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Abstract

Modern fiber manufacturing plants rely heavily on the use of automation. Auto-

mated facilities use sensors to measure fiber state and react to data patterns, which

correspond to physical events. Many patterns can be predefined either by careful

analysis or by domain experts. Instances of these patterns can then be discovered

through techniques such as pattern recognition. However, pattern recognition will fail

to detect events that have not been predefined, potentially causing expensive produc-

tion errors. A solution to this dilemma, novelty detection, allows for the identification

of interesting data patterns embedded in otherwise normal data. In this thesis we

investigate some of the aspects of implementing novelty detection in a fiber manu-

facturing system. Specifically, we empirically evaluate the effectiveness of currently

available feature extraction and novelty detection techniques on data from a real fiber

manufacturing system.

Our results show that piecewise linear approximation (PLA) methods produce

the highest quality features for fiber property datasets. Motivated by this fact, we

introduced a new PLA algorithm called improved bottom up segmentation (IBUS).

This new algorithm produced the highest quality features and considerably more data

reduction than all currently available feature extraction techniques for our application.

Further empirical results from several leading time series novelty detection tech-

niques revealed two conclusions. A simple Euclidean distance based technique is the

best overall when no feature extraction is used. However, when feature extraction is

used the Tarzan technique performs best.
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Chapter 1

Introduction

The demand for improved efficiency and quality in the manufacturing industry has

led to an increased use of automation. The success of automated production depends

largely on control systems that monitor material state and take appropriate action.

One method of monitoring uses sensors to detect changes in physical properties of the

material being produced. In some cases, this measurement data has been interpreted

manually by qualified human operators. This has worked well for many years in

part because the amount of data has been small and manageable. Advances in data

capture technology and the availability of inexpensive storage are making it possible to

record and store vast amounts of measurement data. As a result, human operators are

becoming less able to detect all material defects in a timely and cost effective fashion.

There is a growing realization that for such monitoring systems to be effective, the

data analysis must be automated.

Automating data analysis for the detection of faults is not a new concept in the

manufacturing industry. For years computational intelligence techniques have been

1
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Figure 1.1: An incomplete knowledge base will ultimately cause interesting events to

be missed.

used to detect tool breakage, product defects, etc. [18, 36, 15]. On the forefront of

industrial monitoring is INSTRUMAR Limited, a company based in Newfoundland

and Labrador. This company has developed a sophisticated on-line synthetic polymer

fiber monitoring system called the AttalusTM Fiber System [6, 5, 7, 8, 9]. Synthetic

polymer fiber in this application is used to make carpet and other industrial fibers.

The basis for most of these techniques is to match the data to known patterns,

which correspond to physical events. The matching process can be implemented with

techniques such as pattern recognition, similarity search, or by other specialized means

[15, 2]. Such systems are fine for detecting faults that have previously occurred and

been detected. The procedure for doing so involves two steps: define data signatures

for all possible faults, and then search for them continually. This works quite well if
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nothing unexpected happens. In this case, faults are expected patterns since we are

searching for them. As shown in Figure 1.1, the obvious problem with this system is

made evident when an unidentified event occurs. The system would fail to recognize

the event and would therefore pass it off as normal operation data. In the case

of a production line, this oversight could lead to substantial financial losses in off-

specification product. In other words, sometimes the most interesting fault being

searched for is not known. It may be unknown because it has never occurred before

(as described above) or computing a data signature for it is too expensive [22].

Clearly, enumerating all known fault patterns cannot detect all events. A more

robust approach, called novelty detection, can be defined as “. . . the automatic identi-

fication of unforeseen or abnormal phenomena embedded in a large amount of normal

data.” [40] Much research has been devoted to this approach in general. Until recently

however, novelty detection on time series data has received much less attention than

novelty detection in other types of data [30]. This is in part due to the fact that time

series databases are usually very large and the notion of similarity can be subjective.

Similarity may depend on the user, the domain, and the task at hand [28].

The occurrence of false positives is a problem for many novelty detection methods.

A false positive occurs when a particular method marks something as novel when it

is not. As a result, novelty detection systems should not be solely responsible for

monitoring of a product. An ideal monitoring system could take advantage of both

approaches. A pattern matching approach is very capable of finding known data

patterns and novelty detection allows the system to expand its knowledge base either

autonomously or by a supervised means.

In this research we investigate some of the aspects of implementing novelty de-
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tection in a fiber manufacturing system. Specifically, we evaluate the effectiveness of

currently available feature extraction and novelty detection techniques on data from

a real fiber manufacturing system.

1.1 Background

The manufacture of fiber and fiber based products represents an enormous global

industry. In general, fiber can be grouped into two categories: natural and man

made. Natural fiber comes from several different sources in nature: animal (e.g., silk

and wool), mineral (e.g., asbestos), or vegetable (e.g., cotton) [39]. Man made fiber

is created from fiber forming substances and does not occur naturally. Man made

fiber can be divided further into two groups: cellulosics and synthetics [16]. Cellulosic

fiber is formed from plants that naturally produce cellulose. Synthetic fiber is created

entirely from chemical compounds (i.e., polymers) made from petroleum or natural

gas. In this work our data sets are all based on synthetic fiber, so we will not consider

other types of fiber.

1.1.1 Synthetic Fiber Manufacturing

Manufacturing synthetic fiber is conceptually simple. As illustrated in Figure 1.2,

free-flowing polymer is extruded through the small holes of a spinnerette and is then

solidified to produce fiber filaments [16]. The viscosity of a polymer can be lowered

to allow extrusion by heating or dissolving into a solution. The individual polymer

fiber filaments are solidified by cool air or immersion in a suitable fluid. Filaments of

fiber are usually grouped together into a tow of fiber. A tow is a continuous strand
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of many fiber filaments grouped together.

After the fiber is solidified it can undergo a number of post processing stages.

These stages are used to modify the properties of the fiber to meet various require-

ments. We will focus on the processes of interlacing/noding, and lubricating/finishing

[16, 6]. Noding, as illustrated in Figure 1.3, is the process of compressing a tow of

fiber at regular intervals, creating nodes that hold the fiber together. Liquid finish

is applied to fiber in order to create desirable properties such as smoothness, luster,

water repellency, flame retardancy, etc. [39].

To ensure fiber quality, many properties of the produced fiber are measured. We

will focus on the following physical properties:

• Denier: the weight in grams per 9000 meters of the final product [39].

• Node Count: the number of nodes in the fiber that occur during a sampling

period [6].

• Node Quality: the compactness of a node [6].

• Amount of Finish: the amount of finish on the final product [6].

1.1.2 Synthetic Fiber Monitoring

The basic structure of a monitoring and control system is depicted in Figure 1.4.

The manufacturing process in this case is where the synthetic fiber gets produced.

As described in the previous section, a number of physical properties need to be

measured to ensure that the fiber meets the required specification. INSTRUMAR’s

AttalusTM Fiber System determines these properties by using a novel electromagnetic
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Figure 1.3: Interlacing a tow of synthetic polymer fiber.
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Figure 1.4: Implementing automation with a monitoring and control system.
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Figure 1.5: How several Attalus fiber properties are calculated from the electrical

impedance response signal.

sensor technology. The Attalus sensor measures the electrical impedance of fiber as

it passes through an electromagnetic field. This measurement is sensitive to the

geometry and electrical properties of both the fiber and finish [6].

Figure 1.5 shows how several fiber properties recorded by Attalus are calculated

from the electrical impedance response signal. The magnitude reading relates to the

measurement of denier. That is, magnitude does not equal denier, but changes in

magnitude indicate similar changes in denier. When a fiber node passes over the

sensor, the signal drops. From this observation, both node count and node quality

can be calculated. Node count is simply the number of drops in the signal and node

quality is the depth of the drop. Another property not illustrated in Figure 1.5 is

the phase property. Phase is defined as the time delay between the signal waveform

and a reference waveform [6]. The phase reading is sensitive to the amount of finish

applied to the fiber. This is due to the finish having a higher electrical conductivity

to that of the fiber. In this work, these four measurements produced by Attalus are
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referred to as fiber properties.

In this research, we are interested in enhancing the fault detection module of

the monitoring and control system depicted in Figure 1.4. Considerations for the

manufacturing process, sensor system, and control action subsystem are not in the

scope of this work.

1.2 Problem Statement

To our knowledge, no time series novelty detection algorithms have been applied to

data originating from synthetic fiber manufacturing processes. Due to the success

of such methods in other fields, it is interesting to determine whether they would

apply well to fiber applications. The primary objective of this study is to empirically

evaluate several of the most successful time series novelty detection techniques to

fiber data, in order to determine which is the most effective. A secondary objective

is to empirically evaluate several leading feature extraction techniques on fiber data,

again to determine the most effective. Feature extraction is a preprocessing stage of a

novelty detection application. Its goal is to reduce data size while keeping important

data features intact.

1.3 Methodology

To complete the primary objective we will first review all time series novelty detec-

tion techniques presented in the literature. Two of the best techniques will then be

selected for further analysis by qualitative comparison. Techniques will be eliminated
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based on time complexity, scalability, unsupported issues from the fiber domain, lack

of follow up work, nondeterministic properties, flaws in the approach cited in other

papers, etc. The techniques will then be implemented to perform tests on real fiber

data. In addition to the techniques from the literature, two additional novelty de-

tection techniques will also be implemented. One is based on the distance from the

training data to the test data. This serves as a simple baseline on which to compare

the other techniques. The second additional technique implements a simple voting

scheme on the outputs from all other techniques. These four techniques are then

empirically evaluated on data from a real fiber monitoring application. Recommen-

dations as to which technique is the most effective will be based on results from the

experimentation.

The secondary objective is accomplished in much the same way as the primary.

That is, we first review techniques in the literature, implement them, compare them

empirically, and then derive conclusions from the results.

1.4 Main Contributions

Our main contributions in this work are:

• We evaluate several leading feature extraction techniques on fiber property data.

It is shown that piecewise linear approximation (a.k.a. segmentation) techniques

produce the highest quality features.

• We introduce a new feature extraction technique based on the existing bottom-

up segmentation approach. This new technique is shown to produce the highest
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quality features for fiber property data sets. It is also general enough to be

applied to other domains.

• We perform the first evaluation of time series novelty detection as applied to

fiber property data sets. It is shown that a simple Euclidean distance based

technique is the best overall when no data compression is used. When compres-

sion is used the Tarzan technique [30] performs best.

• We design a framework for constructing, running, and visualizing time series

algorithms.

• We develop two novelty detection techniques to support comparison with the

techniques in the literature. One is based on the time aligned Euclidean dis-

tance from the training data to the test data. The second additional technique

implements a simple voting scheme on the outputs from all other techniques.

1.5 Outline of This Thesis

Chapter 2 gives an overview of the time series novelty detection techniques presented

in the literature. A rationale for the selection of novelty detection techniques to be

evaluated empirically in Chapter 5 is also given.

In Chapter 3 we present a detailed empirical comparison of the leading feature

extraction techniques. We also present a new feature extraction technique, which is

shown to produce higher quality features than all other techniques tested.

Chapter 4 presents the implementation details of the novelty detection algorithms.

This includes two sections:
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• The design and implementation of a framework used to construct and run time

series algorithms.

• The design and implementation of each novelty detection technique using this

framework. Two additional novelty detection algorithms not described in the

literature are also described here.

In Chapter 5 we perform a detailed empirical comparison of the novelty detection

techniques described in Chapter 4. Recommendations are also made on which novelty

detection techniques are best for fiber property data sets.

We conclude in Chapter 6 with a summary of our work and its key contributions.

We also describe possible future work related to this research.
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Chapter 2

Related Work

Before we can evaluate novelty detection on fiber property data, we must review all

of the available techniques presented in the literature. Many approaches to novelty

detection on time series data have been proposed [3]. Some mimic biological systems

such as the human immune system [12] and the human brain [43]. Others apply

classic statistical theory to the problem [27]. Still others approach the problem in a

more unique way [30, 40, 49, 48].

Out of all the reviewed techniques, two of the best will be selected by qualitative

comparison for further analysis in Chapter 5. Techniques will be eliminated based on

time complexity, scalability, unsupported issues from the fiber domain, lack of follow

up work, nondeterministic properties, flaws in the approach cited in other papers,

etc. These two techniques are described in greater detail in Chapter 4 and as a result

will only be briefly mentioned here.
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2.1 Artificial Neural Networks

Artificial neural networks have been used for many years in the manufacturing in-

dustry for monitoring and control [52]. This is mainly because of their ability to

learn patterns in data from experience — not from explicit mathematical models of

the data. Neural networks are applied in cases where the underlying mathematical

models are too complex or too costly to determine by traditional means. They have

been used successfully for novelty detection in time series data as well [43]. They can

learn and classify the normal data behaviour and therefore distinguish normal from

abnormal. For small problems neural networks work quite well. However, they do

not scale well to massive datasets [30] and therefore will not be considered further.

2.2 Negative Selection

Dasgupta and Forrest [12] propose a novelty detection technique based on the negative

selective mechanism of the human immune system. The human immune system is

able to distinguish foreign (i.e., not seen before) cells from normal body cells. It does

this by first generating a set of T-cells via a pseudo-random genetic rearrangement

process. These T-cells are then exposed to the body’s own cells in a training area.

T-cells that bond to the body’s cells are destroyed. The T-cells that are left match

cells that are foreign to the body. This process is called negative selection [13].

The basic idea in applying this to data sets is to somehow generate a set of

candidate pattern detectors and then discard those detectors that match the training

data. The pattern detectors left over from this process are then used to match novel or
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abnormal patterns in the data. One major drawback of this method occurs when the

normal data set becomes increasingly diverse. As a data set becomes more diverse, the

number of possible patterns increases as well. As a result, more candidate detectors

match the normal data and are destroyed. In the worst case, all pattern detectors are

destroyed and the algorithm fails [30, 40].

The non-deterministic nature and high complexity [50] of negative selection are

not desirable. As a result we will not consider negative selection in our evaluation.

2.3 Outlier Based

A novel occurrence can be thought of as being an outlier of normal occurrence data.

Outlier analysis is well established in statistics as well as in the more recent data

mining area.

The authors of [27] introduce a scheme whereby optimal histograms are used

to identify outliers in time series data. Under this scheme, outliers are defined as

“. . . points with values that differ greatly from that of surrounding points” [27]. In

a fault monitoring system a single data point does not give much information about

the system state. System state is defined by multiple consecutive data points — a

data sequence or pattern. We are most interested in data patterns that deviate from

the normal operational data.

As described in [30], sometimes large changes in magnitude at regular intervals

are part of the normal operational data. For instance, in a fiber production facility,

the process of ending a package of fiber causes a large drop in the signal at regular

intervals. In this case the absence of a large drop in signal is a novel event. Outlier
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based techniques would not catch this event and are therefore not suitable for fiber

property novelty detection.

2.4 Wavelet Based

The authors of [49] take advantage of the multi-resolution property of the wavelet

transform to find novel events at several levels of abstraction. For example, a high

level of abstraction would ignore short novel events. Their approach uses a wavelet-

based TSA-Tree (Trend and Surprise Abstractions Tree) structure to improve the

performance of searching for novel events at multiple levels of abstraction. This

method defines novelties as having a large difference between two consecutive averages

[56]. This limits the detected novelties to being dramatic shifts in the signal. Because

of this, short novelties that lie within the normal data pattern cannot be detected

[30, 40]. Also, since the definition of surprise gives the same weight to positive and

negative magnitude changes, there is no distinction made between them. Obviously

for some systems, a high spike is not the same as a low spike. Again, the novelty

definition imposes another flaw on this method. As described in Section 2.3, in a

fiber production facility the process of ending a package of fiber causes a large drop

in the signal at regular intervals. The TSA-Tree algorithm would fail in this case,

and therefore it will not be considered for evaluation.
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2.5 Frequency Based

Keogh et al. [30] have developed a novelty detection algorithm based on data pattern

frequencies. They define a novel pattern as having a frequency of occurrence different

from that of normal data. Frequencies of all the normal data patterns are encoded

in a suffix tree data structure. To utilize this structure, the data is first discretized

into a textual representation. A Markov model is then used to estimate the expected

frequency of any new data pattern. A data pattern with a greater frequency than

what was expected is considered a novel event. As with any discretization technique,

meaningful data may be lost in the transformation [40]. As a result, the discretization

technique must be chosen carefully. An interesting property of this technique is its

time/space complexity. Once the suffix tree is constructed from the normal data, the

process of detecting all novel patterns in a dataset is linear in the size of the dataset.

In 2003, a National Aeronautics and Space Administration (NASA) study singled

out Keogh’s approach as having “great promise in the long term” [26]. It is currently

being tested by NASA for space shuttle launch monitoring [38]. The success of this

technique in studies by other authors [17, 24] and the lack of any major flaws, make

it a good candidate for evaluation. It is discussed further in Chapter 4.

2.6 Support Vector Machines

Ma et al. [40] propose a novelty detection method based on support vector machines

(SVMs). SVMs are a relatively new machine learning technique applicable to both

classification and regression. In this case, support vector regression (SVR) is applied.
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The idea behind SVR is to first map the input data via a nonlinear map to a higher

dimensional feature space. By applying a simple linear algorithm in the feature space,

a nonlinear fit is created in the input space. The use of kernel functions allows all

computations to be carried out in the input space, with no explicit computations in

the higher dimensional space. This makes SVR as powerful as a nonlinear method

(such as neural networks) but much more computationally efficient [21].

Once the input data has been processed by the SVR method, all outliers of the

model are considered to be novel events. An interesting feature of this method is

its ability to associate a measure of confidence with each novel event. However,

the authors admit that the technique has many open issues which require further

investigation. Due to the small amount of empirical results [40] on this technique, as

well as the absence of any follow up work, we will not consider this technique in our

evaluation.

2.7 Learning States that Define Normal Data

Another take on the novelty detection problem is to learn rules from the data that

define the possible normal sequences [48]. Any sequence of data deviating from these

rules would be considered a novelty. This approach involves three main steps as

illustrated in Figure 2.1 (adapted from [48]). The first step is to separate the raw

data into clusters or segments. Next, rules that best describe each segment are

generated. In the illustration, signal magnitude and slope are the defining features of

each segment; other measures may be used however. From these rules, a state machine

can be constructed that will only accept normal data sequences. Any sequence that is
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not accepted by the state machine is marked as novel. This method was designed to

automate the process of populating an expert system’s knowledge base. As a result,

the rules generated by this method are human readable - a contrast to the other

novelty detection methods described above. Having the ability to clearly explain and

tweak the underlying behaviour is of great value.
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Figure 2.1: Learning rules to uncover novelties

2.7.1 Path Based

Another technique proposed by Mahoney et al. [10], is shown to produce results supe-

rior to that of the above technique. It models normal data as a sequence of minimal

bounding boxes containing all of the training paths; anomalies are considered data

patterns that deviate from any bounding box [11]. We will consider this technique in

our evaluation and it will be discussed further in Chapter 4.
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2.8 Summary

In this chapter we have reviewed all of the available time series novelty detection

techniques presented in the literature. Most of these techniques were eliminated

from further analysis based on time complexity, scalability, unsupported issues from

the fiber domain, lack of follow up work, nondeterministic properties, flaws in the

approach cited in other papers, etc. The frequency [30] and path based [10] techniques

appeared to be best suited and so will be evaluated further in Chapter 5.
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Chapter 3

Evaluation of Feature Extraction

Techniques

The field of time series data mining has seen an explosion of interest in recent years.

Researchers in this field are typically faced with two related problems: many data

mining algorithms have a high time complexity and time series databases are often

very large. Together, these problems make it difficult to use data mining technologies

such as novelty detection in time critical systems. The solution is to either reduce

algorithm complexity or reduce data size. Much work has been devoted to both

problems in the data mining community. In this chapter we focus on the aspect of

reducing data size through feature extraction techniques.

Feature extraction is the process of identifying important data features while re-

moving unimportant ones. Features could be actual data points, statistics on several

data points, lines, clusters, or even coefficients of functions. The goal is to end up

with fewer features than original data points so that data mining algorithms can run
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in a reduced amount of time.

Many feature extraction techniques have been proposed for time series data min-

ing, including Fourier/Wavelet transforms [1, 46], Singular Value Decomposition

(SVD) [53], Adaptive Piecewise Constant Approximation (APCA) [31], Symbolic

Mappings [37, 45], Piecewise Aggregate Approximation (PAA) [32, 55], and Piece-

wise Linear Approximation (PLA) [33, 34, 44, 25]. In this chapter, we will evaluate

the four most popular techniques using fiber property datasets. Our motivation for

evaluating these techniques here is to select the best technique for data preprocessing

in the novelty detection evaluations in Chapter 5.

The remainder of the chapter is organized as follows. In Section 3.1, we describe

the major feature extraction techniques and the optimizations used. In Section 3.2 we

empirically evaluate the techniques and show that PLA methods produce the highest

quality features. In Section 3.3 we detail our new PLA algorithm and validate its

results [4]. We conclude in Section 3.4 with a summary.

3.1 Techniques

Many feature extraction algorithms have been presented in the literature. The pur-

pose of these algorithms is to reduce data size while keeping only the important details

intact (i.e., the data features). In this section, we discuss the four most popular fea-

ture extraction techniques that have been used for time series data mining. Figure 3.1

shows these techniques in action. We refer the interested reader to works by Keogh

et al. [29, 37] for a more extensive survey of feature extraction techniques.

For the purposes of our experimentation, all techniques will need to reduce a time
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ordered series of real values ~x of length n into a vector of features ~X of length N .

Data points include anything required to store the compressed representation; this

includes actual values, indices, or other bookkeeping data.

3.1.1 Discrete Fourier Transform

The first technique presented to the time series data mining community for data

reduction was the Discrete Fourier Transform (DFT) [1]. The DFT breaks down a

time series of length n into n sine/cosine waves, which when composed together form

the original signal. Each wave is represented by a single complex number, known as

a Fourier coefficient.

The DFT of a time series ~x = [t = 0, ..., n− 1|xt] is defined as a sequence of

complex coefficients ~X = [f = 0, ..., n− 1|Xf ], represented by

Xf =
1√
n

n−1∑
t=1

xt exp

(
−i2πft

n

)
where i is the imaginary unit i =

√
−1 and f = 0, ..., n− 1. Computing Xf directly

is an O(n2) operation. Fortunately, Xf can be computed in O(n log n) time by the

Fast Fourier Transform (FFT) algorithm [1].

Referring back to Figure 3.1, the Fourier result shown is not a direct plot of ~X. All

plots shown are time domain signals reconstructed from the feature vector ~X (which,

in the case of the Fourier transform, is in the frequency domain).

One may notice that the resulting data size after the DFT is 2n. This is because

each complex number needs two values for storage: one real and one imaginary. By

taking advantage of the symmetric property of the DFT [32], half of the resultant

coefficients can be discarded. This still leaves us with the same data size as we started
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with. The ability to compress data comes from the fact that for most data sets, many

coefficients contribute little to the reconstructed signal and can be discarded. Another

useful property of the DFT is that the Euclidean distance between two time series

in the frequency domain is the same as in the time domain [1]. This allows all data

mining operations to be performed in the much smaller frequency domain.

Since the DFT essentially measures the global frequency content of the signal, it

does not preserve localized time domain events. That is, elements that occur at a

specific time and do not repeat are lost in the transformation. As a result, processing

large time series with the DFT is expected to produce poor approximations.

3.1.1.1 Comparison of Compression Schemes

Agrawal [1] describes the process of discarding Fourier coefficients as simply removing

all but the first few. However, the lower frequencies that are kept in this scheme

may not always be the frequencies that contribute most to the signal. A technique

proposed by Mörchen [42] describes keeping only the largest coefficients; this results

in the most energy preservation from the original signal. Using this scheme, the

resulting coefficient array will most likely be sparse and value indices will need to be

stored. This means that fewer coefficients can be stored to make room for indices.

To determine which compression scheme retains a closer fit to the original data,

we performed experiments similar to those in Section 3.2 of this chapter. The re-

sults of these experiments are shown in Figure 3.2. Clearly, for our fiber property

data sets, keeping the first few coefficients retains higher quality features than the

technique proposed by Mörchen [42]. This is perhaps due to the higher number of co-

efficients retained in Agrawal’s approach. As a result, we will use Agrawal’s approach
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Figure 3.2: Comparison of two compression schemes for the DFT. Cratio and the

reconstruction error are defined in Section 3.2.1.

of removing all but the first few coefficients.

3.1.2 Discrete Wavelet Transform

Like the DFT, the Discrete Wavelet Transform (DWT) converts a time domain signal

into a frequency domain signal, represented by a set of coefficients. Instead of using

sine/cosine waves to reconstruct a signal, the DWT uses many scaled and/or shifted

versions of a function called the mother wavelet [42]. Low frequency versions of

the mother wavelet model the global contributions of a signal while high frequency

versions model local events in a signal [19]. In this way, data features that are localized

to a specific time can be represented as wavelet coefficients. This is a contrast to the

DFT, which can only model global contributions to the signal. This fact, along with

its low time complexity of O(n) [41], has made the DWT a choice feature extraction
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technique for many data mining applications [35].

The DWT of a time series ~x results in a sequence of real coefficients ~X. Like

the DFT, many of these coefficients contribute little to the overall signal and can be

removed. Therefore, the compression scheme used for the DFT is also used for all

DWT experiments in this paper.

There are many mother wavelet functions to choose from, with each emphasizing

different aspects of a signal. The most commonly used wavelet function for the

purposes of data mining is the Haar wavelet [54, 46]. Popivanov et al. also note that

wavelet functions such as Daubechies [14] may perform better for certain datasets

[47]. As a result, in this paper we will use two types of wavelet functions: the Haar

and Daubechies-4 wavelets. The Haar transform will be referenced as HWT (the

Haar Wavelet Transform) and the Daubechies transform will be referenced as DWT

(the Daubechies Wavelet Transform).

3.1.3 Piecewise Aggregate Approximation

The simple, yet powerful, Piecewise Aggregate Approximation (PAA) technique was

first applied to time series data mining by Keogh et al. [32] and Yi et al. [55]. It has

been used before in other fields under names such as span-based averaging or simply

averaging. The basic idea of this approach is to first divide the input sequence ~x

of length n into N equal sized segments. N is determined by the amount of data

compression needed. The mean of each segment is then used as a data feature in the

resultant series ~X, which is calculated using the following equation
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~X = [mean(~s1), ...,mean(~sN)]

where ~s is the input sequence ~x divided into N equal sized segments and ~si is the

ith segment. Due to the simplicity of this method, it has a time complexity of O(n).

This makes it particularly attractive for large data sets.

3.1.4 Piecewise Linear Approximation

Keogh et al. make the suggestion that Piecewise Linear Approximation (PLA) is

perhaps the most used feature extraction technique in time series data mining [33].

The basic idea of this approach is to approximate the input sequence using a desired

number of straight lines, which we call segments. Since the number of segments is

typically much smaller than n, a high level of compression can be achieved.

PLA techniques can be generally classified into three categories:

• Sliding Window: A window is grown until a specified error threshold is

reached. Even though this method produces relatively poor results, it is heavily

used for its online capability. Online algorithms are able to process data in

a piece-by-piece fashion, without having the entire dataset available initially.

This is contrasted to offline or batch algorithms which need the entire dataset

initially.

• Top-Down: Starts initially by approximating the entire time series with one

segment. It then recursively partitions the segment until all segments fall within

a specified error threshold. Without any modifications, this algorithm processes

data in an offline fashion.
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• Bottom-Up: Starts initially with the finest grain approximation possible (i.e.,

essentially the original data). It then iteratively merges segments until some

error threshold is met. This algorithm also processes data offline.

For all techniques, approximating lines can be calculated in a variety of ways. To

keep computational complexity low, in this work, lines are calculated using linear

interpolation (i.e., use the first and last points of the segment as the approximating

line).

As identified by Keogh et al., no PLA technique is best for all data sets [29].

However, the Bottom-Up approach is generally considered the best overall and is the

technique that will be used for all experiments in this paper. It has a time complexity

of O
(
n n

N−1

)
, where N−1 is the number of segments [33]. Pseudo code for the generic

Bottom-Up Segmentation (BUS) algorithm is shown in Listing 3.1 (adapted from

[33]). In this code listing, ~X is essentially the return value of the BottomUp routine

(i.e., ~X = BottomUp(~x, maxError)). The merge(s1, s2) function returns a new

segment consisting of the first point of segment s1 and the last point of segment s2.

The error(s, t) function returns the distance between an approximating segment

s and the original time series t.

With little modification, the BUS algorithm can accept N as a parameter, instead

of maxError. While this is desirable, we will use maxError to better support

comparison with our new technique in Section 3.3.

Combinations of the three PLA techniques have been proposed before as well.

For instance, Keogh et al. have combined the Bottom-Up approach with the Sliding

Window approach [33]. This novel technique produced features similar in quality to
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Listing 3.1: The Bottom-Up Segmentation (BUS) algorithm

TimeSeries BottomUp(TimeSeries T, double maxError)

{

Segment [] segments;

double [] mergeCost;

int i;

for (i = 0; i < T.Length; i += 2)

segments[i / 2] = new Segment(T[i], T[i + 1]);

for (i = 0; i < segments.Length; ++i)

{

Segment approxSegment = merge(segments[i], segments[i+1]);

mergeCost[i] = error(approxSegment , T);

}

while (min(mergeCost) < maxError)

{

i = indexOfMin(mergeCost);

segments[i] = merge(segments[i], segments[i+1]);

remove(segments[i+1]);

mergeCost[i]= error(merge(segments[i], segments[i+1]), T);

mergeCost[i-1]= error(merge(segments[i-1], segments[i]), T);

}

return new TimeSeries(segments);

}
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Bottom-Up with the addition of online support. Since it still did not outperform

Bottom-Up, we will not include it here.

3.2 Empirical comparison of major feature extrac-

tion techniques

In this section we will present a detailed empirical comparison of the major feature

extraction techniques described in Section 3.1. As stated before, the experimentation

is done on data from an industrial synthetic polymer fiber monitoring system; namely,

the AttalusTM Fiber System [5]. We will focus on the Magnitude fiber property which

corresponds closely with fiber denier. Eleven datasets will be tested ranging in size

from 256 to 1024 points. All datasets are normalized to produce a mean of zero

and standard deviation of one. These datasets were not chosen arbitrarily; they all

contain anomalous patterns of fiber denier. Retaining such anomalous patterns in the

reduced representation is a critical goal of this work for the intended novelty detection

evaluation. Figure 3.3 illustrates the eleven datasets used.

3.2.1 Methodology

To evaluate the suitability of each feature extraction technique, we will adopt a proce-

dure similar to the one used by Keogh et al. [29]. This procedure essentially measures

the reconstruction error for a fixed N , where lower reconstruction error implies higher

feature quality. Keogh et al. use the simple Euclidean distance function as a measure

of the reconstruction error
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Figure 3.3: The eleven datasets used in the experiments. Each dataset is a recording

of the Magnitude data property over time.

error(~x, ~X) =

√√√√ n∑
i=0

(xi −Xi)2

where n = N . However, in all cases when Cratio > 0, where Cratio = N
n

, n is greater

than N so this formula will not work. In addition, points in the original and recon-

structed time series will not necessarily ‘line up’ along the time axis. In our scheme,

interpolation is used to find the distance between a point and a line in the recon-

structed time series. We call this distance metric the time aligned Euclidean distance.

This is illustrated in Figure 3.4. Note that in this work, the time that a data event

occurs is important.

For each value of Cratio tested, a technique must produce N data points. For

example, for Cratio = 20% a n = 1000 point sample would be reduced to N = 200

points. The various techniques are tuned to produce N resultant data points from a

specified Cratio as follows:
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Figure 3.4: The time aligned Euclidean distance in the above case would be√
D2

1 + ...+D2
n, where B is the input sequence and A is the reduced representation.

• DFT: N = Cratio∗n
2

, the first N coefficients are used.

• DWT, HWT: N = Cratio ∗ n, like the DFT, the first N coefficients are used.

• PAA: N = Cratio ∗ n, ~x is divided into N segments of length n
N

.

• BUS: N is the number of resulting data points (i.e., N − 1 segments) from the

BUS algorithm on a pre-calculated maximum error where maxError is defined

as the maximum time aligned Euclidean distance allowed between a segment

and the original data. The maxError value that produces N data points is

calculated by a separate utility that searches maxError values in increments

of 0.0001, starting from zero.

We note that the method of calculating maxError values for the BUS algorithm is

computationally expensive. This method is only used to facilitate uniform comparison
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with the other feature extraction techniques. Not all techniques support maxError

as a parameter, therefore we must resort to such a procedure. In practice, maxError

would be set to a fixed value and N would vary accordingly.

Since we are only concerned with the relative quality of a particular technique,

we normalize all results by dividing by the worst technique. The technique with the

lowest quality for a particular Cratio has the highest reconstruction error.

3.2.2 Results

The results of the experiments are summarized in Figure 3.5. One can readily see

that the DFT performs very poorly at all levels of compression. This is most likely

due to its inability to preserve the high number of local events in fiber property data.

PAA, DWT, and HWT perform similarly at all compression levels and were gen-

erally much better than DFT. None performed better than BUS at any point.

The main result here is that the BUS technique produced the highest quality

features at all levels of compression.

3.3 Enhancement to the BUS technique

The results from the previous section clearly show that BUS produced the highest

quality features in fiber property data. It also has a reasonable time complexity which

allows it to be applied to much larger datasets. This motivated us to find further

improvements to the BUS technique.

Upon examination of the features produced by BUS, we noticed that many data

points appeared to be redundant. That is, many data points lay on a nearly straight
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Figure 3.5: A comparison of the major feature extraction techniques on eleven fiber

property datasets. Each histogram bar represents the sum of the reconstruction errors

for each dataset.
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line and thus did not add much value. These points exist because of the BUS algo-

rithm’s initial segmentation. Recall that initially, each segment has a length of two

and so all merged segments will have an even length. However, a segment may be

best represented by an odd number of data points. This was identified as a possible

area for improvement by Keogh et al. [33]. To our knowledge no such improvement

has been made.

To improve upon this situation we introduce a new algorithm based on BUS

that removes these redundant points. We call our new algorithm IBUS (Improved

Bottom-Up Segmentation) [4].

3.3.1 The IBUS algorithm

The IBUS algorithm essentially adds a post-processing step to the BUS algorithm.

Thus, it first calls the BUS algorithm to determine an initial data segmentation. It

then scrolls through the BUS data, discarding points that when removed, keep the

error below maxError. This can also be described as removing points that lie on a

straight line.

This process is implemented by looking at 3 points per iteration, and evaluating

whether the approximation formed by the 1st and 3rd points have less error than

maxError. If the approximation is below the maxError threshold, then the 2nd

point is removed from the BUS data. The pseudo code for this procedure is shown

in Listing 3.2.

Scrolling through the data takes just O(N) time and if the underlying time series

is implemented as a heap, removals take just O(logN) time [33]. Calculation of the
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reconstruction error is constant at each iteration. In the worst case, if every iteration

produces a removal, the complexity would be O(N logN). This case is highly unlikely

(if not impossible) because the BUS algorithm would need to produce a straight line

with all data points lying on it. It is easily seen that the BUS algorithm cannot

produce such an approximation in any non-trivial case. So the actual complexity is

expected to be closer to O(N). In addition, since N is much less than n, even in the

worst case the additional complexity of IBUS is negligible.

3.3.2 Comparison

We repeated all experiments in Section 3.2, now including the new IBUS algorithm.

Since BUS performed best last time, we will compare IBUS relatively to BUS. The

maxError for IBUS is calculated in the same way as BUS. So both algorithms may

have different maxError values. As shown in Figure 3.6, for our application IBUS

produced higher quality features than BUS at every level of compression. These

results are normalized values obtained by dividing by the worst technique. The largest

difference between the two methods occurred at 4% of the original data size (i.e., the

highest compression level). At this level, IBUS had only half of the reconstruction

error that BUS had. As the compression level is decreased, the benefits of using IBUS

also decreased. It is suspected that as the compression ratio approaches 100% (i.e.,

no compression), BUS and IBUS will produce identical results.

In further experiments, we compared how much data reduction IBUS achieves over

BUS for the same maxError. This is necessary to rule out any benefits derived from

the maxError searching utility described in Section 3.2.1. This also allows us to show
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Listing 3.2: The Improved Bottom-Up segmentation algorithm

TimeSeries ImprovedBottomUp(TimeSeries T, double maxError)

{

TimeSeries resultSeries = BottomUp(T, maxError);

for (int i = 1; i < resultSeries.Length - 1; ++i)

{

Segment approx = new Segment(resultSeries[i - 1], resultSeries

[i + 1]);

if (error(approx , T) <= maxError)

{

remove(resultSeries[i]);

i--;

}

}

return resultSeries;

}
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Figure 3.6: A comparison of the relative reconstruction errors of the BUS and IBUS

algorithms.

the percent improvement for replacing an already deployed BUS solution with IBUS.

The BUS maxError values from the previous experiments are used here for both

BUS and IBUS. Figure 3.7 shows the results of these experiments. At each Cratio,

IBUS reduces the data size considerably more than BUS. IBUS data size ranged from

61-68% of the BUS data size.

We reiterate that these claims are for fiber property datasets only. However, since

no domain knowledge was used in the development of IBUS, it should be applicable

to other domains as well.

While it is obvious how IBUS can lower data size by removing redundant points,

it may be unclear as to how feature quality can be improved by this process. The

improved feature quality comes from that fact that IBUS starts out with a higher

quality BUS segmentation (i.e., lower maxError) and removes only redundant points

to achieve a data size of N . This is contrasted to BUS which needs a higher maxError
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Figure 3.7: A comparison of the BUS and IBUS algorithms with a fixed maxEr-

ror. In every case IBUS reduces the data size without reducing quality by removing

redundant points.

to get the desired N points. The result is that IBUS has similar quality to BUS with

a larger N .

3.4 Summary

In this chapter we have shown that PLA methods produce the highest quality features

for fiber property datasets. We also introduced a new PLA algorithm (IBUS) which,

for our application produced the highest quality features and considerably more data

reduction than all currently available feature extraction techniques. As a result we will

use IBUS as the feature extraction method for all novelty detection experimentation

in Chapter 5.
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Chapter 4

Implementation of Novelty

Detection Techniques

To evaluate a novelty detection technique some may say you only need to implement

the core algorithm. You would quickly realize however that much of the functionality

needed to evaluate it is unavailable. You may ask:

• How is the data loaded?

• How can I change the feature extraction method without making a code change?

• How do I visualize the result?

• How do I measure, record, and analyze the results?

• How do I test the many combinations of datasets, novelty detection techniques,

and algorithm parameters?

• How well can this be reused in an existing enterprise software system?
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While all of these questions could be answered by manual manipulation of the core

algorithm’s code base, it would take too long with all of the combinations of techniques

and parameters. The process of quantitative evaluation needs to be automated.

This chapter encompasses all of the concerns related to implementing the nov-

elty detection techniques in a way that supports quantitative evaluation. In Section

4.1 we introduce a generic time series algorithm testing framework to handle the

complex process of evaluation. This framework includes functionality for specifying

algorithms, loading data, visualizing results, and recording the necessary statistics

for evaluation. Section 4.2 describes how the four novelty detection methods are

implemented. Section 4.3 summarizes the contents of this chapter.

4.1 Time Series Algorithm Testing Framework

Before any work was done on the framework its many goals had to be specified.

This was done upfront to minimize more time consuming rework later in the process.

Section 4.1.1 describes this in detail. Architectural and design decisions that support

the goals are described in Section 4.1.2. Most of this framework was orginal work

done as part of this research; notable exceptions being the .NET framework libraries

and the charting components.

4.1.1 Goals

The major goals of the framework are as follows:

• Abstract Data Source: A time series algorithm should not be concerned

with where it’s data is coming from. To achieve this, data sources should be
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abstracted. Abstracting the source of data is also necessary in the case that this

work would be used with another existing system (e.g. INSTRUMAR Limited’s

Attalus Fiber System).

• Reusable and Composable Processing Steps: The novelty detection tech-

niques share several processing steps. The framework should support the ability

to reuse these processing steps.

• Low Coupling Between Steps: To enhance testability, among other things,

coupling between the processing steps of an algorithm should be reduced to a

minimum. Testability is essential so that the correctness of each processing step

can be verified.

• Dynamic Composition: During experimentation it is very likely that an

algorithm will need to be tweaked to improve results. Several characteristics of

an algorithm may need to be changed: the order of processing steps, a single

processing step may be swapped for another, or the parameters of a processing

step may need to be modified. All of these changes should be possible without

any code change.

• Algorithm Specification Language: In order to modify an algorithm with-

out changing the implementation, an algorithm specification must be used. This

specification file must be human readable and modifiable.

• Visualization Support: In many cases analyzing an algorithm’s result is very

difficult without a visual representation of the results. Results and intermediate

steps of an algorithm should be visualized.
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Figure 4.1: The pipes and filters pattern [23, 51].

• Statistical Analysis Support: Statistics that will eventually be used to com-

pare the various novelty detection methods will need to be calculated in an

automatic fashion. This is due to the sheer volume of possible experiment

configurations that will be run.

• Matrix Run Support: There must be a way to specify many combinations

of datasets, novelty detection techniques, and algorithm parameters.

4.1.2 Architecture

4.1.2.1 Core

To support reusablity, composability, and to reduce coupling between steps a common

architectural pattern comes to mind right away; that is, of course, the pipes and

filters pattern [23, 51]. In a pipes and filters style architecture, the desired algorithm

is broken into series of steps called filters. These filters accept a message, apply some

operation to the message content, and pass the modified message to the next filter in

the chain. This is illustrated in Figure 4.1.

Implementing this pattern is conceptually simple. Figure 4.2 shows that there

are only a handful of entities required. We use an IFilter interface to represent
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Figure 4.2: The pipes and filters pattern implementation.

our filter. The process method accepts a TimeSeries and does processing on it.

Of course, if this filter is not the only one in the chain, it will need to pass on the

resultant TimeSeries to the next IFilter via a pipe. To keep things simple and

fast the implementation uses a C# event, called ProcessComplete to act as the pipe

between filters. To make an IFilter consume from another IFilter, the addSource

method is used. The FilterChain class basically has the job of assembling the chain

by repeatedly calling addSource.

Another very important class mentioned in Figure 4.2 is the TimeSeries. As

implied by the name, a TimeSeries is an ordered collection of time/value pairs.

4.1.2.2 Package Structure

The core classes mentioned in Section 4.1.2.1 are part of the Pipes And Filters Frame-

work (PAFF) package, along with many other supporting classes. Other parts of the

testing framework are divided up into separate packages (a.k.a. .NET assemblies).
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Figure 4.3 shows all packages and their inter-dependencies. A brief description of

each package is as follows:

• CLoDS (Class Library of Data Sources): Assembly used to read and write

from data sources.

• DaVinCI (Data Visualization Component Identities): Assembly con-

taining visualization components.

• FiTE (Filter Test Executor): Console application used as a front end for

FRy and TRAy.

• FRy (Filter Runner assembly): Assembly used to run filter templates

against a set of parameters and data and then collect the results.

• LiFE (Library for Feature Extraction): Assembly that contains all generic

feature extraction filters.

• PAFF (Pipes And Filters Framework): Main assembly for the framework.

Contains base classes used in most other assemblies.

• PAFFUI (Pipes And Filters Framework User Interface): The graphical

front-end for the PAFF. Contains basic functionality for opening, saving, edit-

ing, and running filter template files. Filter output can be visualized via charts

or data grids.

• PATH: Assembly implementing the PATH novelty detection algorithm [10].

• RADS (Reuseable Assembly of Data Structures): Assembly that con-

tains reusable data structures.
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Figure 4.3: Package diagram of the framework.
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• TARZAN: Assembly implementing the TARZAN novelty detection algorithm

[30].

• Test: Assembly containing unit tests and supporting mock objects for all other

assemblies. Data driven system tests are also contained in this package.

• TRAy (Template Runner Assembly): Assembly used to run templates

with varying parameters.

4.1.2.3 Data Sources

Abstraction of data sources is somewhat already built into a pipes and filters ar-

chitecture. A filter doesn’t care where its data is coming from, as long as it is a

TimeSeries. However, to make things a bit easier for dealing with different data

sources, the CLoDS package introduces some helper concepts.

Using CLoDS, the start of every filter chain is a DataSource. Once started, a

DataSource reads a chunk of time series data from the actual data source at specified

intervals. Some of the concrete DataSource implementations include:

• Synthetic - Procedurally generated data sources like random and monotoni-

cally increasing.

• File based - Sources that read data from various file formats.

• Proprietary INSTRUMAR - These can’t be discussed here but involve con-

necting to proprietary Attalus data services.

The relationships of these are shown in Figure 4.4.
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Figure 4.4: Diagram of the CLoDS package.

4.1.2.4 Dynamic Composition

We can create complex algorithms by combining filters that perform specific tasks.

But how do we describe how these filters are configured and how their inputs and

outputs are connected? Also these mappings need to be specified in a way that is

human readable and requires no code change. Rather than coming up with our own

Domain Specific Language (DSL) we’ll be using a specific XML dialect; we call this

the Filter Template File (FTF) format. XML is the obvious choice for the FTF

format. XML provides human readability, parsing support in many languages, built

in composability, and structure defining languages like DTD and XML Schema. A

complete description of the FTF format in provided in appendix B.1.

Composing filters together automatically links the inputs and outputs. In Listing

4.1, filter A receives input from the output of filter B, filter B receives input from the
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Listing 4.1: In this example of composing filters, messages would flow from filter D

to filter A.

<?xml version="1.0" encoding="utf -8" ?>

<filter id="A" assembly="..." type="...">

<config />

<filter id="B" assembly="..." type="...">

<config />

<filter id="C" assembly="..." type="...">

<config />

<filter id="D" assembly="..." type="...">

<config />

</filter >

</filter >

</filter >

</filter >

output of filter C, and so on. Filter D has no composed filter so it is inferred to be a

DataSource.

The PAFFUI application provides a way to load, edit and run an FTF. Figure

4.5 shows PAFFUI loaded with a file. Any modifications made to the filters in the

settings editor can be loaded by clicking the save button.

4.1.2.5 Visualization

The most effective way to visualize time series data is in an X-Y chart. Visualizing

the output of a particular filter is as simple as specifying the ”vis=Plot” attribute on

a particular filter FTF element. Figure 4.6 shows an example chart in PAFFUI.
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Figure 4.5: FTF configurations can be edited directly in PAFFUI.

Figure 4.6: A chart of the data at a point in the filter chain.

51



Figure 4.7: A table of the data at a point in the filter chain.

Certain types of filters output non numeric data so a grid visualization component

is enabled by specifying ”vis=Grid”. An example grid is shown in Figure 4.7. This

is useful for displaying filters that have a non-numeric output data type.

4.1.2.6 Handling Multiple Consumers

Handling multiple input data streams (i.e. multiple consumers) is a common pattern

in novelty detection algorithms. As seen in Figure 4.2, there is no restriction on how

many filters one filter can consume from. So the pipes and filters architecture already

supports this requirement. The most obvious application of multiple data streams

in novelty detection algorithms would be a filter that first learns from training data;

one data stream being the training data, the other being the data which we want

to test for novelty. The PAFF package provides the LearningFilter for this type
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Figure 4.8: Diagram of filters used to combine multiple data streams.

of algorithm. A LearningFilter operates on the two data streams in a sequential

fashion. It first processes the training data; any incoming test data is queued. It will

only process the test data once it has processed enough training data.

It is also useful in some cases to combine multiple data streams concurrently and

produce an output stream. The PAFF package provides the CombiningFilter for

this type of combination.

4.1.2.7 Result Analysis

Due to the volume of experimental configurations used in evaluating the novelty

detection algorithms, two goals were devoted to the automation of results analysis:
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statistical analysis and matrix run support. The FiTE, FRy, and TRAy packages

were added mainly to support these two goals.

It starts with FiTE, a console application that accepts an FTF and a test runner

file (TRF). The TRF contains a list of test configurations. Essentially for each test

a template FTF is reconfigured for new data, algorithm properties, and expected

anomaly regions corresponding to the data. Further detail on this format is given in

appendix Section B.2.

To support statistical analysis the FRy package injects filters into each FTF loaded

into the framework. These new filters accumulate statistics during operation and write

the results out to files after completion. This process also writes out images of each

step, fully resolved FTF files, and the original data used for the test run. This gives

a complete picture of what happened during the algorithm’s execution.

4.2 Novelty Detection Techniques

Chapter 2 provided a broad survey of time series novelty detection techniques from

the literature. These techniques were qualitatively analysed and were eliminated

based on time complexity, scalability, unsupported issues from the fiber domain, lack

of follow up work, nondeterministic properties, flaws in the approach cited in other

papers, etc. In this section we will describe in greater detail two techniques that were

not eliminated in this analysis and additionally two simple techniques that are not

discussed in the liternature.
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Figure 4.9: Filter composition for the time aligned euclidean difference algorithm.

4.2.1 Time Aligned Euclidean Difference

The time aligned euclidean difference mentioned in Section 3.2.1 can also be used

as a simple measure of novelty. In this case, the distance between a normal data

stream and a test data stream becomes the measure of novelty. The main reason for

introducing this technique is to provide a simple baseline from which to compare the

other more complex methods. The filters required for this algorithm are shown in

Figure 4.9.

The fiber property data streams have differing offsets and amplitudes, resulting

from environmental conditions and fiber composition. These differences are of little

concern for our detection algorithm - they are expected characteristics of the data.

It is also well known that comparing time series data with different offsets and am-

plitudes is meaningless [29]. To get around this, we normalize all incoming data to

have a mean of zero and standard deviation of one.

While not strictly necessary for the difference algorithm, it was found that the

average of two normal data streams was a better model of normal than just a single

data stream. As we discovered in the previous chapter, IBUS is the best feature
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extraction technique for fiber property data. As a result we will use it to extract

features from all incoming data streams.

Points in the time series will not necessarily line up along the time axis, which

is required to find the difference. To get around this we use interpolation to find

the distance between a point and a line in the reconstructed time series. This is

illustrated in Figure 3.4 from Chapter 3.

By looking at the output stream of the difference algorithm we can easily see what

areas are possible anomalies. However, to automatically flag these areas as anomalous

without having to view the output ourselves, we use the SetNormalDataFilter. This

filter only keeps data points that differ from the mean by more than a configurable

number of standard deviations; any other data points are set to some configurable

value.

4.2.2 Frequency Based

As mentioned in Section 2.5, Keogh et al. have developed a novelty detection al-

gorithm based on data pattern frequencies [30]. As illustrated in Figure 4.10, their

algorithm flags a pattern as novel if it occurs more or less frequently than the norm.

This approach seems simple enough, except for two problems that would need to be

solved to make it feasible:

1. How do we compute pattern frequencies in a time efficient manner?

2. How do we calculate the expected frequency of any pattern?

To compute pattern frequencies in a time efficient manner, the authors borrow

a concept from string processing; that is, they use a suffix tree data structure. The
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Figure 4.10: A pattern is novel if it occurs more or less frequently than the norm.

suffix tree data structure allows one to count the frequencies of all patterns in a string

in O(n) time, and allow for retrieval of that count in O(1) time [20].

But in order to utilize the suffix tree data structure the data has to be converted

into a string with a finite alphabet. Real time series values are mapped to this

alphabet such that each letter has equal probability. This process of converting a

stream of real values into discrete values is called discretization. In our case the

discretization algorithm used is called SAX (Symbolic Aggregate approXimation)

[37]. An example of how a SAX composed time series is loaded into a suffix tree is

shown in Figure 4.11 (adapted from [37]).

In order to calculate the expected frequency of any pattern the authors utilize

Markov chain theory. Essentially, a Markov model allows you to calculate the proba-

bility of encountering a pattern when you only know the frequency of its sub-patterns.

Now, calculating these Markov probabilities is a very expensive operation. For a given
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Figure 4.11: We first discretize the normal data into symbols using SAX [37]. Then,

a suffix tree data structure can be used to count the frequency of any data pattern.

sequence, you need to count the frequencies of each substring. Since we are loading all

pattern frequencies into a suffix tree, we can still complete this process very quickly.

Using these concepts we can form a high level view of how the algorithm calculates

surprise (a.k.a. novelty) for a given time series x:

surprise(x) = |freqtest(x)− E(x)|

where freqtest(x) is the frequency of time series x in the test data set (not the reference

dataset that is considered normal). This frequency is retrieved from a suffix tree

created from the test data set. E(x) or the expected frequency of x is defined as:

E(x) =

 freqref (x) , if x occurred in the ref data set

EMarkov(x) , otherwise

where freqref (x) is the frequency of time series x in the ref data set. The ref data

set contains the data that is considered normal. Like the test data, this frequency is

retrieved from a suffix tree created from the ref data set. EMarkov(x) is the expected

frequency of occurrence of the pattern x using a Markov model and is defined as:

EMarkov(x) =

∏m−M
i=1 freqref (x[i,i+M ])∏m−M

i=2 freqref (x[i,i+M−1])
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where m is the length of x and x[i,i+M ] is a substring of x starting at position i

and ending at position i + M . M is defined as the order of the Markov chain,

which in our case means the largest value of M constrained by 1 < M < m − 1

such that all subsequences of x of length M exist in the reference data set (i.e.

freqref (xj,j+M) > 0). The full derivation of the EMarkov calculation can be found in

[30].

From this point the algorithm is very simple, it just needs to scroll through the

data using a sliding window approach, and calculate a surprise value for each pattern

x using the surprise(x) function. Keogh et al. refer to this as the Tarzan algorithm

[30].

4.2.2.1 Tarzan Algorithm Composition Using PAFF

As shown in Figure 4.12, the filter layout looks very similar to the time aligned eu-

clidean distance technique. We make use of the same input filter chain of normalizing

filters, averaging reference data sets and extracting features with IBUS. Data from

IBUS is then fed into the SAXFilter which discretizes the incoming data into a finite

alphabet such that each letter has equal probability. Next this character stream is

fed into the TarzanFilter which comprises the Tarzan algorithm we discussed in

the previous section. Finally, like the distance technique, the SetNormalDataFilter

is used to keep data points that differ from the mean by more than a configurable

number of standard deviations; this way, we will only see the surprising values in the

output stream.
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Figure 4.12: Filter composition for the TARZAN novelty detection algorithm.

4.2.3 Path Based

Another technique that we evaluated is one demonstrated by Mahoney et al. [10]; we

briefly mentioned this technique in Section 2.7.1 previously. This technique models

training data as a set of trajectories or paths and defines data patterns that deviate

from any bounding box contained within these paths as novel. To be clear, the paths

are essentially just PLA representations of the orginal data.

The technique described by Mahoney et al. [10] gives a method for reducing an

input training data set into a PLA representation. To smooth out the input data it

also employs a low pass filter prior to segmenting. We do not use these functions as

described in Mahoney’s work; we will be using IBUS as described in chapter 2 since

it was shown to produce the most accurate representation of fiber property data sets.

Once the data has been reduced into a PLA representation, the algorithm does
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B

A

Figure 4.13: Point A is within the bounding box defined by the 3 points in the

training paths closest to it so its novelty is zero. Point B is outside the bounding box

formed by the 3 closest points so its novelty is square of the Euclidean distance to

the bounding box.

an additional step by evaluating M − 1 derivatives at each data point. So say M = 3

and xY is the Yth derivative of x, x0 would be the input value, x1 would be the

slope at the point x, and x2 would be the curvature of the line at point x. These

data features will be used in the comparisons to determine novelty. All these data

features are also scaled to fit a unit cube, such that each value will range from 0 to 1.

By taking derivatives in this fashion, there is essentially a new set of training paths

created for each Yth derivative.

After the training paths are saved in a PLA representation and the derivatives

are taken, each test data point needs to be compared to the training data. To do this

comparison, a bounding box is created that encloses the nearest point on each path

to the test data point. If the test data point is within this bounding box, then the
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Figure 4.14: Filter composition for the Path based novelty detection algorithm.

novelty is zero. Otherwise, the novelty is the square of the Euclidean distance to the

bounding box. This is illustrated in Figure 4.13 (adapted from [10]). This is repeated

for each derivative. So, the training paths in effect define the normal level, slope, and

curvature of each point.

4.2.3.1 Path Algorithm Composition Using PAFF

The Path algorithm filter layout is the similar to the previous two techniques dis-

cussed. The main difference to note is that in the Path algorithm we do not average

multiple training data sets into one single set - we feed both training sets directly

into the MultivariatePathBasedAnomalyFilter, which comprises the actual Path

algorithm. We did this because the Path algorithm relies on having multiple training

sets to form bounding boxes from. If there was only one training set, the results

would be very similar to the plain Euclidean distance.
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Figure 4.15: Filter composition for the Hybrid novelty detection algorithm.

4.2.4 Hybrid Approach

In addition to the three other techniques, we designed a simple voting algorithm

that combines the outputs of all other techniques. This was done to overcome the

deficiencies of any single novelty detection technique and to increase the likelihood

that a particular detection is correct. The filter composition of this algorithm is

shown in Figure 4.15.

The CorrelatingFilter inherits the same interpolation ability described in Sec-

tion 4.2.1 so the differing outputs from each technique are no problem. The filter

will output a value of 1 (i.e. anomaly detected) if a specified number of techniques

also report the segment as anomalous. The CorrelatingFilter uses a configurable

threshold to determine if a technique is reporting an anomaly. All of our techniques

are using the SetNormalDataFilter described in Section 4.2.1 so a single threshold

can be used for all inputs.
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4.3 Summary

In this chapter we have described the evaluation requirements that needed to be met

for the novelty detection experimentation in Chapter 5. We have also briefly shown

the testing framework that was created to fill these requirements. Finally, we have

described how each of the novelty detection techniques is built up from concepts in

this testing framework.

64



Chapter 5

Evaluation of Time Series Novelty

Detection Techniques

Qualitative comparison of a set of algorithms is useful to quickly eliminate those that

would not work for a particular domain. Such a comparison is given in Chapter 2 to

determine which time series novelty detection methods from the literature is appli-

cable to the fiber domain. Two techniques from the literature stand out as possible

solutions based on this comparison. This chapter presents a detailed quantitative

comparison of these two techniques, as well as others presented in Chapter 4.

In order to do a fair quantitative comparison of the novelty detection techniques,

we will focus on a single class of anomalies from the fiber domain. This is not the

same as looking for a particular pattern as in pattern recognition or similarity search;

we are merely selecting a particular class of anomalies to run experiments on.

The rest of this chapter is organized as follows. Section 5.1 describes the class

of anomalies that we will be testing for. Section 5.2 describes the data sets used,
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the statistics recorded, and provides some experimental descriptions. Results from

these experiments are presented in Section 5.3. Section 5.4 concludes the chapter

with recommendations on the techniques best suited to fiber applications.

5.1 Type of Novelties

In a fiber manufacturing plant there are several levels of fiber grouping. The lowest

level, as described in Section 1.1.1, is that of fiber filaments being grouped (concep-

tually as well as physically) into a tow of fiber. Monitoring generally occurs at the

tow level, where each tow is interrogated by a sensor after the post processing steps

are complete. There are a set of data streams produced from each monitored tow.

A second level of grouping occurs when several tows (three in our case) are pro-

duced on the same machine. As a result, they have similar environmental properties

and generally produce similar data streams. We will focus on the anomaly resulting

from one tow’s data stream deviating from the rest. A large deviation indicates that

something has gone wrong with the monitored tow. In this way, tows other than the

one being tested are considered to be the normal operational data. This is of course

not always the case since many anomalies occur over all monitored tows. For all

experiments in this chapter, we will focus on the class of anomalies where one tow’s

data stream deviates from the rest.
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5.2 Experimental Setup

Great care must be taken during an empirical comparison to prevent the introduction

of data, implementation or other bias [29]. Data bias can be defined as the process of

using only data which supports the desired outcome. This may be done intentionally

or without the researcher even knowing. In fact, Keogh et al. [29] shows an example

where three techniques are tested and all are shown to be the best by choosing data

sets that benefit a particular method. So, when deriving results from specific data

sets, great care has to be taken to not claim too much. Since this research is applied

to a specific application, the results will be for this application area only. Different

data sets would certainly produce different results.

Implementation bias occurs when the quality of code in two techniques under

comparison varies greatly. This can also occur intentionally or unintentionally to

produce a desired outcome. For example, if an individual proposes a new O(n(log n)2)

feature extraction algorithm and compares it against the O(n2) implementation of the

DFT, it would not be a fair comparison. The claim of the technique being faster would

be incorrect because there is a O(n log n) implementation of the DFT. In the case

of the following novelty detection experiments, we will only empirically compare the

results of algorithms as described in Section 5.2.2. The running time will not be

compared. This is done to eliminate the possibility of implementation bias. That

said, since the end result of this work is to be applied to a real time system, time

complexity is very important. All novelty detection techniques under study perform

in O(n log n) time in the worst case, some are much better than this.

Another difficulty in testing novelty detection algorithms is defining what novel is.
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Novelty is highly subjective, one person may consider a pattern as novel while another

may not. In the novelty detection literature, one method of defining novelties is by

asking a domain expert to classify a data set by hand [48]. In this way the results

are based on the assumption that the domain expert is the best that any technique

can get. This is actually not true because humans can and do miss important events.

With that said, we will still adopt the testing procedure as used in other novelty

detection work so the results have a useful scale of 0 to 100%.

Each experiment involves several steps:

1. Train the technique on two training data sets representing normal data.

2. Run the technique on a third data set which contains a novel pattern. In our

case, this is the data stream deviating from the other two.

3. Calculate statistics based on the result obtained from the technique and what

was expected.

5.2.1 Data

There are thirteen data tests in all. For each data test, there is a test data set

which is fed into a trained anomaly detection technique. Techniques are trained on

two training data sets which represent the normal behaviour. As described in Section

4.1.2.6, multiple training sets are in some cases merged into one training set. The test

data sets are the same as used in Chapter 3 for the feature extraction experimentation.

In that chapter, only eleven data sets were mentioned (the ones using the Magnitude

fiber property). In this chapter we include data sets using the Node Quality and

Node Count fiber properties as well.
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There is also a separate file that defines where the anomalous regions are located.

For example, the following anomaly definition file

<anomalies>

<anomaly start="01/11/2004 10:11:30 AM" end="01/11/2004 11:05:30 AM"/>

<anomaly start="01/11/2004 11:09:50 AM" end="01/11/2004 11:13:10 AM"/>

</anomalies>

defines two anomalous regions as identified by a domain expert. These anomaly

definitions combined with the output of a particular algorithm allow us to calculate

the measurements in Section 5.2.2 in an automated fashion.

Appendix C shows each data set with the anomalous regions highlighted.

5.2.2 Recorded Statistics

The techniques are compared based on two metrics: rate of detection and rate of false

alarms. The rate of detection refers to the rate that a method successfully detects a

novel data pattern during a particular time frame. The rate of false alarms refers to

the rate that a method detects data patterns that are not particularly novel. In order

to calculate these two properties we first need to define some data sets that will be

used:

• train: The data set that the novelty detection algorithm is trained on.

• test: The data set that is input into the novelty detection algorithm for analysis.

The output of the algorithm is actAnomaly.
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• actAnomaly: The data set that represents what the novelty detection algorithm

considers novel. Any value above zero in this data set is considered to be a

novelty. An algorithm associates a higher degree of novelty with a higher value

in actAnomaly.

• expAnomaly: The data set is derived from an anomaly definition file. Any

anomalies defined in the file are represented as a value of one in the expAnomaly

data set. All other areas have a value of zero.

From these data sets, a number of data point counts are calculated. These counts

are used to determine the rate of detection and rate of false positives. They are

illustrated in Figure 5.1 and defined as follows:

• Ct (total count): The total number of data points in the actAnomaly data set.

• Ce (expected anomaly count): The number of actAnomaly data points that fall

within the anomaly regions defined in the expAnomaly data set.

• Ca (actual anomaly count): The number of actAnomaly data points that are

greater than zero.

• Cd (detection count): The number of actAnomaly data points that fall within

the anomaly regions defined in the expAnomaly data set and are greater than

zero.

From these counts we can readily obtain values for the rate of detection and rate

of false positives. The rate of detection is defined as
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Figure 5.1: Illustration of the data point counts that are used to calculate the rate of

detections and rate of false positives.
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RDet =
Cd

Ce

and the rate of false positives is defined as

RFP =
Ca − Cd

Ct − Ce

These rates are also dependent on the SetNormalDataFilter used at the end

of each technique. This filter only keeps data points that differ from the mean by

more than a configurable number of standard deviations; any other data points are

set to some configurable value. This means that increasing the configurable standard

deviations would in effect increase both the RDet and RFP rates. Likewise, decreasing

the configurable standard deviations would lower both the RDet and RFP rates. In

all the following experiments we use a standard deviation of 1.

Additionally, we obtain values for RDet and RFP from all individual data sets and

then average the results for discussion.

5.2.3 Experiment Descriptions

5.2.3.1 Novelty Detection using IBUS

In this experiment we test each of the novelty detection techniques on data reduced by

the IBUS feature extraction technique. To make IBUS reduce data to the appropriate

Cratio, we use the same procedure described in Section 3.2.1. The difference here

is that we omit experiments at Cratio = 4% and include experiments for Cratio =

100%. The 4% compression ratio was not used because it did not retain many of the

interesting features needed in the test data sets. We ran the tests with no compression
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to determine if novelty detection was better with features as input rather than raw

data.

5.2.3.2 Novelty Detection using IBUS and LP Filter

Many of the anomalies of interest are essentially low frequency changes in the signal.

High frequency components of the signal may interfere with the detection of these

anomalies. The purpose of this experiment is to determine whether removing the high

frequency content of a signal improves the results by making the anomalies easier to

detect. This is done as a preprocessing step to the IBUS technique. We use a simple

moving average filter to perform the low pass (LP) filtering. A window size of 35

samples was determined by trial and error.

5.2.3.3 Varying the FilterTime Parameter of the Path Algorithm

In the first two experiments, the Path algorithm’s parameters were set to produce

the best results. One feature of the Path algorithm that was not used is its built in

low pass filtering ability. This feature is enabled by setting the FilterTime parameter

to something greater than one. The FilterTime parameter is mentioned in Section

A.4.1. In this experiment we will test several different values of FilterTime in hopes

that an optimal value will be discovered.

5.2.3.4 Varying the AlphabetSize Parameter of the Tarzan Algorithm

In order to calculate the required probabilities in the Tarzan technique, the data must

first be discretized. In the previous experiments, the input signal was discretized into

4 distinct values (i.e., the AlphabetSize parameter was set to 4). In this experiment
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Figure 5.2: A comparison of detection rates for the novelty detection techniques using

IBUS.

we test several other values of AlphabetSize to see if one is better.

5.3 Results

5.3.1 Novelty Detection using IBUS

The results obtained from the experimentation certainly did not identify a clear win-

ner overall. As shown in Figure 5.2, the Tarzan technique produced the highest detec-
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tion rates with the exception of when Cratio = 100%. At Cratio = 100%, the Difference

technique had the highest detection rate out of all experiments. It had 8% more de-

tections than the second best, which was the Tarzan technique at Cratio = 50%. At

other compression levels, the Difference technique had very poor results. The expla-

nation for Difference performing so much better at Cratio = 100% is related to the

number of points recorded during a novelty. The raw data (i.e., Cratio = 100%) is

evenly spaced in time; every 20 seconds there is a data point. Since the Difference

technique compares each data point to another, more data points in an area of novelty

creates a greater chance for a detection. Conversely, a low Cratio would potentially

mean fewer data points that occur during a novelty and thus a lower chance of a

detection hit.

The Path technique was the worst performing overall. Its detection rates ranged

from 4% to 10%. These poor results, along with those of the Difference technique

influenced the Correlating technique to have less than expected detection rates.

It may seem intuitive that all techniques would perform better when the data is

less compressed (i.e., with more detail intact). This was not so for the Tarzan and

Path techniques. Tarzan and Path performed best at Cratio = 50%. In addition, all

techniques performed better at Cratio = 10% than at Cratio = 20%.

As shown in Figure 5.3, the Tarzan technique also had the highest false positive

rates. Tarzan’s false positive rate nearly doubled at Cratio = 10% from what it was

at Cratio = 20%. Generally, for all techniques as Cratio decreased, the rate of false

positives increased.

It is also interesting to note that the Tarzan technique had the least amount of

false positives at Cratio = 50%, the same compression ratio that it had its highest
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Figure 5.3: A comparison of false positive rates for the novelty detection techniques

using IBUS.
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Figure 5.4: A comparison of the percent change of detection rates for the novelty

detection techniques using a low pass filter in addition to IBUS.

number of detections.

5.3.2 Novelty Detection using IBUS and LP Filter

As shown in Figure 5.4, the technique that benefited the most from the low pass filter

was the Difference technique. The low pass filter increased the Difference technique’s

detection rate between 3% and 14% for each compression ratio. The greatest benefit

for all techniques was at Cratio = 20%.

77



Percent Change of False Positive Rates

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

Difference Tarzan Path Correlating

%
 C

h
a

n
g

e 10%

20%

50%

100%

Figure 5.5: A comparison of the percent change of false positive rates for the novelty

detection techniques using a low pass filter in addition to IBUS.

For the most part, the low pass filter had a negative impact on the other tech-

nique’s detection rates.

As shown in Figure 5.5, the biggest improvement in false positive rates was at

Cratio = 10%. At this compression ratio, all techniques had a substantial improve-

ment. However, at all other compression ratios, the Tarzan technique had a large

increase in the number of false positives when using a low pass filter.
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Figure 5.6: A comparison of the detection rates for the Path technique when the

FilterTime parameter is varied.

5.3.3 Varying the FilterTime Parameter of the Path Algo-

rithm

As shown in Figure 5.6, increasing the FilterTime parameter of the Path technique

generally improved the detection rate. The only exceptions were for when Cratio =

50% and Cratio = 100%, in which case the detection rate decreased. Figure 5.7 shows

that increasing FilterTime also increased the false positive rate substantially.
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Figure 5.7: A comparison of the false positive rates for the Path technique when the

FilterTime parameter is varied.
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Figure 5.8: A comparison of the detection rates for the Tarzan technique when the

AlphabetSize parameter is varied.

5.3.4 Varying the AlphabetSize Parameter of the Tarzan Al-

gorithm

As shown in Figures 5.8 and 5.9, increasing the AlphabetSize parameter of the Tarzan

approach had very negative effects on the results. In nearly all cases, the detection

rate was decreased and the false positive rate was increased.
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Figure 5.9: A comparison of the false positive rates for the Tarzan technique when

the AlphabetSize parameter is varied.
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5.4 Conclusion

The results show that the best technique is the Difference technique at Cratio = 100%.

At this compression ratio RDet = 53.3% and RFP = 9.8%. This means that the best

results were obtained when no feature extraction was used. This is disappointing

because no speedup can be obtained when the data is not reduced. When the data was

compressed, the Difference technique performed relatively poorly. At Cratio = 50%

the Tarzan technique had the best results with RDet = 38.3% and RFP = 22.5%.

The Path technique had RDet values that were very low throughout the experi-

ments. The RFP values were also low, but without many detections the technique

would be of little practical value in this application domain.

The mediocre results for the Correlating technique were surprising. They indicate

that the other techniques are not all detecting the same portions of anomalous data.

It makes sense that certain techniques are better at detecting certain data patterns

than others.

In conclusion, if no compression is required, the Difference technique with a low

pass filter is the best choice for applications involving fiber property data sets. If

compression is required, the Tarzan technique with AlphabetSize=4 is best.

83



Chapter 6

Concluding Remarks

In our work we have explored several aspects of implementing time series novelty

detection in a fiber manufacturing process. One aspect of realistic novelty detection

is how to reduce the data so that important data features remain intact. The process

of doing this is called feature extraction. We proposed a feature extraction technique

that produces the highest quality reduced representation for fiber property data sets.

Given that result, we implemented and evaluated several of the leading novelty detec-

tion techniques using our new feature extraction technique as a preprocessing step.

In Section 6.1 we detail the key contributions from this study. While we consider

these results to be highly valuable, they are not considered final. Many other concerns

exist when considering the full integration of novelty detection into a fiber monitoring

system. As we discuss in Section 6.2, some of these may be considered for future work.
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6.1 Key Contributions

• We evaluated several leading feature extraction techniques on fiber property

data; this included the Discrete Fourier Transform (DFT), Piecewise Aggre-

gate Approximation (PAA), Bottom-Up Segmentation (BUS), the Haar Wavelet

Transform (HWT), and the Daubechies Wavelet Transform (DWT). The main

result was that the BUS technique produced the highest quality features at all

levels of compression.

• Upon inspection of the features produced by the BUS technique we discovered

that many data points were redundant (i.e. could be removed with no effect

on the quality). To take advantage of this fact, we introduced a new feature

extraction technique based on the BUS approach, the Improved Bottom-Up

Segmentation (IBUS) technique. After repeating the feature extraction tests,

IBUS was shown to produce the highest quality features for fiber property data

sets. The benefits of using IBUS were most pronounced at high levels of com-

pression. For instance at Cratio = 4% the reconstruction error for IBUS was

half of what it was for BUS. Additional tests comparing the data reduction

capabilities of IBUS showed that the IBUS data size ranged from 61-68% of the

BUS data size - a considerable improvement.

• As a precursor to implementing the novelty detection techniques, we designed

a framework for constructing, running, and visualizing time series algorithms.

• The main component of our study was to evaluate several leading time series

novelty detection techniques on fiber property data sets. To our knowledge
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no other study has done this. To compare the techniques we measured their

rate of detection and rate of false positives for anomalies recorded by a domain

expert. Results showed that a simple Euclidean distance based technique is the

best overall when no data compression is used. When compression is used the

Tarzan technique [30] performs best.

6.2 Limitations and Future Directions

• A fiber monitoring system, like INSTRUMAR’s Attalus Fiber System, operates

in a strictly online fashion. This fact was not considered in any of the current

work. Considering that some batch algorithms may not be able to be converted

to an online situation, this is an area of considerable future work.

• All datasets used in this study were hand-picked anomalies from a certain range

of time at a plant. It would be interesting to set up a test whereby the novelty

detection algorithms would process data as in comes in for a longer period of

time. Results could then be compared with that of the human operators. The

interest here is to see if the novelty detection techniques would pick up on

anomalies that were missed by the human operators.

• In our testing of the novelty detection techniques, we focused on the anomaly

resulting from one tow’s data stream deviating from the rest. It would be

valuable to record detection and false positive rates for all known types of fiber

anomalies.

• Since this study was focused on the fiber industry, no time was allocated for
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testing IBUS on other datasets. As it was mentioned previously, IBUS is general

enough to be applied to any time series dataset. It would be interesting to see if

IBUS would show similar improvements on more diverse datasets, like the one

used in [33].

• In chapter 3 we mentioned that some segmentation algorithms utilize a combi-

nation of the three approaches: Sliding Window, Top-Down, and Bottom-Up.

One such algorithm by Keogh et al. combines the Bottom-Up approach with the

Sliding Window approach [33]. This algorithm claims to produce results similar

to that of BUS while running in an online fashion. It would be interesting to

determine whether IBUS can be adapted to use this algorithm instead of BUS.

• For a particular problem domain, it may be possible to improve results further

by incorporating domain constraints. For example, there are large drops in

the fiber data magnitude at regular intervals that correspond to changing out

spools of fiber. An additional signal from the machine changing the spools

of fiber could flag to the novelty detection algorithm that any drops during a

particular interval are normal.

• It may be interesting to regenerate the results using a simpler probability cal-

culation for RDet . Instead of considering every data point, it could be defined

as just number of flaws detected divided by the total number of flaws. A flaw

would be a data pattern consisting of consecutive anomolous data points. This

would perhaps be more in line with the sliding window approach used in the

algorithms.
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• In all the novelty detection experiments we obtained values for RDet and RFP

from all individual data sets and then averaged the results for discussion. It

may be interesting to closely examine the results from each data set individually

to see if the techniques performed particularly well or poor depending on the

data set.
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Appendix A

Filter Definitions

This appendix covers the filters used during the experimentation in this text; both

novelty detection and feature extraction filters are covered.

A.1 CLoDS package

A.1.1 ADITU FileDataSource

This filter reads in files generated by INSTRUMAR’s Attalus Data Internet Transfer

Utility (ADITU). The data in these files is delimited by spaces. The first row contains

column names, and the remaining rows are the column values. An example of an

ADITU file, with header row in place is as follows:
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Listing A.1: Sample Attalus Data Internet Transfer Utility (ADITU) file

MachineName PositionName ThreadlineName ThreadlineIndex Time

PctValidData BIT_Status Magnitude NodeCount NodeQuality Phase

ThreadPresence WinderStatus

"Machine1" "Position1" "Thread1" "26" "01/10/2004 05 :00:02" "100" "0

" "1989" "25" "415" "101" "1" "2"

...

There are several possible configuration options available:

• FileName - The name of the ADITU file to read.

• TimeName - The column name that is the time value of the time series.

• ValueName - The column name that is the data value of the time series.

• Interval - Interval in milliseconds between polls.

• RecordsPerInterval - Number of records to read in each poll. Default is all

records available.

• RecordStart - Specify a starting record number. For an ADITU file, this

would be a line number from which to start reading. All records before this will

be ignored.

• RecordLimit - Specify an ending record number. Any records after this num-

ber will be ignored.

A typical configured filter looks like:
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Listing A.2: Typical ADITU FileDataSource filter configuration

<filter assembly="CLoDS" type="File.ADITU_FileDataSource">

<config >

<item name="FileName">path/to/aditu.txt</item>

<item name="TimeName">Time</item>

<item name="ValueName">Magnitude </item>

<item name="Interval">1</item>

</config >

</filter >

A.2 LiFE package

A.2.1 BUSFilter

This filter calculates a piecewise linear representation of the incoming data using a

bottom up approach as described in Section 3.1.4.

There are several possible configuration options available:

• BatchSize - Specifies the number of records in the time series to batch be-

fore performing the segmentation. The default is to process each time series

regardless of size (i.e. no batching).

• MaxError - The maximum residual error allowed between the original time

series and the piecewise linear approximation.

A typical configured filter looks like:
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Listing A.3: Typical BUSFilter filter configuration

<filter assembly="LiFE" type="BUSFilter">

<config >

<item name="MaxError">0.5</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.2.2 BestFitLineSlopeFilter

This filter first calculates a piecewise linear representation of the incoming data using

a bottom up approach as described in Section 3.1.4. It then calculates the slope at

each data point and outputs that as the values in the new time series. This approach

was described by Keogh, et al in [33].

There are several possible configuration options available:

• BatchSize - Specifies the number of records in the time series to batch be-

fore performing the segmentation. The default is to process each time series

regardless of size (i.e. no batching).

• MaxError - The maximum residual error allowed between the original time

series and the piecewise linear approximation.

A typical configured filter looks like:
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Listing A.4: Typical BestFitLineSlopeFilter filter configuration

<filter assembly="LiFE" type="BestFitLineSlopeFilter">

<config >

<item name="MaxError">0.5</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.2.3 IBUSFilter

This filter calculates a piecewise linear representation of the incoming data using the

improved bottom up approach as described in Section 3.3.

There are several possible configuration options available:

• BatchSize - Specifies the number of records in the time series to batch be-

fore performing the segmentation. The default is to process each time series

regardless of size (i.e. no batching).

• MaxError - The maximum residual error allowed between the original time

series and the piecewise linear approximation.

A typical configured filter looks like:
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Listing A.5: Typical IBUSFilter filter configuration

<filter assembly="LiFE" type="IBUSFilter">

<config >

<item name="MaxError">0.5</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.2.4 SAXFilter

This filter uses the Symbolic Aggregate approXimation (SAX) [37] approach to dis-

cretize the incoming time series. The output of this filter is not a time series of real

values but rather a time series of letters from a finite alphabet. You can think of the

alphabet size as defining the resolution of the data. At the lowest resolution, with an

alphabet size of 1, the resultant time series is a straight line.

This filter has the requirement that incoming data be normalized first using the

NormalizeFilter.

There are several possible configuration options available:

• BatchSize - Specifies the number of records in the time series to batch be-

fore performing the SAX process. The default is to process each time series

regardless of size (i.e. no batching).

• AlphabetSize - The number of letters used for values in the resultant time
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series.

A typical configured filter looks like:

Listing A.6: Typical SAXFilter filter configuration

<filter assembly="LiFE" type="SAXFilter">

<config >

<item name="AlphabetSize">4</item>

</config >

<filter assembly="TARZAN" type="NormalizeFilter">

<config />

<filter ...>

<config >

...

</config >

</filter >

</filter >

</filter >

A.2.5 MovingAverageFilter

This filter performs low pass filtering on the incoming data using a configurable sized

moving average.

There is only one configuration option available:

• WindowSize - the size in data records of the sliding window. This must be

odd and greater than 1.

A typical configured filter looks like:
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Listing A.7: Typical MovingAverageFilter filter configuration

<filter assembly="LiFE" type="MovingAverageFilter">

<config >

<item name="WindowSize">35</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.2.6 SetNormalDataFilter

This filter only keeps data points that differ from the mean by more than a config-

urable number of standard deviations; any other data points are set to some config-

urable value.

There are several possible configuration options available:

• BatchSize - Specifies the number of records in the time series to batch before

processing. The default is to process each time series regardless of size (i.e. no

batching).

• SetValue - The value to set non interesting data points to.

• AllowedDeviations - The number of standard deviations away from the mean

that a data point must be to be considered an outlier.

A typical configured filter looks like:

96



Listing A.8: Typical SetNormalDataFilter filter configuration

<filter assembly="LiFE" type="SetNormalDataFilter">

<config >

<item name="AllowedDeviations">1</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.2.7 DWTFilter

This filter processes the incoming time series with a Discrete Wavelet Transform

(DWT) that uses a Daubechies-4 wavelet function.

There are several possible configuration options available:

• BatchSize - Specifies the number of records in the time series to batch before

processing. The default is to process each time series regardless of size (i.e. no

batching). This must be a power of two for the DWT.

• KeepPercentage - Percentage of the resultant wavelet coefficients to keep.

Typically, a signal can be represented accurately by only a subset of the possible

coefficients.

• KeepHighestCoefficients - This flag specifies whether to use only the highest

coefficients. As described in Section 3.1.1.1 sometimes a signal is best repre-
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sented by keeping the highest valued coefficients rather than the first few. For

fiber property data sets though, it was found that the first few coefficients pro-

duced a better fit.

A typical configured filter looks like:

Listing A.9: Typical DWTFilter filter configuration

<filter assembly="LiFE" type="DWTFilter">

<config >

<item name="KeepPercentage">0.1</item>

<item name="KeepHighestCoefficients">false</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.2.8 HaarFilter

This filter processes the incoming time series with a Discrete Wavelet Transform

(DWT) that uses a Haar wavelet function.

There are several possible configuration options available:

• BatchSize - Specifies the number of records in the time series to batch before

processing. The default is to process each time series regardless of size (i.e. no

batching). This must be a power of two for the DWT.

• KeepPercentage - Percentage of the resultant wavelet coefficients to keep.
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Typically, a signal can be represented accurately by only a subset of the possible

coefficients.

• KeepHighestCoefficients - This flag specifies whether to use only the highest

coefficients. As described in Section 3.1.1.1 sometimes a signal is best repre-

sented by keeping the highest valued coefficients rather than the first few. For

fiber property data sets though, it was found that the first few coefficients pro-

duced a better fit.

A typical configured filter looks like:

Listing A.10: Typical HWTFilter filter configuration

<filter assembly="LiFE" type="HWTFilter">

<config >

<item name="KeepPercentage">0.1</item>

<item name="KeepHighestCoefficients">false</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.2.9 FFTFilter

This filter processes the incoming time series with a Discrete Fourier Transform

(DFT).

There are several possible configuration options available:
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• BatchSize - Specifies the number of records in the time series to batch before

processing. The default is to process each time series regardless of size (i.e. no

batching). This must be a power of two for the DFT.

• KeepPercentage - Percentage of the resultant wavelet coefficients to keep.

Typically, a signal can be represented accurately by only a subset of the possible

coefficients.

• KeepHighestCoefficients - This flag specifies whether to use only the highest

coefficients. As described in Section 3.1.1.1 sometimes a signal is best repre-

sented by keeping the highest valued coefficients rather than the first few. For

fiber property data sets though, it was found that the first few coefficients pro-

duced a better fit.

A typical configured filter looks like:

Listing A.11: Typical FFTFilter filter configuration

<filter assembly="LiFE" type="FFTFilter">

<config >

<item name="KeepPercentage">0.1</item>

<item name="KeepHighestCoefficients">false</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

</filter >

100



A.2.10 PAAFilter

This filter uses the Piecewise Aggregate Approximation (PAA) approach to discretize

the incoming time series. PAA is described in more detail in Section 3.1.3.

There is one possible configuration option available:

• FrameSize - Specifies the size of the frame to average.

A typical configured filter looks like:

Listing A.12: Typical PAAFilter filter configuration

<filter assembly="LiFE" type="PAAFilter">

<config >

<item name="FrameSize">5</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.3 PAFF package

A.3.1 AveragingFilter

Accepts multiple time series and outputs a single time series which is the average of

the inputs. For example, you could have 3 input time series:

TimeSeries1 [0][1][2]...
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TimeSeries2 [3][4][5]...

TimeSeries3 [6][7][8]...

The resultant time series would be:

TimeSeriesResult [0+3+6 / 3][1+4+7 / 3][3+5+8 / 3]...

The time series entries are combined based on their array index by default. To

get them to align by time values, enable the AlignDataStreams option. There are

several possible configuration options available:

• CombiningInstances - Number of records in the multiple data streams to

combine. The default is to use the size of the shortest data stream.

• AlignDataStreams - When enabled, the time series entries will be aligned by

time value rather than array index. This will likely mean that additional points,

calculated by interpolation are added to the time series. For an illustration see

Figure 3.4.

A typical configured filter looks like:
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Listing A.13: Typical AveragingFilter filter configuration

<filter assembly="PAFF" type="AveragingFilter">

<config />

<filter ...>

<config >

...

</config >

</filter >

...

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.3.2 CorrelatingFilter

This filter also combines multiple time series like the AveragingFilter. It is the basis

of the hybrid algorithm described in Section 4.2.4. It will output a value of 1 if a

specified number of input streams are above a threshold, otherwise the output is 0.

This is a simple voting algorithm.

There are several possible configuration options available:

• CombiningInstances - Number of records in the multiple data streams to

combine. The default is to use the size of the shortest data stream.

• AlignDataStreams - When enabled, the time series entries will be aligned by
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time value rather than array index. This will likely mean that additional points,

calculated by interpolation are added to the time series. For an illustration see

Figure 3.4.

• RequiredVotes - The number of data streams that need to be over the thresh-

old for the filter to output 1.

• Threshold - Specifies the value a data stream must meet before it constitutes

a vote.

A typical configured filter looks like:
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Listing A.14: Typical CorrelatingFilter filter configuration

<filter assembly="PAFF" type="CorrelatingFilter">

<config >

<item name="RequiredVotes">2</item>

<item name="Threshold">0</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

...

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.3.3 SquaredDifferenceFilter

This filter also combines multiple time series like the AveragingFilter. Instead of

averaging the data streams though, it takes the difference of them and squares that

value for the result. This filter only supports 2 input data steams. This filter also

forms part of the time aligned euclidean difference algorithm as described in Section

4.2.1.

There are several possible configuration options available:
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• CombiningInstances - Number of records in the multiple data streams to

combine. The default is to use the size of the shortest data stream.

• AlignDataStreams - When enabled, the time series entries will be aligned by

time value rather than array index. This will likely mean that additional points,

calculated by interpolation are added to the time series. For an illustration see

Figure 3.4.

A typical configured filter looks like:

Listing A.15: Typical SquaredDifferenceFilter filter configuration

<filter assembly="PAFF" type="SquaredDifferenceFilter">

<config />

<filter ...>

<config >

...

</config >

</filter >

<filter ...>

<config >

...

</config >

</filter >

</filter >
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A.4 PATH package

A.4.1 MultivariatePathBasedAnomalyFilter

This filter comprises the novelty detection algorithm created by Mahoney et al. [10]

as described in Section 4.2.3. This filter is based off of the LearningFilter which takes

in two types of data: training data and test data. Any incoming test data is queued

until the filter has processed enough training data.

There are several possible configuration options available:

• FilterTime - This specifies the number of data samples to use for the window

used in the low pass filter. A value of 1 essentially disables this feature.

• ModelSegments - This specifies the number of segments to reduce the original

data stream to using the custom segmentation algorithm presented in [10]. A

value of -1 disables this extra segmentation.

• NumDimensions - The number of dimensions to use when calculating the

distance. Default is 3.

• SubSampleRate - Defines the sub sample rate which effectively averages the

incoming data. Default is 1 (i.e. no averaging).

A typical configured filter looks like:
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Listing A.16: Typical MultivariatePathBasedAnomalyFilter filter configuration

<filter assembly="PATH" type="MultivariatePathBasedAnomalyFilter">

<config >

<item name="FilterTime">1</item>

<item name="ModelSegments">-1</item>

<item name="NumDimensions">4</item>

<item name="SubSampleRate">1</item>

</config >

<filter ...>

<config >

...

</config >

</filter >

<filter ...>

<config >

...

</config >

</filter >

...

<filter ...>

<config >

...

</config >

</filter >

</filter >
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A.5 TARZAN package

A.5.1 AbsFilter

This filter simply outputs the absolute value of the input time series. There are no

configuration options. A typical configured filter looks like:

Listing A.17: Typical AbsFilter filter configuration

<filter assembly="TARZAN" type="AbsFilter">

<config />

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.5.2 NormalizeFilter

This filter outputs a normalized version of the incoming time series where the mean

is 0 and standard deviation is 1.

There is one configuration option available:

• BatchSize - Specifies the number of records in the time series to batch before

processing. The default is to process each time series regardless of size (i.e. no

batching).

A typical configured filter looks like:
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Listing A.18: Typical NormalizeFilter filter configuration

<filter assembly="TARZAN" type="NormalizeFilter">

<config />

<filter ...>

<config >

...

</config >

</filter >

</filter >

A.5.3 TarzanFilter

This filter comprises the novelty detection algorithm created by Keogh et al. [30] as

described in Section 4.2.2. This filter is based off of the LearningFilter which takes

in two types of data: training data and test data. Any incoming test data is queued

until the filter has processed enough training data.

This filter requires that the input stream is normalized and that it contains char-

acter values as output by the SAXFilter.

There are several possible configuration options available:

• WindowLength - The size of the sliding window to use when testing data

patterns for novelty.

A typical configured filter looks like:

Listing A.19: Typical TarzanFilter filter configuration

<filter assembly="TARZAN" type="TarzanFilter">

<config >
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<item name="WindowLength">4</item>

</config >

<filter assembly="LiFE" type="SAXFilter">

<config >

<item name="AlphabetSize">4</item>

</config >

<filter assembly="TARZAN" type="NormalizeFilter">

<config />

<filter ...>

<config >

...

</config >

</filter >

</filter >

</filter >

<filter assembly="LiFE" type="SAXFilter">

<config >

<item name="AlphabetSize">4</item>

</config >

<filter assembly="TARZAN" type="NormalizeFilter">

<config />

<filter ...>

<config >

...

</config >

</filter >

</filter >

</filter >
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</filter >
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Appendix B

File Formats

B.1 Filter Template File (FTF)

In the testing framework described in Section 4.1, filters that perform specific tasks

are assembled together to form more complex processes. The Filter Template File

(FTF) format is used to describe how these filters are configured and how their inputs

and outputs are connected.

XML is the obvious choice for the FTF format. XML provides human readability,

parsing support in many languages, built in composability, and structure defining

languages like DTD and XML Schema. Listing B.1 shows the XML Schema repre-

sentation of an FTF.

Listing B.1: The Filter Template File (FTF) XML Schema

<?xml version="1.0" encoding="UTF -8"?>

<xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema"

elementFormDefault="qualified">

<xs:element name="filter">
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<xs:complexType >

<xs:sequence >

<xs:element ref="config" minOccurs="1" maxOccurs="1"/>

<xs:element ref="filter" minOccurs="0" maxOccurs="unbounded"

/>

</xs:sequence >

<xs:attribute name="assembly" use="required" type="xs:string"/

>

<xs:attribute name="id" use="required" type="xs:string"/>

<xs:attribute name="type" use="required" type="xs:string"/>

<xs:attribute name="vis" type="xs:string"/>

</xs:complexType >

</xs:element >

<xs:element name="config">

<xs:complexType >

<xs:sequence >

<xs:element minOccurs="0" maxOccurs="unbounded" ref="item"/>

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name="item">

<xs:complexType mixed="true">

<xs:attribute name="name" use="required" type="xs:string"/>

</xs:complexType >

</xs:element >

</xs:schema >
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Listing B.2: In this example of composing filters, messages would flow from filter D

to filter A.

<?xml version="1.0" encoding="utf -8" ?>

<filter id="A" assembly="..." type="...">

<config />

<filter id="B" assembly="..." type="...">

<config />

<filter id="C" assembly="..." type="...">

<config />

<filter id="D" assembly="..." type="...">

<config />

</filter >

</filter >

</filter >

</filter >

B.1.1 Composing Filters

Composing filters together automatically links the inputs and outputs. In Listing

B.2, filter A receives input from the output of filter B, filter B receives input from

the output of filter C, and so on. Filter D has no composed filter so it is inferred to

be a source of data.

B.1.2 Configuring Filters

To configure a filter, a ”config” element is used. Configuration items require a name

attribute and a value. The value can be any string, however it is up to the filter used
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Listing B.3: Filters can be configured with the ”config” element.

<?xml version="1.0" encoding="utf -8" ?>

<filter id="A" assembly="..." type="...">

<config >

<item name="BatchSize">800</item>

<item name="FeatureWindowSize">=Math.Floor((Math.Log (0.5 * 256)

/ Math.Log(4)) - 1)</item>

</config >

</filter >

to convert this string into a meaningful type. You can also specify a C# expression

by prefixing the value with an equals character. See Listing B.3 for an example of

this.

B.1.3 Identifying and Visualizing Filters

In order for the testing framework to load a particular filter, a .NET assembly and

class name are required - these are specified as attributes. See Appendix A for possible

combinations.

Visualizing the output of a particular filter is as simple as specifying the ”vis”

attribute. The visualization can either be a chart (vis=Plot) or a table of values

(vis=Grid).
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Figure B.1: By specifying a chart visualization type, the PAFFUI will load a tab

containing a chart of the data at that point in the filter chain.
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Figure B.2: By specifying a grid visualization type, the PAFFUI will load a tab

containing a table of the data at that point in the filter chain. This is useful for

displaying filters that have a non-numeric output data type.
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B.2 Test Runner File (TRF)

The test runner file (TRF) is used to specify how to reconfigure an FTF for different

data, algorithm parameters, and expected anomaly events. As shown in its schema

definition in Listing B.4, its very simple. It is mostly a way to specify replacement

values for template variables defined in an FTF for each executed test.

Listing B.4: The Test Runner File (TRF) XML Schema

<?xml version="1.0" encoding="UTF -8"?>

<xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema"

elementFormDefault="qualified">

<xs:element name="configuration">

<xs:complexType >

<xs:sequence >

<xs:element ref="templates"/>

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name="templates">

<xs:complexType >

<xs:sequence >

<xs:element maxOccurs="unbounded" ref="template"/>

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name="template">

<xs:complexType >

<xs:sequence >
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<xs:element maxOccurs="unbounded" ref="entry"/>

</xs:sequence >

<xs:attribute name="file" use="required" type="xs:string"/>

<xs:attribute name="name" use="required" type="xs:string"/>

</xs:complexType >

</xs:element >

<xs:element name="entry">

<xs:complexType mixed="true">

<xs:attribute name="name" use="required" type="xs:string"/>

</xs:complexType >

</xs:element >

</xs:schema >
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Appendix C

Datasets

This appendix covers the datasets that were used during the experimentation in this

text. As explained in Section 5.2.1, there are thirteen data tests in all. For each data

test, there is a test data set known to have an anomaly which is fed into a trained

anomaly detection technique. Techniques are trained on two training data sets which

represent the normal behaviour.

C.1 Event 1 Datasets

The ”Event 1” datasets all use the NodeQuality fiber data property. The 2 normal

datasets used for training are shown in Figure C.1. The test dataset with a single

highlighted anomalous region is shown in Figure C.2.
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Figure C.1: Normal datasets for event 1.
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Figure C.2: Test dataset containing event 1 anomaly.

C.2 Event 2 Datasets

The ”Event 2” datasets all use the Magnitude fiber data property. The 2 normal

datasets used for training are shown in Figure C.3. The test dataset with a single

highlighted anomalous region is shown in Figure C.4.

C.3 Event 4a Datasets

The ”Event 4a” datasets all use the Magnitude fiber data property. The 2 normal

datasets used for training are shown in Figure C.5. The test dataset with a single

highlighted anomalous region is shown in Figure C.6.
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Figure C.3: Normal datasets for event 2.
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Figure C.4: Test dataset containing event 2 anomaly.

C.4 Event 4b Datasets

The ”Event 4b” datasets all use the NodeQuality fiber data property. The 2 normal

datasets used for training are shown in Figure C.7. The test dataset with a single

highlighted anomalous region is shown in Figure C.8.

C.5 Event 5a Datasets

The ”Event 5a” datasets all use the Magnitude fiber data property. The 2 normal

datasets used for training are shown in Figure C.9. The test dataset with a single

highlighted anomalous region is shown in Figure C.10.
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Figure C.5: Normal datasets for event 4a.
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Figure C.6: Test dataset containing event 4a anomaly.

C.6 Event 5b Datasets

The ”Event 5b” datasets all use the NodeQuality fiber data property. The 2 normal

datasets used for training are shown in Figure C.11. The test dataset with a single

highlighted anomalous region is shown in Figure C.12.

C.7 Event 6 Datasets

The ”Event 6” datasets all use the Magnitude fiber data property. The 2 normal

datasets used for training are shown in Figure C.13. The test dataset with a single

highlighted anomalous region is shown in Figure C.14.
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Figure C.7: Normal datasets for event 4b.
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Figure C.8: Test dataset containing event 4b anomaly.

C.8 Event 7 Datasets

The ”Event 7” datasets all use the Magnitude fiber data property. The 2 normal

datasets used for training are shown in Figure C.15. The test dataset with 2 high-

lighted anomalous regions is shown in Figure C.16.

C.9 Event 8 Datasets

The ”Event 8” datasets all use the NodeCount fiber data property. The 2 normal

datasets used for training are shown in Figure C.17. The test dataset with a single

highlighted anomalous region is shown in Figure C.18.
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Figure C.9: Normal datasets for event 5a.
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Figure C.10: Test dataset containing event 5a anomaly.

C.10 Event 10 Datasets

The ”Event 10” datasets all use the Magnitude fiber data property. The 2 normal

datasets used for training are shown in Figure C.19. The test dataset with a single

highlighted anomalous region is shown in Figure C.20.

C.11 Event 11 Datasets

The ”Event 11” datasets all use the Magnitude fiber data property. The 2 normal

datasets used for training are shown in Figure C.21. The test dataset with four

highlighted anomalous regions is shown in Figure C.22.

131



Figure C.11: Normal datasets for event 5b.
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Figure C.12: Test dataset containing event 5b anomaly.

C.12 Event 14 Datasets

The ”Event 14” datasets all use the NodeCount fiber data property. The 2 normal

datasets used for training are shown in Figure C.23. The test dataset with a single

highlighted anomalous region is shown in Figure C.24.

C.13 Event 15 Datasets

The ”Event 15” datasets all use the Magnitude fiber data property. The 2 normal

datasets used for training are shown in Figure C.25. The test dataset with a single

highlighted anomalous region is shown in Figure C.26.
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Figure C.13: Normal datasets for event 6.
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Figure C.14: Test dataset containing event 6 anomaly.
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Figure C.15: Normal datasets for event 7.
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Figure C.16: Test dataset containing the event 7 anomalies.
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Figure C.17: Normal datasets for event 8.
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Figure C.18: Test dataset containing event 8 anomaly.
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Figure C.19: Normal datasets for event 10.
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Figure C.20: Test dataset containing event 10 anomaly.
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Figure C.21: Normal datasets for event 11.
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Figure C.22: Test dataset containing event 11 anomalies.
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Figure C.23: Normal datasets for event 14.
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Figure C.24: Test dataset containing event 14 anomaly.
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Figure C.25: Normal datasets for event 15.

146



Figure C.26: Test dataset containing event 15 anomaly.
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