns(o) owner and owns set

\span(o) primitive fields of an object

\this reference to object itself

Table 1.3: VCC object annotation constructs

Function Annotation Key Meaning

_(requires e) precondition

_(ensures e) postcondition

_(writes o) function writes to addresses in sets

Table 1.4: VCC function annotation constructs
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Some of the key annotation constructs along with their meaning that are used in

this thesis are grouped in Table 1.0, Table 1.1, Table 1.2, Table 1.3 and Table 1.4;

where o is the pointer to any object, e is the expression, x is the ghost parameter.

The use of these annotations will be described in the next sections.

Some key terminologies that are used in this thesis are grouped in table 1.5.

1.2.5 Concurrency

VCC allows concurrent access to data that is marked as volatile in the typestate.

Volatile fields of an object can be updated concurrently by multiple threads. These

fields can be changed while the object is closed.

Volatile fields can only be changed by atomic writes, which must respect the two-

state invariant of the object. Every update on a volatile field must be surrounded

by an atomic-block. This block tells the prover to check the invariants that may be

affected by the update. An atomic-block may contain at most one update of a volatile

of the real code. However, any number of updates to volatile ghost fields can be done

as well.

1.2.6 Object States and Transition

All other fields of open objects can be changed except for volatile fields. Objects that

are in the transitive ownership of a closed object are closed. Figure 1.3 [Hillebrand

and Leinenbach, 2009] illustrates object states and their transitions during an object’s

life time.

After the creation of the object, it is open and owned by the special object me(),
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Terminology Meaning(In respect of pointer o

of any object)

me Represent the current thread

fresh(o) Object that does not alias with any

other existing object is called fresh

mutable(o) Object that is not closed, owned

by me(), fresh and claim_count is

zero is called mutable

wrapped(o) o→consistent && claim_count(o)

== 0 && owner(o)==me()

closed(o) Object o is o→consistent when o

is wrapped ; thus its invariant holds

unwrapped(o) !closed(o) && owner(o) == me()

thread_local(o) Object that is known to be valid

and not concurrently modified by

other thread is called thread_local

writable(o) Object o is writable if it is ei-

ther mutable or o is mentioned in

the writes clause_(writeso), of the

function

Table 1.5: Some useful VCC terminology
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Figure 1.3: Objects states, transitions, and access permissions

representing the current thread. It is also considered as fresh object. This state is

called mutable. In this state, the claim count of the object is zero, which means there

are no claims (which will be described in later sections) on that object.

Closed objects can be added to as well as removed from another object’s ownership

via the following two operations respectively:

• _(ghost o′− > \owns+ = o)

• _(ghost o′− > \owns− = o)

If any other objects containing the object o in its ownership set, becomes (or is

already) closed, then o is called nested.
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1.2.7 Claims

A claim [Hillebrand and Leinenbach, 2009] is associated with a number of closed

objects (those objects also can be other claims). If a thread owns a claim c for an

object o, it can be sure that o is consistent. This means that its nonvolatile fields will

not change and its volatile fields will change only in ways described by the two-state

invariant of the object.

Every time a claim on an object is created or destroyed, the object’s claim count

is incremented or decremented respectively. As a precondition to open an object, its

claim count is required to be zero. This will guarantee that claimed objects remain

closed.

Types which are claimable, need to be declared with the _(claimable) type mod-

ifier parameter. An object which is not declared with the modifier _(claimable) can

be assumed to always have a zero claim count. The operation claim(o1, . . . ,

oN, p) returns a fresh claim referencing objects o1 to oN with a claimed property

p. While creating the claim, VCC checks the following preconditions: i) write per-

missions for the referenced objects exist, ii) the objects are closed, iii) the claimed

property holds initially and under interference. If these preconditions are met, a valid

fresh claim with the claimed property is returned and the claim counts of the objects

are incremented.

The claim can be made or created by using the following syntax,

_(ghost \claim c = \make_claim({o1, ..., oN}, P ); )

A claim can be disposed by the folowing way,

_(ghost \destroy_claim(c, {o1, ..., oN}); )
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The operation \destroy_claim (c, {o1, . . . , oN}) destroys claim c and deref-

erences object o1 to oN. For \destroy_claim(), write permissions for the referenced

objects and the claim must exist and as \destroy_claim() is a special kind of unwrap

operation, the claim itself must have a claim count of zero.

1.2.8 Atomic Blocks

Volatile fields of closed object can only be changed inside atomic blocks. This block

tells the prover to check the invariants that may be affected by the update.

The atomic blocks are written as follows:

_(atomic c, obj){};

The keyword is followed by a list of claims and pointers. The pointers are required

to point to objects that must be closed before the atomic block.

Each atomic block is allowed to do at most one atomic physical read or write

operation and any number of ghost state updates (including creation of new claims).

Within an atomic block only fields within spans of the objects listed may be changed.

The two state invariants of those objects must be respected by the entire atomic

transition.

1.2.8.0 Examples with atomics and claims:

Atomic blocks allow modification of the listed objects and check whether their invari-

ants are preserved. However the update happens at once from the point of view of

other threads.

The following is the example of the Release() method of a semaphore class where

the current thread will give the ownership of an owned object to the semaphore. The
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claim c, claims that the semaphore is consistent.

The invariant of semaphore is as follows:

_(invariants == 0 || s == 1)

_(invariants == 1 ⇔ \mine(protected_obj))

The volatile field s, is updated inside the atomic block. As the claim says that the

semaphore will be consistent, VCC checks the consistency of semaphore at the end

of the atomic block.

void Release(struct Semaphore *l _(ghost \claim c))

_(always c, l->\consistent)

_(requires l->protected_obj != c)

_(writes l->protected_obj)

_(requires \wrapped(l->protected_obj))

{

_(atomic c, l) {

l->s = 1;

_(ghost l->\owns += l->protected_obj)}

}

1.3 Summary

A brief description and application of verification of concurrent programs with some

related works are shown in this chapter. Also the verification tool VCC (which is used

in this thesis) and its applications are described with examples. The next chapter

31



will be focused on the background of semaphores & monitors and their applications.
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Chapter 2

Background on Semaphores &

Monitors

In this chapter, the background of semaphores and monitors are described with their

applications.

2.0 Semaphore

A semaphore is a variable or abstract data type. It gives the facility to provide a

simple abstraction for controlling access by multiple processes that share a common

resource in a parallel programming environment. One way to use semaphore is to track

the number of units of a resource that are available. On demand that number can be

adjusted or wait until a unit of the resource becomes available. Semaphores which

allow an arbitrary resource count are called counting semaphores, while semaphores

which are restricted to the values 0 and 1 are called binary semaphores.

A semaphore is like an integer variable. However it does differ from integer variable
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in some ways:

• When the semaphore is created, its value can be initialized to any nonnegative

integer.

• The value can be atomically incremented (increased by one) or decremented

(decreased by one).

• When a thread attempts to decrement the semaphore, the thread must wait

until the semaphore is positive.

• When a thread increments the semaphore, if there are other threads waiting,

one of the waiting threads gets unblocked.

Some consequences that must be taken care of while using semaphore are as

follows:

• Without decrementing the semaphore there is no way to know whether the

thread will be blocked or not.

• When one thread increments a semaphore and another thread gets woken up,

they can both run concurrently. However there is no way to know which thread

will continue instantly.

• The signaler thread (thread that notifies the sleeping thread to wake up) cannot

know how many threads are waiting after it sends a signal (see section 2.1.0).

The number of waiting threads can be zero or one.

• The semaphore is always nonnegative.
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2.0.0 Syntax

In many programming environments, an implementation of semaphores is available

as part of the programming language or the operating system. The capabilities as

well as syntaxes vary in different implementations. The semaphore is a shared integer

variable s, manipulated by following operations:

• Constructor

Following is the pseudo-code to create a new semaphore,

entrance = Semaphore(i) ; where i>=0. Default i=0

Semaphore(i) is a constructor. It creates and returns a new Semaphore. The

initial value of the semaphore is passed as a parameter i, to the constructor.

• P & V operation

The terms P & V operations were proposed by Dijkstra [Dijkstra, 1971]. The

methods are described as follows:

P(s): In this method a process decrements s (where, s > 0 ) by one. If s is 0, the

process must wait until s is positive so that it can be decremented and the process

can proceed.

P (s) : 〈await(s > 0)s = s− 1; 〉

V(s): In this method a process increments s by one. If s is 0, and there are one or

more processes waiting in P(s) method, one of them can complete P(s) and proceed.

V (s) : 〈s = s + 1; 〉

Each semaphore has an associated queue of processes. The queue is usually a FIFO

(first-in first-out) queue. If a process performs a P operation on a semaphore and the
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value of the semaphore is zero then the process is added to the semaphore’s queue.

When another process increments the semaphore by performing a V operation, and

there are processes on the queue, one of them is removed from the queue and resumes

execution. If processes have different priorities, the queue may be ordered by priority

so that the highest priority process is taken from the queue first.

There are two types of semaphore used in designing synchronization algorithms.

• General Semaphore: Such a semaphore can have any values ≥ 0. Any number

of processes can complete the P operation and proceed without any delay.

• Binary Semaphore (also called a mutex): Such a semaphore is confined to be

either 0 or 1. One process can only proceed with the P operation at a time. If

the value is 0 it has to be wait in P operation. For a binary semaphore, V can

be called at any time and sets the semaphore to 1.

2.0.1 Semaphore Invariant

A semaphore satisfies the following invariants [Ben-Ari, 2006]:

• The invariant of semaphore is the value, s, should be non-negative.

s ≥ 0

• s = s0 + #V −#P

s0 is the initial value of the semaphore, #V is the number of V operations

executed on s, and #P is the number of completed P operations executed on s.

36



Figure 2.0: The semaphore creates two tokens

Figure 2.1: Thread1 acquires one token.
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Figure 2.2: Thread2 takes another token.

2.0.2 Semaphore Illustration

The semaphore operations are described by using an illustrative example to show how

the semaphore is created as well as how P & V operations are used.

In this example, the semaphore is created with two tokens using the constructer

Semaphore(i) where i = 2. The two tokens are shown in Figure 2.0. Thread1 comes

in and acquires the semaphore (using P operation), as shown in Figure 2.1. As there

is a token available, it reduces the number of tokens and proceeds. In Figure 2.2,

Thread2 comes in and acquires the last token. Now as there are no other tokens left,

Thread3 will be blocked as shown in Figure 2.3. When Thread1 completes its task,

it releases the token back to the semaphore (using V operation), as shown in Figure

2.4. Now Thread3 can acquires the token and proceed which is shown in Figure 2.5.

In Figure 2.6,Thread2 completes its task and releases its token. Finally, Thread3
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Figure 2.3: Thread3 is blocked.

completes its task and releases its token, as shown in Figure 2.7.

2.1 Monitors

Semaphores provide a simple yet powerful and flexible tool for enforcing mutual exclu-

sion and for coordinating processes. However the await and signal (which is defined

in section 2.1.0) operations may be scattered throughout a program and it is hard to

see the overall effect of these operations on the semaphores that are affected by these

operations.

The monitor is a programming-language structure that provides equivalent func-

tionality to semaphores, however monitors are easier to reason about. A key point

is that monitors are object oriented. The monitor structure has been implemented
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Figure 2.4: Thread1 releases one token.

in several programming language including Concurrent Pascal, Pascal-Plus, Mesa, as

well as Java [Stallings, 1992].

A monitor is an object which may be used safely by more than one thread. The

defining characteristic of a monitor is that its methods are executed with mutual

exclusion. That is, at each point in time, at most one thread may be executing

any of its methods. This mutual exclusion greatly simplifies reasoning about the

implementation of monitors compared with code that may be executed in parallel.

The monitor consists of i) one or more procedures, ii) an initialization sequence,

and iii) local data. The main characteristics of a monitor are the following:

• The local data variables are accessible only by the procedures of the monitor.

The variables may not be accessed by any external procedures.

• The procedures of the monitor are used to enter the monitor.
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Figure 2.5: Thread3 acquires the token.

• Only one process can be executed in the monitor at a time.

The mutual exclusion ensures that one process may access the shared data struc-

ture at a time. There may be a case where one process is blocked in the monitor until

some condition is satisfied. In that case the process should wait until the condition

is satisfied. But also the process should leave the monitor so that some other process

may enter. At a later time, when the condition is satisfied, the process may be allowed

to re-enter the monitor at the same point at which it was suspended.

2.1.0 Condition Variable:

Monitors support synchronization by the use of condition variables that are contained

within the monitor and associated only within the monitor. Each condition variable

is associated with a condition. Threads may leave the monitor while waiting on a
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Figure 2.6: Thread2 releases the token.

condition variable for the condition to become true. Other threads may enter the

monitor for execution. When the condition becomes true, the executing thread may

signal the condition variable.

Blocking condition variables were first proposed by Hoare [Hoare, 1974] and Brinch

Hansen [Hansen, 1973]. Monitor with blocking condition variables are often called

Hoare style monitors.

There are two functions to operate on condition variables:

• await(c): Suspends execution of the calling process on condition variable c. The

monitor is now available for use by another process.

• signal(c): Resumes execution of some process suspended on an await on the

same condition variable. If there are several such process, one of them will be
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Figure 2.7: Thread3 releases the token.

chosen. If there is no such process, then the current process will proceed.

The structure of a monitor [Stallings, 1992], is shown in Figure 2.8. The process

can enter the monitor by invoking any of its procedures. The monitor entry point is

guarded so that only one process can get in at a time.

Once a process is in the monitor, it may temporarily suspend itself on condition c

by issuing await(c). It is then placed in a queue of processes waiting to re-enter the

monitor when the condition changes.

If a process that is executing in the monitor causes a change in a condition,

it may issue signal(c) on the corresponding condition variable c, which alerts the

corresponding condition queue that the condition has changed to true.
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Figure 2.8: Structure of a Monitor

2.1.1 Proof Rules of Wait & Signal

The mutual exclusion on the code of a monitor ensures that procedure calls follow

each other in time as in a sequential programming. An invariant I, is associated with

the local data of a monitor to describe some condition which will be true of this

data before and after every procedure call. The invariant I, must also be made true

after initialization of the data and before every wait instruction. Otherwise the next

following procedure call will not find the local data in its expected state.
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With each condition variable b, an assertion B is associated, that describes the

condition, under which a process waiting on b may be resumed. Since other processes

may invoke a monitor procedure during a wait, a waiting process must ensure that

the invariant I for the monitor is true prior to waiting.

The given proof rule for waits according to [Hoare, 1974] is:

{I} await(b) {I ∧ B}; where the result of I ∧ B is true iff both of the operands(I

and B) are true

Since a signal can cause immediate resumption of a waiting process, the conditions

I ∧ B which are expected by that process must be made true before the signal.

Moreover since B may be made false again by the resumed program, only I may be

assumed true afterwards.

Thus the proof rule for a signal is:

{I ∧ B} signal(b) {I}

2.2 Summary

The background of semaphores and monitors are described and explained with using

examples. The use of condition variable in synchronization problem are also defined.

In the next chapter the implementation and verification of semaphores and monitors

without condition variable will be presented. All verifications that will be shown in

upcoming chapters will be done using the VCC tool.
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Chapter 3

Implementation and Verification

Semaphores & Monitors without

Conditions

In this chapter the implementation of semaphores and monitor are presented. A

general approach to monitors specification and verification code will be proposed,

which can be used for solving synchronization problems in operating systems.

3.0 Semaphore Implementation and Verification

In this section, the implementation and verification of semaphores are presented.

The annotated declaration of the semaphore data structure is shown in Listing

3.0. The data structure Semaphore contains a single volatile implementation variable

called s. As it is a binary Semaphore, the value of s is confined to be either 0 or 1.
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The semaphore contains one ghost variable, a generic object pointer protected_obj.

The field protected_obj is used for the identification of object that is protected

by the semaphore. The pointer to the object that is shared by multiple threads

is initialized to the protected_obj. After initialization the semaphore will own the

protected_obj. A thread that needs to update the shared object, has to take ownership

from the semaphore by acquiring from the semaphore (which is done by decrementing

the implementation variable s). After updating the object ownership is given back to

the semaphore from owning thread (that owns shared object) by releasing it to the

semaphore (which is done by incrementing the implementation variable s).

0 _(claimable) _(volatile_owns) typedef struct _Semaphore {
volatile int s;
_(ghost \object protected_obj;)
_(invariant s==0 || s==1 )
_(invariant s == 1 <==> \mine(protected_obj))

5 }Semaphore;

Listing 3.0: The Semaphore Structure

3.0.0 Invariant

As it is a binary semaphore, the first invariant of the semaphore is that the imple-

mentation variable, s, can be either 0 or 1.

_(invariant s == 0 || s == 1)

The next invariant says that, if the value of the semaphore is set to 1 then the

object protected by the semaphore is owned by the semaphore. The ownership will

change only if any thread needs to access the object. Therefore, the thread needs to
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acquire the ownership from the semaphore.

_(invariant s == 1 ⇐⇒ \mine(protected_obj))

3.0.1 Initialization

From the implementation point of view, initializing a semaphore simply means to set

its implementation variable s to 1. From a specification point of view, some extra

tasks have to be done. The initializeSemaphore function ensures that the semaphore

is wrapped and the protected_obj field is set. As the implementation variable of

semaphore is set, semaphore owns the protected_obj. Any thread that updates the

object is required to obtain ownership of it from the semaphore.

The initialization of semaphore is given in Listing 3.1.

0 void initializeSemaphore(Semaphore ∗sem _(ghost \object obj))
_(writes \span(sem))
_(writes obj)
_(requires \wrapped(obj))
_(ensures \wrapped(sem) && sem−>protected_obj == obj)

5 _(ensures sem−>s == 1)
{

sem−>s = 1;
_(ghost {

sem−>protected_obj = obj;
10 sem−>\owns = {obj};

_(wrap sem)
})

}

Listing 3.1: Semaphore Initialization
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3.0.2 Implementation of Semaphore acquire Method

Acquiring from a semaphore proceeds in two phases: i) wait until the variable s is

set to 0 and ii) after the s has been set to 0, transfer ownership of the protected

object. No new thread can get the access to the semaphore now. The P() method of

semaphore is named as acquire() and the implementation variable s is set to 0 instead

of decrementing.

Listing 3.2 is the annotated implementation of the function acquire() which is used

to transfer the ownership of protected_object to current thread from the semaphore.

The claim c is a ghost parameter which guarantees the semaphore to be consistent

using the _(always) clause. The function also ensures the caller that, when the

function returns, the protected_object is wrapped and fresh. Thus the protected_obj

is writable at the end of this function.

The specification ensures that after the call, the semaphore will have given up

the ownership of the protected_obj to the thread. Thus the thread can acquire the

ownership of the protected_obj from the semaphore.

0 void acquire(Semaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(ensures \wrapped(sem−>protected_obj) && \fresh(sem−>protected_obj))
{

int stop = 0;
5 do {

_(atomic c, sem) {
stop = InterlockedCompareExchange(&sem−>s, 0, 1) == 1;
_(ghost if (stop) sem−>\owns −= sem−>protected_obj)

}
10 }while (!stop);

}

Listing 3.2: Semaphore Acquire Method

The InterlockedCompareAndExchange() function is a compiler built-in, which on
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the x86/x64 hardware translates to cmpxchg assembly instruction [Hillebrand and

Leinenbach, 2009]. It takes a memory location and two values. If the memory location

contains the first value, then it is replaced with the second one and the old value is

returned. The entire operation is performed atomically.

The InterlockedCompareExchange() implementation shown in Listing 3.3 is used in

this thesis only for the verification purpose. When the code is compiled, the function

is translated to a single instruction.

0 _(atomic_inline) int InterlockedCompareExchange(volatile long
∗Destination, long Exchange, long Comparand) {

if (∗Destination == Comparand) {
∗Destination = Exchange;
return Comparand;

5 } else {
return ∗Destination;

}
}

Listing 3.3: InterlockedCompareExchange Method

3.0.3 Implementation of Semaphore release Method

Releasing the object to a semaphore also proceeds in two phases, i) setting the im-

plementation variable s to 1 and ii) giving back the ownership of the object to the

semaphore. Afterward another thread can get access to the semaphore. The V()

method of the semaphore is named release().

The release function is shown in Listing 3.4.

0 void release(Semaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(requires sem−>protected_obj != c)
_(writes sem−>protected_obj)
_(requires \wrapped(sem−>protected_obj))

5 {
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_(atomic c, sem) {
sem−>s = 1;
_(ghost sem−>\owns += sem−>protected_obj)

}
10 }

Listing 3.4: Semaphore Release Method

The ghost claim parameter c, is passed to the release() function. The claim

guarantees that the semaphore is consistent. It is required that the protected_object

is wrapped. It is also required that the claim is not the protected_object, otherwise it

could not ensure the claim is wrapped after the call.

After completing the release() function, the thread will have given the ownership

of the protected_obj back to the semaphore.

3.1 Monitor Implementation and Verification

In this section the implementation and verification of monitor methods (without any

condition variables) is presented. A thread will enter the monitor to access the shared

object. Synchronization is done using the semaphore object. Each monitor has one

pointer to the semaphore object. The thread needs to wait till the semaphore is

available. Once the semaphore is available it can proceed to the monitor using its

enter function. Only one thread will enter the monitor at a time. Thread will give

the ownership back to the semaphore and leave the monitor using the exit function.

To bind together the semaphore with any monitored object, the monitored object

is divided into two separate objects in this thesis: i) an object and ii) a monitor.

The invariant of the Monitor requires that the semaphore be owned by the monitor.

Any claim that claims the monitor is consistent will also claim that the semaphore is
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consistent. A second invariant requires that the semaphore protects the object.

In this thesis, monitor methods (entry and exit) are implemented as enterMoni-

tor() and exitMonitor().

To get access to the object each thread needs to enter the monitor using enter-

Monitor() function. This function ensures that the protected_obj (shared object) of

the entrance semaphore is wrapped. The ownership of the object is transfered to the

thread using this method.

To give ownership back to the semaphore, the exitMonitor() function is used.

A thread needs to use the enterMonitor() function to get access of the shared

object and the exitMonitor() function to release the object. Only one thread can be

executed in the monitor at a time which is satisfied by using the entrance semaphore.

To use the monitor functions the monitored object will own the entrance semaphore.

Using the entrance semaphore the thread can enter and exit the monitor. The func-

tions will be described with the example later.

3.2 Time of Day Example

The SI (International System of Units) based unit for time is the second. The larger

units such as, minute and hour, are defined from the second; i) the minute is unit

time equal to 60 seconds and ii) the hour is unit time equal to 60 minutes.

To get the correct time these three units have to be synchronized. For an example,

the current time is 11 hours and 59 minutes. A thread T1 reads the value of hour

and gets 11. A short time later, the time turns into 12 hours and 0 minutes. Thread

T1 now reads the value of minute and gets the value 0. So T1 reads the time as 11
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hours and 0 minutes. The proposed monitor synchronization methodology will be

demonstrated by solving this problem.

To bind together the entrance semaphore with the Time object, the monitored

object is divided into two separate objects: i) Time & ii) TimeMonitor.

3.2.0 The Time Structure

The structure Time has three implementation variables hr, min and sec representing

three parts of time of a day.

The Time structure is shown in Listing 3.5.

0 typedef struct _TimeOfDay{
int hr;
int min;
int sec;
_(invariant 0 <= sec && sec < 60

5 && 0 <= min && min < 60
&& 0 <= hr && hr < 24 )

}Time;

Listing 3.5: The Time Structure

3.2.0.0 Invariant of Time Structure

The invariant of the Time structure is straight forward. The variables sec and min

are greater than and equal to 0 and less than 60. The variable hr is greater than and

equal to 0 and less than 24. The invariant is shown in Listing 3.6.

0 _(invariant 0 <= sec && sec < 60
&& 0 <= min && min < 60
&& 0 <= hr && hr < 24 )

Listing 3.6: Invariant of Time object
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3.2.1 The TimeMonitor Structure

In this example the global structure TimeMonitor is used to own other objects. Each

TimeMonitor object contains a Time object, t, and a Semaphore object, entrance.

TimeMonitor owns the entrance semaphore.

The TimeMonitor structure is shown in Listing 3.7.

0 _(claimable) typedef struct _Time_Monitor
{ Time t ;

Semaphore entrance;
_(invariant \mine(&entrance))
_(invariant entrance.protected_obj == &t)

5 }TimeMonitor;

Listing 3.7: The Time Monitor Structure

3.2.1.0 Invariant of TimeMonitor Structure

The invariants of TimeMonitor require that the entrance semaphore be owned by

the monitor. As a result, any claim that claims that the TimeMonitor object is

consistent will also claim that the entrance semaphore is consistent. The second

invariant requires that the entrance semaphore protects the Time object.

0 _(invariant \mine(&entrance))
_(invariant entrance.protected_obj == &t)

Listing 3.8: Invariant of TimeMonitor object

3.2.1.1 Implementation of monitor enterMonitor method

Listing 3.9 is the annotated implementation of the function enterMonitor(), which is

used to enter to the monitor. The claim c is the ghost parameter which is required

and ensured to be valid and guarantees the consistency of the monitor. The function
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also ensures that, when the function returns, the protected_object is wrapped and

fresh. Thus the protected_obj is writable at the end of this function.

0 void enterMonitor(TimeMonitor ∗monitor _(ghost \claim c))
_(always c, (& monitor−>entrance)−>\consistent)
_(ensures \wrapped(monitor−>entrance.protected_obj) )
_(ensures \fresh(monitor−>entrance.protected_obj) )
{

5 acquire(& monitor−>entrance _(ghost c));
}

Listing 3.9: Enter function of Monitor

3.2.1.2 Implementation of monitor exitMonitor method

In Listing 3.10 the annotated imlementation and specification of the exitMonitor()

function is given. The ghost parameter claim c is passed to the function which guar-

antees the consistency of the monitor. The function requires the claim to be wrapped.

It is also required that the claim is not the protected_object, otherwise it couldn’t

ensure that the claim is wrapped after the call.

0 void exitMonitor(TimeMonitor ∗monitor _(ghost \claim c))
_(always c, (& monitor−>entrance)−>\consistent)
_(requires \wrapped(monitor−>entrance.protected_obj))
_(requires monitor−>entrance.protected_obj != c)
_(writes monitor−>entrance.protected_obj)

5 {
release( & monitor−>entrance _(ghost c));

}

Listing 3.10: Exit function of Monitor

3.2.2 Implementation & Specification of tick method

The tick routine is used to update the time in each sec. It receives two parameters;

i) TimeMonitor, monitor and ii) ghost claim parameter, c. The specification states
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that the claim c requires and ensures to be valid and guarantees the consistency of

the monitor.

To update the time, any thread needs to enter the monitor first. Once the thread

gets access to the monitor it will unwrap the object t, change it and then wrap it

again. Later it will exit from the monitor.

The tick routine is shown in Listing 3.11.

0 void tick(TimeMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
{

enterMonitor(monitor _(ghost c));
_(unwrap &monitor−>t);

5 monitor−>t.sec += 1;
monitor−>t.min += monitor−>t.sec/60;
monitor−>t.hr += monitor−>t.min/60;
monitor−>t.sec = monitor−>t.sec % 60;
monitor−>t.min = monitor−>t.min % 60;

10 monitor−>t.hr = monitor−>t.hr % 24;
_(wrap &monitor−>t);
exitMonitor(monitor _(ghost c));

}

Listing 3.11: The tick method

3.2.3 Implementation & Specification of get method

The get method is used to retrieve the time. It also receives two parameters similar

to those of tick; i) TimeMonitor, monitor and ii) ghost claim parameter, c. The

specification states that the claim c requires and ensures to be valid and guarantees

the consistency of the monitor.

To get the current time, any thread needs to enter the monitor first. Once the

thread gets access to the monitor, it will unwrap the object t, put the values (hr, min

and sec) in the passed in array (time) and then wrap the monitor again. Later it will
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exit from the monitor.

The get routine is shown in Listing 3.12.

0 void get(int time[], TimeMonitor ∗monitor _(ghost \claim c))
_(writes \array_range(time,3) )
_(always c, monitor−>\consistent)
{

enterMonitor(monitor _(ghost c));
5 _(unwrap &monitor−>t);

time[0] = monitor−>t.sec;
time[1] = monitor−>t.min;
time[2] = monitor−>t.hr;

_(wrap &monitor−>t);
10 exitMonitor(monitor _(ghost c));

}

Listing 3.12: The get method

3.2.4 Pthreads in TimeOfDay Example

Pthreads [Barney, 2011] are used in synchronization methods of real time operating

systems like RTAI [Bucher et al., 2003], FreeRTOS [Barry, 2004] etc. which are

written in C. To test the TimeOfDay example, pthreads is used to create multiple

threads that share a time monitor.

The pthread_create() function only allows one argument to pass to the start-

ing thread. In this example, each thread takes two parameters; i) a pointer to the

TimeMonitor object and ii) a pointer to the claim object.

To pass these two parameters, the ThreadData structure is implemented which

contains a pointer to the TimeMonitor object monitor. It contains a claim, claim as

well.

The pointer to ThreadData structure is passed to the starting thread by the

pthread_create() function.
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The ThreadData structure is shown in Listing 4.16.

0 typedef struct _thread_data{
TimeMonitor ∗ monitor;
int count;
bool spin;
_(ghost \claim claim;)

5 _(invariant \claims_object(claim, monitor))
}ThreadData ;

Listing 3.13: The ThreadData Structure

To start the tick and get threads, start_tick() and start_get() functions are used

respectively. The specification of these two methods requires the ThreadData object

param to be wrapped and also maintains the consistency of the TimeMonitor object

(using the claim pointer claim). The start_tick() and start_get() routines are shown

in Listing 3.14 and Listing 3.15 respectively.

0 void ∗start_tick (void ∗param)
_(requires \wrapped(((ThreadData ∗) param)))
_(always ((ThreadData ∗) param)−>claim, ((ThreadData ∗) param)−>monitor←↩
↪→−>\consistent)
{

int i ;
5 TimeMonitor ∗monitor = ((ThreadData ∗) param)−>monitor ;

#ifndef VERIFY
while( ! go ) {}

#endif

for (i=0 ; i < NUM_OF_TICKS ; i++)
10 {

tick(monitor _(ghost ((ThreadData ∗) param)−>claim));
}
return 0 ;

}

Listing 3.14: Start Routine of tick

0 void ∗start_get (TimeMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent )
{

int time[3],i;
#ifndef VERIFY
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#of tick

threads

# of get

threads

monitor.t.sec monitor.t.min monitor.t.hr

20 20 20 33 3

45 45 0 0 2

100 100 40 46 17

Table 3.0: Results derived from TimeOfDay example - Value of monitor.t

5 while( ! go ) {}
#endif
for (i=0 ; i < NUM_OF_GETS ; i++)
_(writes \array_range(time,3) )
{

10 get(time, monitor _(ghost c) );
if( time[0] >= 60 || time[1] >= 60 || time[2] >= 24 )
{

#ifndef VERIFY
printf("Get�FAILED") ;

15 #endif

}
}

}

Listing 3.15: Start Routine of get

The full implementation of timeOfDay is added in the apendix. The results of

testing timeOfDay example is splitted into two tables shown in Table 3.0 and Table

3.1.

An oracle function is written for the testing purpose. The number of created

threads are defined by the number of tick threads and the number of get threads

(In Table 3.0). Each thread performs a number of ticks and gets respectively (e.g.

100,000 ticks & 100,000 gets).

The value of time after all the ticks and gets for each various cases are given in
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#of tick

threads

# of get

threads

sec min hr

20 20 20 33 3

45 45 0 0 2

100 100 40 46 17

Table 3.1: Results derived from TimeOfDay example - Expected value evaluated by

countSum

Table 3.0. The total number of ticks are counted using the countSum variable. It is

used to evaluate the expected time (sec=countSum%60, min=(countSum% 3600)/60,

hr=(countSum/3600)%24). The result is shown in Table 3.1. After comaparing Table

3.0 and Table 3.1 it can be derived that the program evaluated the expected time.

3.3 Summary

The implementation of semaphores and monitors with their verification (using VCC

tool) are shown in this chapter. The timeOfDay example is used to demonstrate

the general approach (that is proposed in this chapter) to monitor specification and

verification. Codes are compiled using VCC tool. The results are added in the

chapter.
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Chapter 4

Implementation and Verification

Semaphores & Monitors with

Conditions

The producer-consumer problem (which is also known as the bounded-buffer problem)

is a classical multi-process synchronization problem in computer science. In this

chapter the implementation and specification of the producer-consumer problem has

been verified using the proposedmonitor specification code (explained in the previous

chapter).

4.0 Background

The threads of a multithreaded programs follow many patterns. In the common

pattern some threads are producers and some are consumers. Producers create items
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of some kind and add them to a data structure. On the other hand, consumers remove

the items and process them.

The producer-consumer problem describes two categories of processes: producers

and consumers. The threads share a common and fixed-size buffer. A producer ’s job

is to generate a piece of data and put it into the buffer. A consumer consumes the

data (also removing it from the buffer) one piece at a time. The problem is to make

sure that the producers cannot add data into the buffer when the buffer is full and

that the consumers cannot remove data from an empty buffer.

4.0.0 The Producer/Consumer Bounded-Buffer solution us-

ing Monitor

There are many solutions for this problem based on different synchonization mecha-

nisms. In this chapter, a solution to the Producer/Consumer Bounder Buffer problem

using a monitor is described, implemented, and verified. In Algorithm 4.0 the solution

is presented as was proposed by C. A. R. Hoare [Hoare, 1974] .

The monitor module, boundedbuffer, controls the buffer used to store and retrieve

characters. In this example, there are two conditions that for which threads may need

to wait. The monitor includes two condition variables: notfull is true when there is

room to add at least one element to the buffer, and notempty is true when there is

at least one element in the buffer.

A producer can add an element to the buffer only by means of the procedure

append inside the monitor. However a procedure does not immediately access the

buffer. The procedure first checks the condition variable notfull to determine whether
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there is space available in the buffer. If not, the process executing the monitor is

suspended on that condition variable. Some other process (producer or consumer)

may now enter the monitor. Later, when the buffer is no longer full, the suspended

process may be removed from the queue, reactivated, and eventually the processing

is resumed. After placing an element in the buffer, the process signals the notempty

condition.

A similar description can be made of the consumer processes. A consumer can

remove an element from the buffer only by means of the procedure remove inside

the monitor. The procedure does not immediately access the buffer. The procedure

first checks the condition notempty to determine whether it is removing an element

from an empty buffer. If the buffer is empty, the process executing the monitor is

suspended on that condition. Some other process (producer or consumer) may now

enter the monitor. Later, when the buffer is not-empty, the suspended process may

be removed from the queue, reactivated, and eventually the processing is resumed.

After removing an element from the buffer, the process signals the notfull condition.

The pseudo code algorithm of the described solution of Producer/Consumer Bounded-

Buffer problem is shown in Algorithm 4.0.

4.1 The Producer/Consumer BoundedBuffer Im-

plementation and Specification

To bind together the entrance semaphore with the buffer object, the monitored object

is divided into two separate objects: i) MonitoredBuffer & ii) BufferMonitor.
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boundedbuffer:monitor
begin buffer:array0..N-1of portion;

lastpointer:0..N-1;
count:0..N;
notempty,notfull:condition;

procedure append(x:portion);
begin

if count=N then notfull.wait;
note 0<count<N;
buffer[lastpointer]:=x;
lastpointer:=lastpointer+1;
count:=count+1;
notempty.signal

end append;
procedure remove(resultx:portion);

begin
if count=0 then notempty.wait;
note 0<count<N;
x:=buffer[lastpointer-count];
notfull.signal

end remove;
count:=0;lastpointer:=0;
end boundedbuffer;

Algorithm 4.0: Pseudo code solution of Producer/Consumer Bounded-Buffer problem

4.1.0 The MonitoredBuffer Structure

The boundedbuffer structure is named MonitoredBuffer in this example. The Mon-

itoredBuffer contains the buffer array, buffer, of CAPACITY items. The field size

defines the size of the buffer. The field head defines the head of the FIFO queue.

The MonitoredBuffer also has two unsigned variables notFullCount & notEmpty-

Count to count threads that are waiting on notFull condition variable and notEmpty

condition variable respectively. The MonitoredBuffer structure is shown in Listing

4.0.

0 typedef struct _MonitoredBuffer{
int buffer[CAPACITY];
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int size ;
int head ;
_(invariant 0 <= size && size <= CAPACITY)

5 _(invariant 0 <= head && head < CAPACITY)
unsigned notFullCount;
unsigned notEmptyCount;

}MonitoredBuffer;

Listing 4.0: The MonitoredBuffer Structure

4.1.0.0 Invariant of MonitoredBuffer

The invariants of the MonitoredBuffer structure state that the size of the Monitored-

Buffer and the value of field head to be in the range from 0 to CAPACITY.

_(invariant 0 <= size && size <= CAPACITY )

_(invariant 0 <= head && head < CAPACITY )

4.1.1 Implementation & Specification ofCondition Semaphores

In order to maintain the synchronization, two condition semaphores are used:

• NotEmptySemaphore: Used by the consumer thread to suspend itself until the

buffer is not empty.

• NotFullSemaphore: Used by the producer to suspend itself until the buffer is

not full.

The semaphor’s implementations are similar to the semaphore described in the

previous chapter. However they differ in some ways as follows:

• Both of the semaphores have a pointer to the MonitoredBuffer object, buff,

rather than a generic object pointer.
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• The invariant of notFullSemaphore states that when the semaphore is 1 the size

of the buff will be less than the CAPACITY.

• The invariant of notEmptySemaphore states that when the semaphore is 1 the

size of the buff will be greater than zero.

The implementation of acquire methods (which is described at section 3.0.2) and

the condition semaphores is based on test-and-set instruction. If multiple processes

access the same memory, and at some moment if a process is performing a test-and-

set, no other process can begin another test-and-set until the first process is done.

This implementation of acquire methods and condition semaphores can be used in

multi-CPU hardware but not in single process systems.

The NotEmptySemaphore & NotFullSemaphore structures are shown in Listing

4.1 & 4.2.

0 _(claimable) _(volatile_owns) typedef struct _NotEmptySemaphore {
volatile int s;
MonitoredBuffer ∗ buff;
_(invariant s==0 || s==1 )
_(invariant s == 1 <==> \mine(buff))

5 _(invariant s == 1 ==> buff−>size > 0)
} NotEmptySemaphore;

Listing 4.1: The NotEmptySemaphore Structure

0 _(claimable) _(volatile_owns) typedef struct _NotFullSemaphore {
volatile int s;
MonitoredBuffer ∗ buff;
_(invariant s==0 || s==1 )
_(invariant s == 1 <==> \mine(buff))

5 _(invariant s == 1 ==> buff−>size < CAPACITY)
}NotFullSemaphore;

Listing 4.2: The NotFullSemaphore Structure
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4.1.1.0 Invariant of Condition Semaphores

The first invariant of the condition semaphores (NotEmptySemaphore & NotFullSemaphore)

is the implementation variable s, can be either 0 or 1.

_(invariants == 0 || s == 1)

The next invariant says that, if s is set to the value 1 the MonitoredBuffer

object buff, is protected by the condition semaphore (NotEmptySemaphore & Not-

FullSemaphore) itself.

_(invariants == 1 ⇐⇒ \mine(buff ))

The last invariant of the condition semaphore varies with its structure. The last

invariant of NotEmptySemaphore ensures that whenever s is set to the default value

(in this case 1), the size of the buff (which is owned by the NotEmptySemaphore) is

greater than zero.

_(invariants == 1 ⇒ buff → size > 0)

However, the last invariant of NotFullSemaphore ensures that whenever s is set

to the default value (in this case 1), the size of the buff (which is owned by the

NotFullSemaphore) is less than the CAPACITY.

_(invariants == 1 ⇒ buff → size < CAPACITY )

4.1.1.1 Implementation & Specification of Condition SemaphoreAcquire()

On await operation the monitor gives up the ownership of the MonitoredBuffer ob-

ject, buff and the condition semaphore is given ownership of buff. To obtain ownership

from the condition variable, its acquire function is used.

0 void notEmptySemaphoreAcquire(NotEmptySemaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(ensures \wrapped(sem−>buff) && \fresh(sem−>buff))
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_(ensures sem−>buff−>size > 0)
{

5 int stop = 0;
do {

_(atomic c, sem) {
stop = InterlockedCompareExchange(&sem−>s, 0, 1) == 1;
_(ghost if (stop) sem−>\owns −= sem−>buff)

10 }
} while (!stop);

}

Listing 4.3: Acquire method of notEmptySemaphore

0 void notFullSemaphoreAcquire(NotFullSemaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(ensures \wrapped(sem−>buff) && \fresh(sem−>buff))
_(ensures sem−>buff−>size < CAPACITY)
{

5 int stop = 0;
do {

_(atomic c, sem) {
stop = InterlockedCompareExchange(&sem−>s, 0, 1) == 1;
_(ghost if (stop) sem−>\owns −= sem−>buff)

10 }
}while (!stop);

}

Listing 4.4: Acquire method of notFullSemaphore

Listing 4.3 & Listing 4.4 represent the annotated implementations of the acquire

functions for the condition semaphores (NotEmptySemaphore & NotFullSemaphore

respectively).

Both of the functions are similar to the semaphore acquire() (which is given in

Listing 3.2). However, the notEmptySemaphoreAcquire ensures the size of the buff

to be greater than zero and the notFullSemaphoreAcquire ensures the size of the buff

to be less than CAPACITY. The reason that these postconditions of both acquire

functions verifies is that the invariant of each condition semaphore ensures that the
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appropriate assertion be true.

4.1.1.2 Implementation & Specification of Condition SemaphoreRelease()

On a signal operation, the condition variable gives up the ownership of the buff and

the monitor variable owns the buff. Signalling threads use the condition variable’s,

release function to give ownership of buff to the semaphore.

0 void notEmptySemaphoreRelease(NotEmptySemaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(requires sem−>buff−>size > 0)
_(writes sem−>buff)
_(requires \wrapped(sem−>buff))

5 {
_(atomic c, sem) {

sem−>s = 1;
_(ghost sem−>\owns += sem−>buff)

}
10 }

Listing 4.5: Release method of notEmptySemaphore

0 void notFullSempahoreRelease(NotFullSemaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(requires sem−>buff−>size < CAPACITY)
_(writes sem−>buff)
_(requires \wrapped(sem−>buff))

5 {
_(atomic c, sem) {

sem−>s = 1;
_(ghost sem−>\owns += sem−>buff)

}
10 }

Listing 4.6: Release method of notFullSemaphore

Listing 4.5 & Listing 4.6 represent the annotated implementation of the release

functions for the condition semaphores (NotEmptySemaphore & NotFullSemaphore

respectively).
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Both of the functions are similar to the semaphore release() (which is given in

Listing 3.4). However, the NotEmptySempahoreRelease requires the size of the buffer

to be greater than zero and the NotFullSempahoreRelease requires the size of the

buffer to be less than CAPACITY.

4.1.2 The BufferMonitor Structure

A global structure BufferMonitor, is used to own other objects. Each BufferMonitor

object contains aMonitoredBuffer object, theBuffer, a Semaphore object, entrance, a

NotFullSemaphore object, notFullQ, and a NotEmptySemaphore object, notEmptyQ.

BufferMonitor owns all the semaphore objects. The operations on the monitor include

enterMonitor and exitMonitor (described in the Chapter 3), which wrap calls to

acquire and release to obtain and relinquish ownership of the buffer.

The BufferMonitor structure is shown in Listing 4.7.

0 _(claimable) typedef struct _BufferMonitor

{
MonitoredBuffer theBuffer;
Semaphore entrance;

5 _(invariant \mine(& notFullQ))
_(invariant notFullQ.buff == &theBuffer)

NotFullSemaphore notFullQ;
NotEmptySemaphore notEmptyQ;

10
_(invariant \mine(& notEmptyQ))
_(invariant notEmptyQ.buff == &theBuffer)

_(invariant \mine(& entrance))
15 _(invariant entrance.protected_obj == &theBuffer)

70



}BufferMonitor;

Listing 4.7: The BufferMonitor Structure

4.1.2.0 Invariant of the BufferMonitor Structure

The invariants of BufferMonitor requires that the semaphores (entrance, notEmp-

tyQ & notFullQ) be owned by the monitor. As a result, any claim that claims that

the BufferMonitor object is consistent will also claim that all semaphores are consis-

tent. The invariant also requires that semaphores (entrance, notEmptyQ & notFullQ)

protect the MonitoredBuffer object.

_(invariant \mine(&notFullQ))

_(invariant notFullQ.buff == &theBuffer)

_(invariant \mine(&notEmptyQ))

_(invariant notEmptyQ.buff == &theBuffer)

_(invariant \mine(&entrance))

_(invariant entrance.protected_obj == &theBuffer)

4.1.2.1 Implementation of await & signal

Because of the additional clause in the invariant ofNotEmptySemaphore, the condition

buff− > size > 0 is the precondition of its release operation and a postcondition of

its acquire function (for NotFullSemaphore, condition buff− > size < CAPACITY

is used).

These preconditions and postconditions are inherited by the monitor level op-

erations from the semaphore level operations; i) await (awaitNotEmptyCondition &

awaitNotFullCondition) and ii) signal (signalNotEmptyCondition & signalNotEmpty-
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Condition). In the next section the implementation and specification of these opera-

tions are described.

Implementation & Specification of await Once a process is in the monitor, it

may temporarily suspend itself on condition c by issuing await(c).

In this example two await functions are used in the monitor level for: i) await-

NotEmptyCondition & ii) awaitNotFullCondition. Both the await function are simil-

iar. However, the awaitNotEmptyCondition function ensures buff− > size > 0, and

the awaitNotFullCondition ensures buff− > size < CAPACITY .

The await function requires that the buffer be wrapped as well as it also needs the

write access to the buffer.

The function ensures the object (in this case the buff ) which was owned by the

condition semaphore, is wrapped.

When a thread enters await, it needs to wait to acquire the condition semaphore

until the condition becomes true. As a result, it will leave the monitor and the count

of waiting thread on the condition semaphore will be increased. Later, the count will

be decreased when the condition semaphore is acquired.

The await functions are shown in Listing 4.8 and Listing 4.9.

0 void awaitNotEmptyCondition(BufferMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
_(requires \wrapped(& monitor−>theBuffer))
_(requires monitor−>entrance.protected_obj != c)
_(writes & monitor−>theBuffer)

5 _(ensures \wrapped(& monitor−>theBuffer) )
_(ensures monitor−>theBuffer.size > 0)
{

_(unwrap & monitor−>theBuffer);
_(unchecked)monitor−>theBuffer.notEmptyCount ++;

10 _(wrap & monitor−>theBuffer);
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release(& monitor−>entrance _(ghost c));
notEmptySemaphoreAcquire(&monitor−>notEmptyQ _(ghost c));
_(unwrap & monitor−>theBuffer);
_(unchecked)monitor−>theBuffer.notEmptyCount −−;

15 _(wrap & monitor−>theBuffer);
}

Listing 4.8: The awaitNotEmptyCondition method

0 void awaitNotFullCondition(BufferMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
_(requires \wrapped(& monitor−>theBuffer))
_(requires monitor−>entrance.protected_obj != c)
_(writes & monitor−>theBuffer)

5 _(ensures \wrapped(monitor−>notFullQ.buff) )
_(ensures monitor−>theBuffer.size < CAPACITY)
{

_(unwrap & monitor−>theBuffer);
_(unchecked)monitor−>theBuffer.notFullCount ++;

10 _(wrap & monitor−>theBuffer);
release(& monitor−>entrance _(ghost c));
notFullSemaphoreAcquire(&monitor−>notFullQ _(ghost c));
_(unwrap & monitor−>theBuffer);
_(unchecked)monitor−>theBuffer.notFullCount −−;

15 _(wrap & monitor−>theBuffer);
}

Listing 4.9: The awaitNotFullCondition method

Implementation & Specification of signal When a process executing in the

monitor detects a change in the condition variable, it gives signal using the signal(c)

to the processes that are waiting in the condition queue.

In this example two signal functions (signaltNotEmptyCondition & signalNotFull-

Condition) are used. Both the signal functions are similiar. However, the signalt-

NotEmptyCondition requires buff− > size > 0, on the other hand the signalNot-

FullCondition requires buff− > size < CAPACITY .

The signal function also requires that the object owned by the condition semaphore
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is wrapped.

If there is any thread waiting in the condition semaphore (i.e. count > 0) then a

waiting thread will be released from the condition semaphore and eventually acquires

the entrance semaphore. If there is no thread waiting in the semaphore, the signal

function will do nothing.

Thus the function ensures the protected_obj owned by the entrance semaphore to

be wrapped.

The signal functions are shown in Listing 4.10 & Listing 4.11.

0 void signalNotEmptyCondition(BufferMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
_(requires \wrapped(& monitor−>theBuffer) )
_(requires monitor−>theBuffer.size > 0)
_(writes & monitor−>theBuffer)

5 _(ensures \wrapped(& monitor−>theBuffer))
{

unsigned nEcount;
_(unwrap & monitor−>theBuffer);
nEcount = monitor−>theBuffer.notEmptyCount;

10 _(wrap & monitor−>theBuffer);

if(nEcount > 0)
{

notEmptySemaphoreRelease(& monitor−>notEmptyQ _(ghost c));
15 acquire(& monitor−>entrance _(ghost c));

}
}

Listing 4.10: The signalNotEmptyCondition method

0 void signalNotFullCondition(BufferMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
_(requires \wrapped(& monitor−>theBuffer) )
_(requires monitor−>theBuffer.size < CAPACITY)
_(writes monitor−>entrance.protected_obj)

5 _(ensures \wrapped(& monitor−>theBuffer))
{

unsigned nFcount;
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_(unwrap & monitor−>theBuffer);
nFcount = monitor−>theBuffer.notFullCount;

10 _(wrap & monitor−>theBuffer);

if(nFcount > 0)
{

notFullSempahoreRelease(& monitor−>notFullQ _(ghost c));
15 acquire(& monitor−>entrance _(ghost c));

}
}

Listing 4.11: The signalNotFullCondition method

4.1.3 Implementation & Specification of deposit method

The append function in Algorithm 4.0 is implemented as deposit function in this

example. The deposit thread puts one element to theBuffer when notFull condition

is true (which implies the buffer is not full).

After updating theBuffer, the thread will notify the other threads waiting on

the NotEmptySemaphore (as now the notEmpty condition is true). Up to one thread

that was suspended on the NotEmptySemaphore can enter to the monitor. Finally the

thread will leave by calling the monitor exit function (exitMonitor function described

in Chapter 3).

0 void deposit(long value, BufferMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
{

int size, head;
enterMonitor(monitor _(ghost c));

5 if(monitor−>theBuffer.size == CAPACITY)
{

awaitNotFullCondition(monitor _(ghost c));
_(assert monitor−>theBuffer.size < CAPACITY) ;

}
10 _(unwrap &monitor−>theBuffer);

size = monitor−>theBuffer.size ;
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head = monitor−>theBuffer.head ;
monitor−>theBuffer.buffer[(head+size) % CAPACITY] = value ;
monitor−>theBuffer.size += 1;

15 _(wrap &monitor−>theBuffer);
#ifndef VERIFY

printf ("deposit...\n");
#endif
_(assert monitor−>theBuffer.size > 0);

20 signalNotEmptyCondition(monitor _(ghost c));
exitMonitor(monitor _(ghost c));

}

Listing 4.12: The deposit method

The deposit function is shown in Listing 4.12.

The specification part of the deposit says that the monitor is consistent .

4.1.4 Implementation & Specification of fetch method

The remove function in Algorithm 4.0, is implemented as fetch function in this exam-

ple. The fetch thread removes one element from theBuffer when notEmpty condition

is true (which implies the buffer is not empty).

After updating theBuffer the thread will notify the other threads waiting to the

NotFullSemaphore (as now the notFull condition is true). Up to one thread that was

suspended on the NotFullSemaphore can enter to the monitor. However, if there is

no thread waiting on the NotFullSemaphore, the thread waiting to enter the moni-

tor, can proceed. Finally the thread will leave by calling the monitor exit function

(exitMonitor function described in Chapter 3).

0 int fetch(BufferMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
{

long result;
enterMonitor(monitor _(ghost c));
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5 if(monitor−>theBuffer.size == 0)
{

awaitNotEmptyCondition(monitor _(ghost c));
_(assert monitor−>theBuffer.size > 0);

}
10 _(unwrap & monitor−>theBuffer);

result = monitor−>theBuffer.buffer[monitor−>theBuffer.head];
monitor−>theBuffer.head = (monitor−>theBuffer.head+1) % CAPACITY ;
monitor−>theBuffer.size −= 1;
_(wrap & monitor−>theBuffer);

15 #ifndef VERIFY

printf ("fetch...\n");
#endif

_(assert monitor−>theBuffer.size < CAPACITY);
signalNotFullCondition(monitor _(ghost c));

20 exitMonitor(monitor _(ghost c));
return result;

}

Listing 4.13: The fetch method

The fetch function is shown in Listing 4.13. The specification part of the fetch

says that, the monitor is consistent .

4.1.5 Implementation & Specification of Producer Method

The specification of the producer thread is similiar to the deposit thread where the

producer produces item and deposits in the buffer. If the buffer is full, it waits until

the buffer is not-full and then deposits the item.

0 void Producer (int value, BufferMonitor ∗ monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
{

deposit(value, monitor _(ghost c));
}

Listing 4.14: The Producer method

Listing 4.14 shows the implementation & specification of producer thread.
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4.1.6 Implementation & Specification of Consumer Method

The specification of the consumer thread is similiar to the fetch thread where the

consumer fetches the item from the buffer. If the buffer is empty, it waits until the

buffer is not-empty and then fetches the item.

0 int Consumer (BufferMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
{

int item;
item = fetch(monitor _(ghost c));

5 return item;
}

Listing 4.15: The Consumer method

Listing 4.15 shows the implementation & specification of consumer thread.

4.1.7 Validation of proposed methodology

The Verification technology (VCC ) that is used in this thesis is quite new and to some

extent it has its own limitation. It does not ensure liveness properties. However, to

verify concurrent programs it is important to test in order to demonstrate that the

threads do not get stuck. Testing is a good way to determine if, at least for the cases

that were tested, the implementation behaviour is acceptable.

For the testing purpose, an oracle function is used. This section describes the test

procedure as well as the test results of producer/consumer bounded/buffer example.

4.1.7.0 Pthreads in Producer/Consumer Bounded/Buffer Example

Testing concurrent programs is always challenging compared to sequential programs,

as tests for concurrent programs are themselves concurrent programs. Moreover,
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failure in concurrent programs are nondeterministic due to its unpredictability and

repeatablity. Race conditions, deadlocks, data races etc. are the common unex-

pected situations that might occur in concurrent programs. In order to test the

producer/consumer boundedbuffer solution, an oracle function was written using mul-

tiple threads (multiple producers and multiple consumers) communicating in between

through the protected monitored buffer.

The pthread_create() function only allows one argument to pass to the starting

thread. In the producer/consumer boundedbuffer example, the producer thread takes

two parameters: i) pointer to the BufferMonitor object and ii) pointer to the claim

object.

To pass these two parameters, the ThreadData structure is implemented which

contains a pointer to the BufferMonitor object monitor. It also contains a claim

object, claim as well. The variable k is used as starting index for producer and n is

used to represent the numbers to produce or consume.

The invariant of ThreadData object states that claim claims the monitor.

The ThreadData structure is shown in Listing 4.16.

0 typedef struct _thread_data{
BufferMonitor ∗ monitor;
int k; // Starting index for producer; the first number to produce.
int n; // How many numbers to produce or consume.
_(ghost \claim claim;)

5 _(invariant \claims_object(claim, monitor))
}ThreadData ;

Listing 4.16: The ThreadData Structure

Later the pointer to ThreadData structure is passed to the starting thread by the

pthread_create() function.

To start the producer and consumer thread, start_producer() and start_consumer()
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functions are used respectively. The specification of these two methods requires the

ThreadData object param to be wrapped and also maintains the consistency of the

BufferMonitor object (using the claim pointer claim). The start_producer() and

start_consumer() routines are shown in Listing 4.17 and Listing 4.18 respectively.

0 void ∗start_producer (void ∗param)
_(requires \wrapped(((ThreadData ∗) param)))
_(always ((ThreadData ∗) param)−>claim, ((ThreadData ∗) param)−>monitor←↩
↪→−>\consistent)
{

int n = ((ThreadData ∗) param)−>n;
5 int k = ((ThreadData ∗) param)−>k;

BufferMonitor ∗monitor = ((ThreadData ∗) param)−>monitor ;
int i ;
for (i=k ; i < _(unchecked)(n+k); i++)
{

10 #ifndef VERIFY
Sleep(rand() / RAND_DIVISOR);

#endif
Producer(i, monitor _(ghost ((ThreadData ∗) param)−>claim));

}
15 return NULL;

}

Listing 4.17: Start Routine of Producer

0 void ∗start_consumer (void ∗param)
_(requires \wrapped(((ThreadData ∗) param)))
_(always ((ThreadData ∗) param)−>claim, ((ThreadData ∗) param)−>monitor←↩
↪→−>\consistent)
{

int n = ((ThreadData ∗) param)−>n;
5 BufferMonitor ∗monitor = ((ThreadData ∗) param)−>monitor ;

int i ;
for (i = 0; i < n; i++)
{

int index ;
10 #ifndef VERIFY

Sleep(rand() / RAND_DIVISOR);
#endif
index = Consumer(monitor _(ghost ((ThreadData ∗) param)−>claim));
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#ifndef VERIFY
15 a[index]++;

#endif

}
return NULL;

}

Listing 4.18: Start Routine of Consumer

4.1.7.1 Comments on tests:

According to the function a large array a of N long items is created. Initially all the

items are assigned to 0. The test procedure executes as follows:

• Each producer produces a chunk of integers in array a. E.g. producer 0 produces

0 to k−1, producer 1 produces k to 2k−1, ... , producer P−1 produces (P−1)k

to N − 1, where k = N/P and P is the number of producers.

• Each consumer consumes j integers where j = N/C and C is the number of

consumers (if C does not divide N , the last consumer should only consume

N − (C − 1)j integers).

• On consuming an integer i, the consumer increments a[i]

• After the completion of all threads, a[i] should be 1 for all i (the variable allOnes

is used for this purpose).

The solution has given a promising result for large amount of data and multiple

threads as shown in the Table 4.0.

The first three rows shows the test results where no delay is defined. The code is

tested using multiple threads (upto 20 threads). The last three rows are showing the

results of the following tests,
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Test # N: # P: # C: allOnes: Delay

1 10, 000 4 1 1 −

2 10, 000 10 1 1 −

3 10, 000 15 5 1 −

4 100, 000 15 5 1 No delay

5 100, 000 15 5 1 Delay in

fetch

6 100, 000 15 5 1 Delay in

deposit

Table 4.0: Test Results of Producer-Consumer Code

• No delays at all.

• Delays only in the fetch routine.

• Delays only in the deposit routine.

4.2 Summary

In this chapter the implementation and verification of semaphores & monitors with

condition variable are presented. The verification is done using the VCC tool. Using

the implementation, the producer-consumer bounded-buffer has been verified. The

code is also tested using pthreads to test implementation behavior of the code is

acceptable.
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Chapter 5

Conclusion and Future Research

5.0 Summary and Conclusions

With the advent of modern concurrent programming, verification has become more

important in order to ensure concurrency and software reliability. The design issues

of concurrency are (defined by William Stallings) such as i) communication among

processes, ii) sharing of and competing for resources, iii) synchronization of the activ-

ities of multiple processes and iv) allocation of multiple processes as well as allocation

of processor time to processes [Stallings, 1992]. Mutual exclusion algorithms are al-

ways used to avoid the simultaneous access of a common resource. The methods of

monitors are executed with mutual exclusion.

This thesis is dedicated to developing a general approach to monitors specification

and verification which can be used for solving synchronization problems in operating

systems and other concurrent systems. Specifications are given at the level of C code

using the annotation language of Microsoft’s Verifier for Concurrent C (VCC). VCC
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takes the annotated C program and tries to prove that the program meets these

specifications.

In addition, the implementation and verification of semaphores and monitors with-

out condition variables are developed in this thesis. Later the implementation and

verification of semaphores and monitors with condition variables are developed.

Using the proposed monitor specification code, the specified solution of producer-

consumer synchronization problem has also been verified in this thesis.

5.1 Original Contributions

In this thesis an attempt has been made to address of building higher-level abstrac-

tions on top of the low-level verification capabilities of VCC. This section summarizes

the original contributions of the thesis.

• The semaphore verification code is implemented and specified along with its

acquire and release method which are used by the processes to acquire and

release the resource respectively. The data invariants are also specified in the

code.

• The monitor verification code is implemented and specified along with its en-

terMonitor and exitMonitor routines which are used to enter the monitor and

exit the monitor respectively. The prosposed implementation is demonstrated

using timeOfDay example.

• To handle the conditional delay of the program while acquiring or releasing

the resource, two condition semaphores (NotFullSemaphore and NotEmpty-
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Semaphore) are implemented.

• Using the implemented & specified monitor algorithm, the producer/consumer

bounded-buffer problem is verified.

• The given solution is also tested using an oracle function with multiple threads.

5.2 Recommendations for Future Research

Recommendations for future work are as follows:

• Initially the code was intended to have a single class representing condition

variables and attach additional meaning by using a ghost field that would be

a pointer to a boolean function that encodes the condition. However VCC

currently lacks pointers to pure functions (functions that have no side effects)

and so calls to pointers to functions can not be used in assertions such as

invariants, and pre- and postconditions. Thus the current design uses separate

await and separate signal methods for each condition variable. If in the future

pointers to pure functions are allowed, then the implementation of a single class

of condition variables should be investigated.

• The queue semaphore (NotFullSemaphore and NotEmptySemaphore) is imple-

mented using an implementation variable. The separate acquire and release rou-

tines are implemented instead of using the common semaphore acquire and re-

lease (although their implementation is same). Re-design of a queue semaphore

using the semaphore class (instead of using the implementation variable) should
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be considered in future. However, this design also depends on the availability

of pointers to pure functions.
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Appendix A

An Appendix

In this thesis semaphores are implemented as a binary semaphores for monitors with-

out condition variables. The implementation is shown in Appendix A.1. Monitor is

simply an object protected by an entrance semaphore. In Appendix A.2 the imple-

mentation of TimeOfDay example is given, which is an example of monitor without

condition variables. Later, in Appendix A.3 the implementation of Producer/Con-

sumer Bounded Buffer example is presented which is an example of monitor with con-

dition variables; notFullSemaphore (shown in Appendix A.4) & notEmptySemaphore

(shown in Appendix A.5)

A.0 InterlockedCompareExchange Implementation

0 #include <vcc.h>

_(atomic_inline) int InterlockedCompareExchange(volatile long
∗Destination, long Exchange, long Comparand) {

if (∗Destination == Comparand) {
5 ∗Destination = Exchange;

return Comparand;
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} else {
return ∗Destination;

}
10 }

Listing A.0: InterLockedCompareExchange.h

A.1 Semaphore Implementation

0 #ifdef VERIFY
#define CAPACITY 5

#endif
_(claimable) _(volatile_owns) typedef struct _Semaphore {

volatile int s;
5 _(ghost \object protected_obj;)

_(invariant s==0 || s==1 )
_(invariant s == 1 <==> \mine(protected_obj))

}Semaphore;

10 void initializeSemaphore(Semaphore ∗sem _(ghost \object obj))
_(writes \span(sem))
_(writes obj)
_(requires \wrapped(obj))
_(ensures \wrapped(sem) && sem−>protected_obj == obj)

15 _(ensures sem−>s == 1)
{

sem−>s = 1;
_(ghost {

sem−>protected_obj = obj;
20 sem−>\owns = {obj};

_(wrap sem)
})

}
void acquire(Semaphore ∗sem _(ghost \claim c))

25 _(always c, sem−>\consistent)
_(ensures \wrapped(sem−>protected_obj) && \fresh(sem−>protected_obj))
{

int stop = 0;
do {

30 _(atomic c, sem) {
stop = InterlockedCompareExchange(&sem−>s, 0, 1) == 1;
_(ghost if (stop) sem−>\owns −= sem−>protected_obj)
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}
}while (!stop);

35 }

void release(Semaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(requires sem−>protected_obj != c)

40 _(writes sem−>protected_obj)
_(requires \wrapped(sem−>protected_obj))
{

_(atomic c, sem) {
sem−>s = 1;

45 _(ghost sem−>\owns += sem−>protected_obj)
}

}

Listing A.1: semaphore.h

A.2 TimeOfDay Implementation

0 #include "vcc.h"

#include <stdlib.h>
#include<time.h>
#ifdef VERIFY

#include "InterLockedCompareExchange.h"
5 #else

#include <Windows.h>
#include <pthread.h>
#include <stdio.h>

#endif
10

#include "semaphore.h"

#define NUM_OF_TICK_THREADS 100
#define NUM_OF_GET_THREADS 100
#define NUM_OF_TICKS 100000

15 #define NUM_OF_GETS 100000
#define RAND_DIVISOR 100000000

#ifndef VERIFY
20 pthread_t tick_threads[NUM_OF_TICK_THREADS];

pthread_t get_threads[NUM_OF_GET_THREADS];
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#endif
typedef struct _TimeOfDay{

int hr;
25 int min;

int sec;
_(invariant 0 <= sec && sec < 60

&& 0 <= min && min < 60
&& 0 <= hr && hr < 24 )

30
}Time;

_(claimable) typedef struct _Time_Monitor
{ Time t ;

35 Semaphore entrance;
_(invariant \mine(&entrance))
_(invariant entrance.protected_obj == &t)

}TimeMonitor;

40 void enterMonitor(TimeMonitor ∗monitor _(ghost \claim c))
_(always c, (& monitor−>entrance)−>\consistent)
_(ensures \wrapped(monitor−>entrance.protected_obj) )
_(ensures \fresh(monitor−>entrance.protected_obj) )
{

45 acquire(& monitor−>entrance _(ghost c));
}

void exitMonitor(TimeMonitor ∗monitor _(ghost \claim c))
_(always c, (& monitor−>entrance)−>\consistent)

50 _(requires \wrapped(monitor−>entrance.protected_obj))
_(requires monitor−>entrance.protected_obj != c)
_(writes monitor−>entrance.protected_obj)
{

release( & monitor−>entrance _(ghost c));
55 }

void tick(TimeMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
{

60 enterMonitor(monitor _(ghost c));
_(unwrap &monitor−>t);

monitor−>t.sec += 1;
monitor−>t.min += monitor−>t.sec/60;
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monitor−>t.hr += monitor−>t.min/60;
65 monitor−>t.sec = monitor−>t.sec % 60;

monitor−>t.min = monitor−>t.min % 60;
monitor−>t.hr = monitor−>t.hr % 24;

_(wrap &monitor−>t);
exitMonitor(monitor _(ghost c));

70 }

void get(int time[], TimeMonitor ∗monitor _(ghost \claim c))
_(writes \array_range(time,3) )
_(always c, monitor−>\consistent)

75 {
enterMonitor(monitor _(ghost c));
_(unwrap &monitor−>t);

time[0] = monitor−>t.sec;
time[1] = monitor−>t.min;

80 time[2] = monitor−>t.hr;
_(wrap &monitor−>t);
exitMonitor(monitor _(ghost c));

}
#ifndef VERIFY

85 static volatile bool go = 0 ;
#endif

typedef struct _thread_data{
TimeMonitor ∗ monitor;

90 int count;
bool spin;
_(ghost \claim claim;)
_(invariant \claims_object(claim, monitor))

}ThreadData ;
95

ThreadData tickData[NUM_OF_TICK_THREADS];
ThreadData getData[NUM_OF_GET_THREADS];

void ∗start_tick (void ∗param)
100 _(requires \wrapped(((ThreadData ∗) param)))

_(always ((ThreadData ∗) param)−>claim, ((ThreadData ∗) param)−>monitor←↩
↪→−>\consistent)
{

int i ;
TimeMonitor ∗monitor = ((ThreadData ∗) param)−>monitor ;
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105 #ifndef VERIFY
while( ! go ) {}

#endif

for (i=0 ; i < NUM_OF_TICKS ; i++)
{

110 tick(monitor _(ghost ((ThreadData ∗) param)−>claim));
}
return 0 ;

}

115 void ∗start_get (TimeMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent )
{

int time[3],i;
#ifndef VERIFY

120 while( ! go ) {}
#endif
for (i=0 ; i < NUM_OF_GETS ; i++)
_(writes \array_range(time,3) )
{

125 get(time, monitor _(ghost c) );
if( time[0] >= 60 || time[1] >= 60 || time[2] >= 24 )
{

#ifndef VERIFY

printf("Get�FAILED") ;
130 #endif

}
}

}

135 void ∗start_get1 (void ∗param)
_(requires \wrapped(((ThreadData ∗) param)))
_(always ((ThreadData ∗) param)−>claim, ((ThreadData ∗) param)−>monitor←↩
↪→−>\consistent)
{

start_get1( ((ThreadData ∗) param)−>monitor _(ghost ((ThreadData ∗) ←↩
↪→param)−>claim)) ;

140 return 0 ;
}
TimeMonitor monitor;
int main()
_(writes \universe())
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145 _(requires \program_entry_point())
{

int i,t, rc,countSum;
int tickCount, getCount;
#ifndef VERIFY

150 int endTime ;
int startTime = clock() ;

#endif

_(ghost \claim c, c1;)

155 monitor.t.hr = 0;
monitor.t.min = 0;
monitor.t.sec = 0;
_(wrap & monitor.t);

160 initializeSemaphore(& monitor.entrance _(ghost & monitor.t));
_(ghost (&monitor)−>\owns += &monitor.entrance;)
_(assert monitor.entrance.protected_obj == & monitor.t);
_(assert & monitor.entrance \in \domain(& monitor.entrance))
_(wrap &monitor);

165 _(ghost c = \make_claim({&monitor}, (&monitor)−>\consistent);)

#ifndef VERIFY
t = 0;
tickCount = 0;

170 countSum = 0;
printf("Tick�threads:�%d.�Ticks�per�thread:�%d.�Get�threads:�%d←↩

↪→.�Gets�per�thread:�%d\n",
NUM_OF_TICK_THREADS, NUM_OF_TICKS, ←↩

↪→NUM_OF_GET_THREADS, NUM_OF_GETS);
printf("Creating�Tick�thread\n");
for(t=0; t<NUM_OF_TICK_THREADS; t++){

175 tickData[t].monitor = &monitor ;
_(ghost tickData[t].claim = c ;)
_(wrap & tickData[t]);
rc = pthread_create(&tick_threads[t], NULL, start_tick, (void ∗) &←↩

↪→tickData[t]);
tickCount++;

180 printf("tick�%d�is�created�\n", t);
if (rc){

printf("ERROR;�return�code�from�pthread_create()�is�%d\n←↩
↪→", rc);
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exit(−1);
}

185 }

for(t=0; t<NUM_OF_GET_THREADS; t++){
getData[t].monitor = &monitor ;
_(ghost getData[t].claim = c ;)

190 _(wrap & getData[t]);
rc = pthread_create(&get_threads[t], NULL, start_get, (void ∗) & ←↩

↪→getData[t]);
printf("get�%d�is�created\n", t);

if (rc){
printf("ERROR;�return�code�from�pthread_create()�is�%d\n←↩

↪→", rc);
195 exit(−1);

}
}

go = 1 ;
200

for(t=0; t<NUM_OF_TICK_THREADS; t++){
pthread_join(tick_threads[t], NULL);
countSum += NUM_OF_TICKS ;

}
205

for(t=0; t<NUM_OF_GET_THREADS; t++){
pthread_join(get_threads[t], NULL);

}
printf("t.hr:�%d�==�%d\n�", monitor.t.hr, (countSum/3600)%24 );

210 printf("t.min:�%d�==�%d\n�", monitor.t.min, (countSum%3600)/60 );
printf("t.sec:�%d�==�%d\n�", monitor.t.sec, countSum%60 );
endTime = clock() ;
printf("time�is�%d�s�", (endTime−startTime)/CLOCKS_PER_SEC );
#endif

215 return 1;
}
/∗
C:\Saimon\vcc\Prod−Cons\Prod−Cons>vcc /2/it/smoke testTime.c
Verification of _Semaphore#adm succeeded.

220 Verification of _TimeOfDay#adm succeeded.
Verification of _Time_Monitor#adm succeeded.
Verification of _thread_data#adm succeeded.

101



Verification of _wctime succeeded.
Verification of _wctime_s succeeded.

225 Verification of difftime succeeded.
Verification of ctime succeeded.
Verification of ctime_s succeeded.
Verification of gmtime succeeded.
Verification of gmtime_s succeeded.

230 Verification of localtime succeeded.
Verification of localtime_s succeeded.
Verification of mktime succeeded.
Verification of _mkgmtime succeeded.
Verification of time succeeded.

235 Verification of initializeSemaphore succeeded.
Verification of acquire succeeded.
Verification of release succeeded.
Verification of enterMonitor succeeded.
Verification of exitMonitor succeeded.

240 Verification of tick succeeded.
Verification of get succeeded.
Verification of start_tick succeeded.
Verification of start_get1 succeeded.
Verification of start_get succeeded.

245 Verification of main succeeded.
∗/

Listing A.2: time.c

A.3 Producer/Consumer Implementation

0 #include "vcc.h"

#include <stdlib.h>
#ifdef VERIFY

#include "InterLockedCompareExchange.h"
#else

5 #include <Windows.h>
#include <pthread.h>
#include <stdio.h>

#endif
#include "semaphore.h"

10 #include "notFullSemaphore.h"

#include "notEmptySemaphore.h"
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#define CAPACITY 5
#define N 1000

15 #define NUM_OF_PROD_THREADS 4
#define NUM_OF_CONS_THREADS 1
#define RAND_DIVISOR 100000000
int a[N];

20 #ifndef VERIFY
pthread_t prod_threads[NUM_OF_PROD_THREADS];
pthread_t cons_threads[NUM_OF_CONS_THREADS];

#endif

25 typedef struct _MonitoredBuffer{
int buffer[CAPACITY];
int size ;
int head ;
_(invariant 0 <= size && size <= CAPACITY)

30 _(invariant 0 <= head && head < CAPACITY)
unsigned notFullCount;
unsigned notEmptyCount;

}MonitoredBuffer;

35 _(claimable) typedef struct _BufferMonitor
{

MonitoredBuffer theBuffer;
Semaphore entrance;

40 _(invariant \mine(& notFullQ))
_(invariant notFullQ.buff == &theBuffer)

NotFullSemaphore notFullQ;
NotEmptySemaphore notEmptyQ;

45
_(invariant \mine(& notEmptyQ))
_(invariant notEmptyQ.buff == &theBuffer)

_(invariant \mine(& entrance))
50 _(invariant entrance.protected_obj == &theBuffer)

}BufferMonitor;

void awaitNotFullCondition(BufferMonitor ∗monitor _(ghost \claim c))

103



55 _(always c, monitor−>\consistent)
_(requires \wrapped(& monitor−>theBuffer))
_(requires monitor−>entrance.protected_obj != c)
_(writes & monitor−>theBuffer)
_(ensures \wrapped(monitor−>notFullQ.buff) )

60 _(ensures monitor−>theBuffer.size < CAPACITY)
{

_(unwrap & monitor−>theBuffer);
_(unchecked)monitor−>theBuffer.notFullCount ++;
_(wrap & monitor−>theBuffer);

65 release(& monitor−>entrance _(ghost c));
notFullSemaphoreAcquire(&monitor−>notFullQ _(ghost c));
_(unwrap & monitor−>theBuffer);
_(unchecked)monitor−>theBuffer.notFullCount −−;
_(wrap & monitor−>theBuffer);

70 }

void signalNotFullCondition(BufferMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
_(requires \wrapped(& monitor−>theBuffer) )

75 _(requires monitor−>theBuffer.size < CAPACITY)
_(writes monitor−>entrance.protected_obj)
_(ensures \wrapped(& monitor−>theBuffer))
{

unsigned nFcount;
80 _(unwrap & monitor−>theBuffer);

nFcount = monitor−>theBuffer.notFullCount;
_(wrap & monitor−>theBuffer);

if(nFcount > 0)
85 {

notFullSempahoreRelease(& monitor−>notFullQ _(ghost c));
acquire(& monitor−>entrance _(ghost c));

}
}

90
void awaitNotEmptyCondition(BufferMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
_(requires \wrapped(& monitor−>theBuffer))
_(requires monitor−>entrance.protected_obj != c)

95 _(writes & monitor−>theBuffer)
_(ensures \wrapped(& monitor−>theBuffer) )
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_(ensures monitor−>theBuffer.size > 0)
{

_(unwrap & monitor−>theBuffer);
100 _(unchecked)monitor−>theBuffer.notEmptyCount ++;

_(wrap & monitor−>theBuffer);
release(& monitor−>entrance _(ghost c));
notEmptySemaphoreAcquire(&monitor−>notEmptyQ _(ghost c));
_(unwrap & monitor−>theBuffer);

105 _(unchecked)monitor−>theBuffer.notEmptyCount −−;
_(wrap & monitor−>theBuffer);

}

void signalNotEmptyCondition(BufferMonitor ∗monitor _(ghost \claim c))
110 _(always c, monitor−>\consistent)

_(requires \wrapped(& monitor−>theBuffer) )
_(requires monitor−>theBuffer.size > 0)
_(writes & monitor−>theBuffer)
_(ensures \wrapped(& monitor−>theBuffer))

115 {
unsigned nEcount;
_(unwrap & monitor−>theBuffer);
nEcount = monitor−>theBuffer.notEmptyCount;
_(wrap & monitor−>theBuffer);

120
if(nEcount > 0)
{

notEmptySemaphoreRelease(& monitor−>notEmptyQ _(ghost c));
acquire(& monitor−>entrance _(ghost c));

125 }
}

void enterMonitor(BufferMonitor ∗monitor _(ghost \claim c))
_(always c, (& monitor−>entrance)−>\consistent)

130 _(ensures \wrapped(monitor−>entrance.protected_obj) )
_(ensures \fresh(monitor−>entrance.protected_obj) )
{

acquire(& monitor−>entrance _(ghost c));
}

135
void exitMonitor(BufferMonitor ∗monitor _(ghost \claim c))
_(always c, (& monitor−>entrance)−>\consistent)
_(requires \wrapped(monitor−>entrance.protected_obj))
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_(requires monitor−>entrance.protected_obj != c)
140 _(writes monitor−>entrance.protected_obj)

{
release(& monitor−>entrance _(ghost c));

}

145 void deposit(long value, BufferMonitor ∗monitor _(ghost \claim c))
_(always c, monitor−>\consistent)
{

int size, head;
enterMonitor(monitor _(ghost c));

150 if(monitor−>theBuffer.size == CAPACITY)
{

awaitNotFullCondition(monitor _(ghost c));
_(assert monitor−>theBuffer.size < CAPACITY) ;

}
155 _(unwrap &monitor−>theBuffer);

size = monitor−>theBuffer.size ;
head = monitor−>theBuffer.head ;
monitor−>theBuffer.buffer[(head+size) % CAPACITY] = value ;
monitor−>theBuffer.size += 1;

160 _(wrap &monitor−>theBuffer);
#ifndef VERIFY

printf ("deposit...\n");
#endif
_(assert monitor−>theBuffer.size > 0);

165 signalNotEmptyCondition(monitor _(ghost c));
exitMonitor(monitor _(ghost c));

}

int fetch(BufferMonitor ∗monitor _(ghost \claim c))
170 _(always c, monitor−>\consistent)

{
long result;
enterMonitor(monitor _(ghost c));
if(monitor−>theBuffer.size == 0)

175 {
awaitNotEmptyCondition(monitor _(ghost c));
_(assert monitor−>theBuffer.size > 0);

}
_(unwrap & monitor−>theBuffer);

180 result = monitor−>theBuffer.buffer[monitor−>theBuffer.head];
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monitor−>theBuffer.head = (monitor−>theBuffer.head+1) % CAPACITY ;
monitor−>theBuffer.size −= 1;
_(wrap & monitor−>theBuffer);
#ifndef VERIFY

185 printf ("fetch...\n");
#endif
_(assert monitor−>theBuffer.size < CAPACITY);
signalNotFullCondition(monitor _(ghost c));
exitMonitor(monitor _(ghost c));

190 return result;
}

void Producer (int value, BufferMonitor ∗ monitor _(ghost \claim c))
_(always c, monitor−>\consistent)

195 {
deposit(value, monitor _(ghost c));

}

int Consumer (BufferMonitor ∗monitor _(ghost \claim c))
200 _(always c, monitor−>\consistent)

{
int item;
item = fetch(monitor _(ghost c));
return item;

205 }

typedef struct _thread_data{
BufferMonitor ∗ monitor;
int k; // Starting index for producer; the first number to produce.

210 int n; // How many numbers to produce or consume.
_(ghost \claim claim;)
_(invariant \claims_object(claim, monitor))

}ThreadData ;

215 ThreadData producerData[NUM_OF_PROD_THREADS];
ThreadData consumerData[NUM_OF_CONS_THREADS];

void ∗start_producer (void ∗param)
_(requires \wrapped(((ThreadData ∗) param)))

220 _(always ((ThreadData ∗) param)−>claim, ((ThreadData ∗) param)−>monitor←↩
↪→−>\consistent)
{
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int n = ((ThreadData ∗) param)−>n;
int k = ((ThreadData ∗) param)−>k;
BufferMonitor ∗monitor = ((ThreadData ∗) param)−>monitor ;

225 int i ;
for (i=k ; i < _(unchecked)(n+k); i++)
{

#ifndef VERIFY
Sleep(rand() / RAND_DIVISOR);

230 #endif
Producer(i, monitor _(ghost ((ThreadData ∗) param)−>claim));

}
return NULL;

}
235

void ∗start_consumer (void ∗param)
_(requires \wrapped(((ThreadData ∗) param)))
_(always ((ThreadData ∗) param)−>claim, ((ThreadData ∗) param)−>monitor←↩
↪→−>\consistent)
{

240 int n = ((ThreadData ∗) param)−>n;
BufferMonitor ∗monitor = ((ThreadData ∗) param)−>monitor ;
int i ;
for (i = 0; i < n; i++)
{

245 int index ;
#ifndef VERIFY

Sleep(rand() / RAND_DIVISOR);
#endif
index = Consumer(monitor _(ghost ((ThreadData ∗) param)−>claim));

250 #ifndef VERIFY
a[index]++;

#endif

}
return NULL;

255 }

BufferMonitor monitor;

int main()
260 _(writes \universe())

_(requires \program_entry_point())
{
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int i,t, rc, allOnes;

265 _(ghost \claim c;)

for (i = 0; i < N; i++)
a[i] = 0;

270 for (t = 0; t < CAPACITY; t++)
monitor.theBuffer.buffer[t] = −1;

monitor.theBuffer.size = 0;
monitor.theBuffer.head = 0;
monitor.theBuffer.notFullCount = 0 ;

275 monitor.theBuffer.notEmptyCount = 0 ;
_(wrap & monitor.theBuffer);

notFullSemaphoreInitialize(&monitor.notFullQ, & monitor.theBuffer);
_(ghost (& monitor)−>\owns += & monitor.notFullQ;)

280 _(assert monitor.notFullQ.buff == &monitor.theBuffer);
_(assert & monitor.notFullQ \in \domain(& monitor.notFullQ));

notEmptySemaphoreInitialize(&monitor.notEmptyQ, & monitor.theBuffer);
_(ghost (& monitor)−>\owns += & monitor.notEmptyQ;)

285 _(assert monitor.notEmptyQ.buff == &monitor.theBuffer);
_(assert & monitor.notEmptyQ \in \domain(& monitor.notEmptyQ));

initializeSemaphore(& monitor.entrance _(ghost & monitor.theBuffer));
_(ghost (&monitor)−>\owns += &monitor.entrance;)

290 _(assert monitor.entrance.protected_obj == & monitor.theBuffer);
_(assert & monitor.entrance \in \domain(& monitor.entrance))

_(wrap &monitor);
_(ghost c = \make_claim({&monitor}, (&monitor)−>\consistent);)

295
#ifndef VERIFY

t = 0;
for(t=0; t<NUM_OF_PROD_THREADS; t++){

producerData[t].monitor = &monitor ;
300 _(ghost producerData[t].claim = c ;)

producerData[t].k = t ∗ (N/NUM_OF_PROD_THREADS) ;
if (t == (NUM_OF_PROD_THREADS −1))

producerData[t].n = (N − ((N/NUM_OF_PROD_THREADS) ∗ (←↩
↪→NUM_OF_PROD_THREADS−1)));
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else
305 producerData[t].n = N/NUM_OF_PROD_THREADS;

_(wrap & producerData[t]);
rc = pthread_create(&prod_threads[t], NULL, start_producer, (void ←↩

↪→∗) &producerData[t]);
printf("producer�%d�is�created�\n", t);
if (rc){

310 printf("ERROR;�return�code�from�pthread_create()�is�%d\n←↩
↪→", rc);

exit(−1);
}

}

315 for(t=0; t<NUM_OF_CONS_THREADS; t++){
consumerData[t].monitor = &monitor ;
_(ghost consumerData[t].claim = c ;)
if (t == (NUM_OF_CONS_THREADS −1))

consumerData[t].n = (N − ((N/NUM_OF_CONS_THREADS) ∗ ←↩
↪→(NUM_OF_CONS_THREADS−1)));

320 else
consumerData[t].n = N/NUM_OF_CONS_THREADS;
_(wrap & consumerData[t]);
rc = pthread_create(&cons_threads[t], NULL, start_consumer, (←↩

↪→void ∗) & consumerData[t]);
printf("consumer�%d�is�created\n", t);

325 if (rc){
printf("ERROR;�return�code�from�pthread_create()�is�%d\n←↩

↪→", rc);
exit(−1);

}
}

330
for(t=0; t<NUM_OF_PROD_THREADS; t++){

pthread_join(prod_threads[t], NULL);
printf("producer�%d�done\n", t);

}
335

for(t=0; t<NUM_OF_CONS_THREADS; t++){
pthread_join(cons_threads[t], NULL);
printf("consumer�%d�done\n", t);

}
340
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allOnes = 1;
for (i = 0; i< N; i++)
{

allOnes ∗= a[i];
345 if(a[i] != 1)

printf("a[%d]=�%d�",i,a[i]);
}
printf("\nallOnes�=�%d\n", allOnes);
return 1;

350
#endif

}

/∗
355 Verification of _Semaphore#adm succeeded.

Verification of _NotFullSemaphore#adm succeeded.
Verification of _MonitoredBuffer#adm succeeded.
Verification of _NotEmptySemaphore#adm succeeded.
Verification of _BufferMonitor#adm succeeded.

360 Verification of _thread_data#adm succeeded.
Verification of initializeSemaphore succeeded.
Verification of acquire succeeded.
Verification of release succeeded.
Verification of notFullSemaphoreInitialize succeeded.

365 Verification of notFullSemaphoreAcquire succeeded.
Verification of notFullSempahoreRelease succeeded.
Verification of notEmptySemaphoreInitialize succeeded.
Verification of notEmptySemaphoreAcquire succeeded.
Verification of notEmptySemaphoreRelease succeeded.

370 Verification of awaitNotFullCondition succeeded.
Verification of signalNotFullCondition succeeded.
Verification of awaitNotEmptyCondition succeeded.
Verification of signalNotEmptyCondition succeeded.
Verification of enterMonitor succeeded.

375 Verification of exitMonitor succeeded.
Verification of deposit succeeded.
Verification of fetch succeeded.
Verification of Producer succeeded.
Verification of Consumer succeeded.

380 Verification of start_producer succeeded.
Verification of start_consumer succeeded.
Verification of main succeeded.
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Listing A.3: prod-cons.c

A.4 NotFullSemaphore Implementation

0 #ifdef VERIFY
#define CAPACITY 5

#endif
typedef struct _MonitoredBuffer MonitoredBuffer;

5 _(claimable) _(volatile_owns) typedef struct _NotFullSemaphore {
volatile int s;
MonitoredBuffer ∗ buff;
_(invariant s==0 || s==1 )
_(invariant s == 1 <==> \mine(buff))

10 _(invariant s == 1 ==> buff−>size < CAPACITY)
}NotFullSemaphore;

void notFullSemaphoreInitialize(NotFullSemaphore ∗sem, MonitoredBuffer ∗ buffer)
_(writes \span(sem))

15 _(ensures \wrapped(sem))
_(ensures sem−>s == 0)
_(ensures sem−>buff == buffer)
{

sem−>s = 0;
20 sem−>buff = buffer;

_(ghost {
sem−>\owns = {};
_(wrap sem)

})
25 }

void notFullSemaphoreAcquire(NotFullSemaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(ensures \wrapped(sem−>buff) && \fresh(sem−>buff))

30 _(ensures sem−>buff−>size < CAPACITY)
{

int stop = 0;
do {

_(atomic c, sem) {
35 stop = InterlockedCompareExchange(&sem−>s, 0, 1) == 1;
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_(ghost if (stop) sem−>\owns −= sem−>buff)
}

}while (!stop);
}

40
void notFullSempahoreRelease(NotFullSemaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(requires sem−>buff−>size < CAPACITY)
_(writes sem−>buff)

45 _(requires \wrapped(sem−>buff))
{

_(atomic c, sem) {
sem−>s = 1;
_(ghost sem−>\owns += sem−>buff)

50 }
}

Listing A.4: notFullSemaphore.h

A.5 NotEmptySemaphore Implementation

0 #ifdef VERIFY
#define CAPACITY 5

#endif
typedef struct _MonitoredBuffer MonitoredBuffer ;

5 _(claimable) _(volatile_owns) typedef struct _NotEmptySemaphore {
volatile int s;
MonitoredBuffer ∗ buff;
_(invariant s==0 || s==1 )
_(invariant s == 1 <==> \mine(buff))

10 _(invariant s == 1 ==> buff−>size > 0)
} NotEmptySemaphore;

void notEmptySemaphoreInitialize(NotEmptySemaphore ∗sem, MonitoredBuffer ∗ ←↩
↪→buffer)
_(writes \span(sem))

15 _(ensures \wrapped(sem))
_(ensures sem−>s == 0)
_(ensures sem−>buff == buffer)
{

sem−>s = 0;
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20 sem−>buff = buffer;
_(ghost {

sem−>\owns = {};
_(wrap sem)

})
25 }

void notEmptySemaphoreAcquire(NotEmptySemaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(ensures \wrapped(sem−>buff) && \fresh(sem−>buff))

30 _(ensures sem−>buff−>size > 0)
{

int stop = 0;
do {

_(atomic c, sem) {
35 stop = InterlockedCompareExchange(&sem−>s, 0, 1) == 1;

_(ghost if (stop) sem−>\owns −= sem−>buff)
}

} while (!stop);
}

40
void notEmptySemaphoreRelease(NotEmptySemaphore ∗sem _(ghost \claim c))
_(always c, sem−>\consistent)
_(requires sem−>buff−>size > 0)
_(writes sem−>buff)

45 _(requires \wrapped(sem−>buff))
{

_(atomic c, sem) {
sem−>s = 1;
_(ghost sem−>\owns += sem−>buff)

50 }
}

Listing A.5: notEmptySemaphore.h
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