
Automated Specification-Based
Graphical User Interface

Testing

by

c©Krista A. King

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the requirements for the degree of

M.Eng. in Computer Engineering

Department of Electrical and Computer Engineering

Memorial University

May 2015

St John’s Newfoundland and Labrador



Abstract

The event-based nature of graphical user interfaces, or GUIs, increases the difficulty

of testing software applications. Automating this process reduces not only the time

to test, but also the work involved in preparing the tests to be run. However, some

form of specification is required for this automation.

TUIL, or Testable User Interface Language, is a lightweight prototype specification

language based on XML that was created to specify desktop, widget-based application

GUIs. TUIDE, or Testable User Interface Development Environment, is a prototype

Java application that is used to handle the testing automation processes, as well as

mock-up TUIL specifications.

A small Java application, containing four dialogs, is created to prove that the

TUIL language and TUIDE processing can not only find errors within faulty versions

of it, but also generate reasonably accurate mock-ups of the dialog GUIs. The findings

from this testing are positive.

ii



Acknowledgements

I would sincerely like to thank my supervisor, Dr. Dennis K. Peters, for all his support

and guidance during the course of this research and the writing on it. I would also

like to thank the Faculty of Engineering and Applied Sciences of Memorial University.

This thesis is dedicated to my parents, who have supported me throughout my

life and graduate degree. It is also in loving memory to my mother, who was not able

to see the end result.

iii



Contents

Abstract ii

Acknowledgements iii

List of Tables ix

List of Figures x

List of Listings xii

List of Algorithms xiv

List of Abbreviations xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 6

2.1 GUI Ripper, GUITAR, DART, and PATHS . . . . . . . . . . . . . . 6

iv



CONTENTS v

2.2 FSM Based Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 JUnit Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Formal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 XML Based Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Methodology 18

4 TUIL 22

4.1 Why Use XML? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 How TUIL is Different . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 The Schema Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Unique Identification . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 Shared Event Properties . . . . . . . . . . . . . . . . . . . . . 32

4.3.3 TUIL’s Container Object . . . . . . . . . . . . . . . . . . . . . 33

4.3.4 TUIL’s Base Object . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.5 Specifying Event Behaviour . . . . . . . . . . . . . . . . . . . 35

4.3.6 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.7 Test Case Components . . . . . . . . . . . . . . . . . . . . . . 43

5 Test Case Generation 47

5.1 The TUIL Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 The Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 annas Graphing Library . . . . . . . . . . . . . . . . . . . . . 50

5.3 Generating a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Generating Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 TUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



vi CONTENTS

6 Oracles 66

6.1 TUIDE Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 The AUT and Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Applying Actions . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.2 Getting Current GUI State . . . . . . . . . . . . . . . . . . . 77

6.2.3 Logging Results . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Mock-up GUIs 86

7.1 Generating a Mock-up . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Mock-up from a Specification . . . . . . . . . . . . . . . . . . . . . . 90

8 Application of Research 97

8.1 Test Case Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.3 Mock-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.4 Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5 Implementation Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9 Conclusion 110

9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A TUIL Action/Reaction Definitions 127

B Generate Java Package tuil 132

B.1 Generated Java Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2 Unmarshalling a TUIL XML File . . . . . . . . . . . . . . . . . . . . 136

C Example of State Object Classes 137



CONTENTS vii

D How to Load a TUIL Specification into TUIDE 142

E How to Generate Test Cases From TUIDE 145

E.1 Generate Graph Menu Item . . . . . . . . . . . . . . . . . . . . . . . 146

E.2 Generating Test Cases Menu Item . . . . . . . . . . . . . . . . . . . . 147

F How to Generate a Mock-up in TUIDE 149

G How to Run an Oracle from TUIDE 152

G.1 How to Load a Set of TUIL Test Cases . . . . . . . . . . . . . . . . . 153

G.2 How to Load a Runnable JAR File . . . . . . . . . . . . . . . . . . . 155

G.3 How to Run an Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . 156

H Guidelines for Application Under Test GUI Design 157

I Food Orderer: Subset of Generated Test Cases 159

J Food Orderer: Event Coverage 181

K Food Orderer: Generated Oracle Results 185

K.1 Main Dialog Oracle Results . . . . . . . . . . . . . . . . . . . . . . . 186

K.2 Appetizer Dialog Oracle Results . . . . . . . . . . . . . . . . . . . . . 187

K.3 Entrée Dialog Oracle Results . . . . . . . . . . . . . . . . . . . . . . . 189

K.4 Dessert Dialog Oracle Results . . . . . . . . . . . . . . . . . . . . . . 190

L Food Orderer: Generated Oracle Results with Faults 191

L.1 Main Dialog Oracle Results . . . . . . . . . . . . . . . . . . . . . . . 192

L.2 Appetizer Dialog Oracle Results . . . . . . . . . . . . . . . . . . . . . 194

L.3 Entrée Dialog Oracle Results . . . . . . . . . . . . . . . . . . . . . . . 197



viii CONTENTS

L.4 Dessert Dialog Oracle Results . . . . . . . . . . . . . . . . . . . . . . 199



List of Tables

4.1 Typical Control Images . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.1 Main Dialog Event Coverage . . . . . . . . . . . . . . . . . . . . . . . 100

8.2 Faults Seeded Into AUT . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.3 Oracle Results for Seeded Faults . . . . . . . . . . . . . . . . . . . . . 109

A.1 Breakdown of Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.2 Breakdown of Reactions . . . . . . . . . . . . . . . . . . . . . . . . . 129

J.1 Appetizer Dialog Events . . . . . . . . . . . . . . . . . . . . . . . . . 182

J.2 Entrée Dialog Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

J.3 Dessert Dialog Events . . . . . . . . . . . . . . . . . . . . . . . . . . 183

ix



List of Figures

4.1 An Example GUI State Graph . . . . . . . . . . . . . . . . . . . . . . 25

4.2 TUIL Example Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 TUIL Example Dialog FSM . . . . . . . . . . . . . . . . . . . . . . . 42

7.1 Mock-up of Main Window . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Mock-up of First Dialog . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3 Mock-up of Second Dialog . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1 Specification Result Dialog . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Food Orderer Partial Graph Example . . . . . . . . . . . . . . . . . . 99

8.3 Container Selection Dialog . . . . . . . . . . . . . . . . . . . . . . . . 100

8.4 Main Dialog Implementation . . . . . . . . . . . . . . . . . . . . . . . 102

8.5 Appetizer Dialog Implementation . . . . . . . . . . . . . . . . . . . . 103

8.6 Entrée Dialog Implementation . . . . . . . . . . . . . . . . . . . . . . 104

8.7 Dessert Dialog Implementation . . . . . . . . . . . . . . . . . . . . . 104

8.8 Container Selection Dialog for Mock-ups . . . . . . . . . . . . . . . . 105

8.9 Main Dialog Mock-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.10 Appetizer Dialog Mock-up . . . . . . . . . . . . . . . . . . . . . . . . 106

8.11 Entrée Dialog Mock-up . . . . . . . . . . . . . . . . . . . . . . . . . . 107

x



LIST OF FIGURES xi

8.12 Dessert Dialog Mock-up . . . . . . . . . . . . . . . . . . . . . . . . . 107

D.1 The TUIL Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

D.2 The TUIL Result Dialog . . . . . . . . . . . . . . . . . . . . . . . . . 144

E.1 The Test Case Generation Menu . . . . . . . . . . . . . . . . . . . . . 146

E.2 Test Case Generation Container Selection . . . . . . . . . . . . . . . 147

F.1 The TUIDE Mock-up Menu . . . . . . . . . . . . . . . . . . . . . . . 150

F.2 The No TUIL Specification Error . . . . . . . . . . . . . . . . . . . . 150

F.3 Select a Container To Mock-up Dialog . . . . . . . . . . . . . . . . . 151

F.4 No Container Selected Error . . . . . . . . . . . . . . . . . . . . . . . 151

G.1 The TUIL Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

G.2 The No Test Cases Parsed Error Message . . . . . . . . . . . . . . . . 153

G.3 The Test Case Parsing Summary Dialog . . . . . . . . . . . . . . . . 154

G.4 The Oracle Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

G.5 The Oracle Warning Message If Missing Information . . . . . . . . . 156



List of Listings

4.1 TUIL Specification of an Example Dialog . . . . . . . . . . . . . . . . 33

4.2 TUIL Specification of an Example Dialog with Events Provided . . . 39

4.3 TUIL Test Case Toggle Check Example XML . . . . . . . . . . . . . 44

4.4 TUIL Test Case Close Container Example XML . . . . . . . . . . . . 46

5.1 GenerateContainerBranch Method Signature . . . . . . . . . . . . . . 55

6.1 How to Code SwingUtilities.invokeAndWait . . . . . . . . . . . . . . 72

6.2 ApplyAction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Code for Applying a Key+Mouse Action . . . . . . . . . . . . . . . . 76

6.4 fireStateRequestEvent Method . . . . . . . . . . . . . . . . . . . . . . 77

6.5 OnStateRequest Example Implementation . . . . . . . . . . . . . . . 78

6.6 ConvertCombo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.7 Comparison Between TcBase objects . . . . . . . . . . . . . . . . . . 83

6.8 Comparison Between TcButton objects . . . . . . . . . . . . . . . . . 83

6.9 Example Log File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 MainWindow.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 FirstDialog.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 SecondDialog.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.1 TuilContainer.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xii



LIST OF LISTINGS xiii

B.2 Example JAXB Variable Instantiation . . . . . . . . . . . . . . . . . 136

B.3 Example JAXB Unmarshal a Single XML File . . . . . . . . . . . . . 136

C.1 BaseState.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

I.1 Main Dialog Test Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . 160

I.2 Main Dialog Test Case 9 . . . . . . . . . . . . . . . . . . . . . . . . . 165

I.3 Dessert Dialog Test Case 1 . . . . . . . . . . . . . . . . . . . . . . . . 167

K.1 Main Dialog Oracle Result 1 . . . . . . . . . . . . . . . . . . . . . . . 186

K.2 Appetizer Dialog Oracle Result 12 . . . . . . . . . . . . . . . . . . . . 187

K.3 Appetizer Dialog Oracle Result 14 . . . . . . . . . . . . . . . . . . . . 187

K.4 Appetizer Dialog Oracle Result 17 . . . . . . . . . . . . . . . . . . . . 188

K.5 Entrée Dialog Oracle Result 37 . . . . . . . . . . . . . . . . . . . . . 189

K.6 Dessert Dialog Oracle Result 5 . . . . . . . . . . . . . . . . . . . . . . 190

L.1 Result 1 with Label Fault . . . . . . . . . . . . . . . . . . . . . . . . 192

L.2 Result 1 with Textbox Fault . . . . . . . . . . . . . . . . . . . . . . . 192

L.3 Result 5 with the Dessert Button Fault . . . . . . . . . . . . . . . . . 192

L.4 Result 12 with Soup Crackers Fault . . . . . . . . . . . . . . . . . . . 194

L.5 Result 14 with Soup Crackers Fault . . . . . . . . . . . . . . . . . . . 195

L.6 Result 17 with Soup Crackers Fault . . . . . . . . . . . . . . . . . . . 195

L.7 Result 17 with List Fault . . . . . . . . . . . . . . . . . . . . . . . . . 196

L.8 Result 37 with Enable Faults . . . . . . . . . . . . . . . . . . . . . . 197

L.9 Result 37 with List Fault . . . . . . . . . . . . . . . . . . . . . . . . . 197

L.10 Result 5 with Sauce Combo Fault . . . . . . . . . . . . . . . . . . . . 199

L.11 Result 5 with List Fault . . . . . . . . . . . . . . . . . . . . . . . . . 199



List of Algorithms

1 Test Case Graph Generation Algorithm . . . . . . . . . . . . . . . . 53

2 The GenerateContainerBranch Algorithm . . . . . . . . . . . . . . . 56

3 How to Add the Nodes and Arc to a Graph . . . . . . . . . . . . . . 60

4 TUIDE’s Oracle Thread Algorithm . . . . . . . . . . . . . . . . . . . 68

5 AUTHandler Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 LogFile WriteResultToFile Algorithm . . . . . . . . . . . . . . . . . 81

xiv



List of Abbreviations

Abbreviations Description Page
GUI Graphical User Interface 1
UI User Interface 1

XML eXtensible Markip Language 14
PATHS Planning Assisted Tester for grapHical user interface Systems 7

FSM Finite-State Machine 9
VFSM Variable Finite-State Machine 9
MDL MASTERMIND Dialogue Language 10
CSM Concurrent State Machine 10
SMV Symbolic Model Checking 10
FSA Finite State Automata 10

HFSM Hierarchical Finite-State Machine 11
CIS Complete Interaction Sequences 11

VIEWS Vendor Independent Extensible Windowing System 14
Haste High-level Automated System Test Environment 11

XAML eXtensible Application Markup Language 15
WPF Windows Presentation Foundation 16
UPF Universal Presentation Framework 16
XUL XML User Interface Language 16
XBL eXtensible Bindings Language 16

XIML eXtensible Interface Modelling Language 16
TUIL Testable User Interface Language 22
AUT Application Under Test 19

TUIDE Testable User Interface Development Environment 65
JAXB Java Architecture for XML Binding 48
XJC JAXB Binding Compiler 48
UTC Coordinated Universal Time 61

. . .

xv



xvi 0. List of Abbreviations

Abbreviations Description Page
GMT Greenwich Mean Time 61
JAR Java ARchive File 66

DART Daily Automated Regression Tester 7



Chapter 1

Introduction

Since the first software programs were developed, determining a specification of proper

program behaviour has been a challenge. This specification is extremely important,

not only when developing the implementation for the program, but also during ver-

ification and testing. It is the specification that lets the tester know if a particular

behaviour has been properly implemented. In particular, the User Interface (UI), or

Graphical User Interface (GUI), behaviour of the software application is important

to get right, as this is the portion of the program that the end user will see, thus if

the UI behaviour is implemented incorrectly it will be more readily discovered by the

user.

In many cases the program specification will be generated in human readable text

and images, i.e. documents. These are important, as the developers must be able

to read and understand the desired program behaviour and appearance in order to

implement it. As well, using these documents as a basis, the tester will know how to

test each part of the program. However, with respect to automated testing processes

and user interfaces, these documents fall short of being viable options to express

1



2 1. Introduction

correct program/GUI behaviour. While they are readily understood by humans, a

computer would have difficulty with such a specification. While it is relatively simple

to create a method for the computer to read in or parse the specified behaviour,

the difficulty arises when the computer attempts to use said behaviour in order to

perform an automated task, such as test case generation. It must have some prior

knowledge of what each type of behaviour means in order to piece them together to

get the behaviour of the whole GUI or part of it. This brings to mind the question:

What kind of GUI specification language will provide system engineers, software

developers, and testers with the information they require for their work, but will also

enable automation of the testing process to occur?

The following are some of the factors that must be taken into consideration in

choosing a specification notation for GUI software:

• How can the language be simplified to describe only what is needed? Meaning

the language should not describe every detail possible about the GUI, but rather

abstract out those pieces of information that the loss of which will not degrade

the effectiveness of the language itself in accomplishing the rest of the factors

mentioned here.

• How will it handle GUI actions/events?

• How will it show behavioural relationships between GUI components?

• How can it be used to generate test cases?

• How can it be used to generate test oracles?

• How can it be used to generate mockup GUIs?



1. Introduction 3

1.1 Motivation

Graphical user interfaces are essential to software engineering today, as they are the

first thing a user will see when starting an application. Thus, ensuring that these GUIs

behave accordingly, and without error, is of the utmost importance to the software

companies. If a GUI is not tested, with the purposes of determining if any faults

exist, then it cannot have any claim of operating properly.

To properly test the GUI, one must first create test cases for it and run these

against the application itself. But how will the tester know what is correct be-

haviour? The answer to this is simple: a proper specification for the GUI. By having

such a specification, it is possible to not only have a method of comparison for allowed

behaviour, but it could also be used to generate the test cases and oracles automati-

cally. However, the specification must not over-specify the GUI or be so heavyweight

that it is difficult to use. Over-specifying involves including too many aspects of the

individual GUI components that have no effect on the required behaviour. Required

behaviour changes depending on the application, thus it is up to the specifier to de-

termine what should be included within the specification. An example would be to

specify the size of a push button whose required behaviour is to open a dialog when

pressed/released. The size of the button has no bearing on the behaviour itself, and

thus does not need to be included within the button’s specification.

1.2 Research Goals

A goal of this research is to develop or find a GUI specification notation that can be

brought to a level where it is possible to accomplish all of the following:



4 1. Introduction

• Automatically generating test cases

• Automatically generating oracles

• Generate mock-up GUIs

In order to do this, the specification must be able to effectively specify the in-

teractions between the user and the GUI components, between GUI components

themselves, and how the GUI will appear.

To restrict this research to feasible limits, the GUI being specified is restricted in

the following ways:

• Only standard widget based GUIs are investigated.

• No visualization controls or components, such as 2-D or 3-D graphics, are looked

at.

• Many complex GUI components, such as Menus, Scroll Bars, etc, are ignored.

It is not that these can never be included, but that they are deemed advanced

components, and thus, not part of the base language capabilities.

• Only statically allocated lists, whose contents are known ahead of time, are

allowed. This ignores all lists that are generated and updated during the execu-

tion of the application. The reason for this is to simplify the ability to generate

test cases, perform oracles, and generate mock-ups.

• Only those events that are provided in the specification are looked at during

test case generation and generation/application of the oracle.

• The programming language used for manipulating the GUI specifications to

perform the other requirements of this research is Java.



1. Introduction 5

1.3 Outline

The following chapters describe the goals, research, implementation, and accomplish-

ments of this thesis:

• Chapter two - Related research.

• Chapter three - Methodology used to accomplish the goals of this thesis.

• Chapters four to seven - Discussion of the prototype tools developed.

• Chapter eight - Examination of an example application using the tools and

concepts developed.

• Chapter nine - Conclusions and future work.



Chapter 2

Related Work

This chapter reviews some of the methods used to specify and test GUIs that have

been found during the course of this research. To mention all related research within

the areas defined in this chapter would be difficult due to the sheer volume. Instead,

we focus on a subset of related work to better discuss the differences and similarities

to our own.

2.1 GUI Ripper, GUITAR, DART, and PATHS

Of particular note, is work by Memon et al. [1–8], who have done extensive work

over the years in all aspects of the testing process. Emphasis has been placed on

the different automation tools developed to simplify the amount of time required

to perform each step. In [7, 8] an event-flow model is discussed, which is used to

model the behaviour of a GUI. Events are modeled as operators, that take advantage

of the hierarchical nature of a GUI’s structure, where preconditions are matched

with effects. Preconditions represent what state the GUI must be in for the event

6



2. Related Work 7

to occur, while effects represent the state changes made to the GUI after the event

has been applied. These operators allow for a graph to be developed and used for

different purposes. In [7] a tool known as GUI Ripper is introduced. Its purpose is

to automatically reverse engineer an application by traversing its GUI, opening each

window in turn, and saving its information, including controls and properties, as well

as also saving extra information about events. Any windows missed by the tool are

added in manually by a test designer. Both sets of information are used to generate

the event-flow graphs required. They can then be used to automatically generate test

cases. The first implementation of it is designed around Microsoft Windows based

GUIs, however, there is also a Java Ripper tool, designed to perform the same tasks

in a Java application. The model provided by the GUI Ripper is then made use of

by two other tools credited to Memon’s research:

• GUITAR - GUI testing framework used to automate the process.

• Daily Automated Regression Tester (DART) - Performs nightly testing on GUI

applications.

In [4], Memon et al. discuss the automatic test case generation capabilities of

their Planning Assisted Tester for grapHical user interface Systems (PATHS) tool.

This tool uses the event-flow modeling graphs mentioned above to actually generate

the test cases, a set of initial and goal states are provided to the PATHS tool, which

already contains the graph(s). The tool then uses AI path generating algorithms in

order to determine the set of hierarchical plans, or event sequences, which represent

the tests to be applied to the AUT. In [2] Memon et al delve into oracle generation

from their modeling language using PATHS, while in [6] the best form of applying

said oracles is discussed.



8 2. Related Work

Memon’s work is quite extensive, and covers the majority of the work we will be

undertaking within this research:

• GUI modeling

• Test case generation

• Oracles

What we take from this are the ideas:

1. That modeling a GUI requires placing pre- and postconditions on GUI proper-

ties, with respect to event behaviour.

2. That making use of the GUI hierarchy can help when automating processes.

3. Of combining the majority of the tools or processes within the same application.

This can also be called an integrated environment.

Our research, however, differs from some of the concepts provided above. While

the modeling of a GUI in Memon et al’s work uses pre- and postconditions for events,

our specification language will not contain these directly. Instead it will be the re-

sponsibility of the test case generation process to ensure events are only applied in

situations where they make sense. As well, our research does not use ripping to gen-

erate the specification for a GUI. Instead, it centers on the idea that the specification

of a GUI should come first so that all behaviour can be finalized before any imple-

mentation is done. Thus, the specification is a manual process, rather than the GUI

Ripper, which is mostly automatic.



2. Related Work 9

2.2 FSM Based Work

It is a very common practice within industry to model a GUI as a finite-state machine

(FSM), sometimes in its directed graph form due to the event-based nature of GUIs.

We only examine a subset of FSM approaches here.

In [9], Campbell and Veanes describe a state exploration algorithm that uses

multiple state grouping functions to group related states within a FSM model, for

the purpose of reducing the state space. The reason for this is to help guide the

algorithm to generate tests for states that are interesting. The Spec Explorer tool is

used to demonstrate use of the algorithm.

In [10], Chow describes how test cases can be generated from software modeled as

an FSM by use of automata theory, and then be applied against the FSM to verify

responses. The testing strategy investigated has several characteristics:

1. the FSM of the control structure is the only part tested

2. an ’executable’ prototype is not required

3. any test cases generated are guaranteed to find faults in the control structure,

given the following assumptions about the control structure FSM:

• it is completely specified,

• it is minimal,

• its initial start state is fixed,

• every state is reachable.

Shehady and Siewiorek [11] describe modeling UIs with Variable Finite-State Ma-

chines (VFSM), which are designed to provide more advanced transition and output



10 2. Related Work

functions to describe the UI properly. The ’Variable’ portion of the name derives

from the use of global variables, that are defined for a VFSM, and are modified a

finite number of times by the transitions made in response to a test input sequence.

The global variables help determine what the next state in the transition should be,

as a single variable can allow or deny different transitions based on its current value.

A VFSM can be converted to a FSM for test cases to be generated using the partial

W method, also called the Wp method. This process yields fewer states than a direct

translation from the UI to a FSM.

In [12] Stirewalt discusses translation of specifications written in the MASTER-

MIND Dialogue Language (MDL) into an interpreter by way of Concurrent State Ma-

chines (CSM). The authors make use of Symbolic Model Verifier (SMV) to perform

model checking. They also used SMV to verify different strategies for intermachine

communication between the CSMs, as trade-off issues existed between strategies.

The communication method chosen was a combination of prioritized scheduling and

peeking at parent states.

In [13] Belli makes use of deterministic Finite State Automata (FSA) and regular

expressions to accomplish the tasks of testing the GUI modeled as an FSM. It is

assumed in Belli’s approach that the application should be tolerant of incorrect user

interactions, as in there are no user errors. Instead, faults are grouped into two

categories:

1. Specification - The behaviour in the specification is wrong.

2. Implementation - The implemented behaviour does not match the expected

behaviour from the specification.

Paiva et al. discuss a method which makes use of Hierarchical Finite-State Ma-



2. Related Work 11

chines (HFSM) [14]. First the GUI is modeled in Spec#, then converted to a FSM

using the Spec Explorer tool. The HFSM is created from this FSM, and is used to

reduce the size by exploiting knowledge of hierarchical GUIs. The reduced FSM is

then used as input to the Spec Explorer to generate testing procedures.

In [15] White models the GUI as a FSM, then generates tests from it based on

Complete Interaction Sequences (CIS), which are sequences of user interactions on

GUI objects and cooperative methods. Reductions to the complexity of the FSM,

while the CIS is being applied to it, were made where feasible.

Apfelbaum and Schroeder describe a behavioural model of GUIs based on state-

machines [16], where events and responses are state transitions, and windows are

either states, if simplistic, or entire sub-models if they are complex. Goals to be

achieved by the testing, as well as usage patterns of how the software is normally

operated should be determined ahead of time, to help with generating appropriate

tests.

Modeling a GUI as a directional FSM, where the edges of the state-machine con-

tain information about the event, is key to developing test cases for our research.

This will be described in more detail within chapter 5.

2.3 JUnit Based Approaches

In [17] Erickson et al. introduce the tool Haste, built upon the ideas of JUnit, and

designed for general system testing of software. While the concepts used by Haste are

language independent, the first iteration is in Java. There are three main elements of

Haste:

• The testing framework used by Haste: Story (Single test), Step (Part of a Story)



12 2. Related Work

and StoryBook (Suite of Story objects).

• Narcitecture - How Haste gains internal state information from GUI objects,

and represents the test code executed within the same address space as the

AUT.

• Pilots and Droids - Pilots simplify access to complex GUI objects, while Droids

allow the application to be manipulated through programmatic calls.

References are made within the article to other GUI testing toolkits, such as

JFCUnit [18], Jemmy [19], Robot [20], Abbot [21], and Marathon [22], that are mainly

used for manipulating the GUI under test.

The idea of using a toolkit in order to manipulate a GUI during runtime is ex-

tremely important for our research into oracles. The reason for this is that it will

provide a means by which to apply any action, from the current test case, against the

GUI under test. As well, placing test code within the AUT itself, in order to leverage

access to information and for GUI manipulation is key to some of our research. These

concepts will be described in more detail in chapter 6.

While the above ideas are similar between our research and that of Haste, there

are also many differences. The StoryBook, Story, and Step objects are Java classes

extending similar JUnit classes. Haste makes use of these to create test sets to

be applied to the AUT based upon requirements. In contrast, our test cases are

written using elements of the specification language we created, and are generated

from a specification of the GUI. Thus, the test cases exist external to the Java code

developed to run them against the AUT.



2. Related Work 13

2.4 Formal Methods

In [23] Peters and Parnas describe how software documented by way of tabular no-

tations may be used to generate test oracles, which would then present results when

run against the software application in question. Documentation using tabular ex-

pressions can clearly denote intended software behaviour. Peters et al. have also

developed a prototype Eclipse plugin to make it possible to write formal specifica-

tions, using tabular expressions as a base, and leveraging new technologies, within

the Eclipse IDE [24].

Weyuker describes, in [25], various methods to determine if a program is displaying

correct behaviour when no oracle is assumed to exist. Such programs fall into one of

three categories:

1. Programs written to determine the answer to a problem.

2. Programs generating too much output to verify easily.

3. Programs where the tester has a misconception about correct behaviour.

For the first two types of programs, there are several possible ways to attempt

verification of correct behaviour. One is to use a pseudo-oracle, which is a program

written in conjunction with the original, but by an independent programmer, that

is designed to meet the same specification. The same test data is then provided to

both programs and a comparison of results is performed. If there is a difference,

then it warrants a check of how the difference occurred. The second method, is to

use a simpler set of data for testing, then extrapolate out to more complex data.

The third method is to accept plausible results even though they may be wrong.

The problems existing with these techniques are that pseudo-oracles are not always



14 2. Related Work

practical, depending on the program, simpler data may behave correctly, but the

more complex data is usually more error-prone, and lastly, accepting plausible results

can allow incorrect results through.

For the third type of program, problems with misconceptions can be mitigated

by using one or more testers that are not part of the development team. Another

way to avoid this problem, is to use better specifications that are put in place before

implementation occurs.

Automated oracles are not always required during testing, depending on the

method of testing being employed and the application being tested. In our research,

however, oracles are a necessary part of the testing process as they determine whether

or not the application being tested conforms to the originally specified behaviour.

Typically they are generated separately from the test cases, however, our research

will differ from this in that our generated test cases will also contain our generated

oracles. Similar to Weyuker’s research, the idea of the specification being developed

before implementation occurs is desirable. Please see chapter 6 for more details.

2.5 XML Based Work

In recent years, XML [26, 27], or eXtensible Markup Language, has emerged as a

language that may be used for specifying or modeling UIs. As well, in many cases,

the purpose of the XML-based language is to simply define the UI for an application

or website for display purposes, rather than to determine correct behaviour.

In [28] Bishop and Horspool present the VIEWS system, which has a XML specifi-

cation language for modeling the GUI and a layer to handle dynamic GUI behaviour.

The event handling is handled separately using either event loop capabilities or call-



2. Related Work 15

backs. In [29] Bishop discusses the merits of using Mirrors, a C# .NET toolkit that

makes heavy use of reflection [30] to generate a GUI from an XML specification.

Reflection is a mechanism for a program to determine the types and properties asso-

ciated with objects (e.g., controls and forms) at runtime, and to invoke events against

them. This allows the specification to remain independent of the implementation and

platform.

Xin describes the development of a GUI Toolkit based on XML specifications

[31]. The specification has both static behaviour, in terms of widget definitions and

layout, as well as dynamic behaviour, events, and transformation by way of two XSLT

documents that transform the XML specification into XHTML or Java.

Abdel Salam et al. [32,33] discuss the development of an XML based specification

language geared for testing Java Swing applications, along with tools to generate the

test scripts, generate application code to run the test scripts against the AUT and

log expected results, and finally a visual editor to generate a specification containing

only the GUI structure from an existing AUT.

In [34] Tubishat et al. describe using XML-based language files to store the current

state of a particular GUI, for use with certain actions such as undo, redo, etc, and

for comparison with other saved states to determine if regression testing is required.

By limiting the amount of information stored to these files, it can reduce the number

of possible states for a GUI, and decrease complexity of processing them.

XAML, or eXtensible Application Markup Language, is Microsoft’s XML appli-

cation that can be used to specify the UI for .NET applications, by providing a

means to describe the interface components separately from the actual application

code [35, 36]. This means both programmers and designers can work on the same

application, at the same time, with limited interference with one another. XAML



16 2. Related Work

has multiple assemblies, which contain the base object definitions for the language,

which map directly to .NET objects.

eFace is a Java solution based on Microsoft’s XAML/WPF [37]. The code used

for eFace, UPF (Universal Presentation Framework) is compatible with WPF.

XUL, or XML User Interface Language, is Mozilla’s XML based UI specification

language designed to build cross platform applications [38]. It is used extensively

within Firefox, which is Mozilla’s web browser. It makes use of several technologies:

• XBL - Provides bindings for XUL objects, allowing extensions to define new

content, event handlers, as well as new properties and attributes.

• Overlays - Describe extra capabilities for XUL applications for customization

or extension of existing XUL code.

• XPCOM/XPConnect - Allows XUL applications to interface with external li-

braries.

XMLTalk is an XML based specification language, that is used to specify user

interfaces for Java/Swing applications [39, 40]. It leverages key components of both

the Java and SmallTalk languages to be able to automatically generate the UI using

the Model-View-Controller pattern. The part that makes XMLTalk different, is that

it specifies the Model side of the application, as well as the View.

XForms [41] a W3C funded development of forms technology for web based ap-

plications based off XML.

XIML is an XML language for universal specifications of interaction and knowl-

edge data for user interfaces [42]. Some of its capabilities are to enable a single

interaction specification to be loaded on multiple platforms, as well as to provide a

means by which to store interaction data from a user interface or set of user interfaces.



2. Related Work 17

Most of these languages are geared towards the render or display of the UI during

runtime, and thus describe the look, as well as the dynamic event behaviour, of the UI

components. This is not what we are attempting to accomplish with our own research.

Instead, any specification language described in the subsequent chapters should sim-

ply define the GUI and its event behaviour, but have no built-in dynamic behaviour

capabilities nor the ability to automatically render the GUI during execution.

As well, the XIML specification language, while providing a mechanism to define

a user interface, does not itself provide a means by which the UI is rendered or

displayed on the target machine’s screen. While our own research will also attempt

to not specify exactly how a GUI should be rendered to screen, it will provide some

details as to how it should look and feel.

Abdel Salam et al’s work lies in a similar realm of research to part of what we are

attempting to accomplish here. However, the following differences exist:

• Our research is based on the idea of starting with a specification, and then the

AUT is implemented from this.

• The structure of our language will be more detailed with respect to the controls.

• Our research will not use automatically generated scripts/code to apply test

cases and handle their results.

Tubishat et al’s research [34] is similar to ours in that our work will also attempt

to reduce the amount of information that is saved for our specified controls. However,

the purpose for doing this is different, as our research is geared towards specification

of the GUI, as well as automating the testing process.

All of the aforementioned differences will be covered more fully in chapters 4 and

5.



Chapter 3

Methodology

As stated in the introduction, the main goals of this research include:

• Development of a specification language.

• Automatic generation of test cases based on the specification language.

• Automatic generation/application of oracles using the generated test cases.

• Automatic generation of mock-up GUIs based on the specification.

All tool development for this research will be in the Java programming language.

The reasons for this are that it is:

• a high level, object-oriented language,

• easily portable,

• widely used within industry.

The specification language developed must be light-weight, easily parsed by Java,

and easily extensible if required. It is desired that the language should have com-

ponents available to be able to describe test cases as well. This will allow common

18



3. Methodology 19

capabilities to be shared between the two sides. For the purposes of this research, the

language itself is a prototype or example language. Not all capabilities of a GUI are

covered, and limitations are put in place to reduce the complexity of processing the

language.

The most important question to answer here is whether or not our prototype

language is good enough. The following are some of the language’s attributes:

1. That it can be used to generate test cases that actually expose problems in

implemented Applications Under Test (AUTs).

2. That it is descriptive enough to allow a mock-up of it to be automatically

generated, for checking validity of specified layout and appearance.

Test case generation is a method whereby the specification is taken as input and

the result is a set of test cases. The test case generation process for this research

uses a graph in order to get from input to output. Limitations are put in place to

ensure that the complexity of the graph is reduced. Graphs, or models of GUIs, can

have what is called a state space explosion problem, as mentioned in [9], [14], [43],

and [44], in relation to FSMs. It means that the number of possible states that

can exist within a GUI may be quite large, or even infinite, thus increasing the

time and memory required to process its graph representation into a usable form

for testing. As well, in [45], Ganov et al. discuss placing constraints on some event

sequences and minimizing the set of usable event sequences in order to reduce the

set of tests to work with. This article references an issue with text input, where it

significantly increases the number of test sequences, as text can have a large number of

possible combinations. The limitations mentioned above are implemented by selecting

arbitrary sequences of events to apply, thus reducing the number of states that the



20 3. Methodology

graph contains.

Generation of oracles involves determining what the expected states of the GUI are

based on the specification of it. Application of oracles is a pass/fail process, where the

test cases generated are applied to an Application Under Test (AUT). The results of

applying each test case to the AUT are captured and compared against the generated

oracle, giving a pass or fail designation depending. For this research, the oracle will

take in both a set of test cases and an executable of the AUT itself. Each test case is

then run against the AUT in order.

The comparison between actual result and expected result should occur after each

step of the test case, instead of at the end of the test case. This will allow for more

information when a failure is found. The expected result is taken from the generated

oracle, that is part of the test case, and comprises of the combination of all control

and container states at that particular point within the test case. The actual result is

the combination of control and container states taken from the AUT at the same point

within the test case. A state is the value of all properties for a control or container,

and differs based on the type of that control or container. The properties for these

are defined by the developed prototype language mentioned above. For example, if

the test case calls for a check-box to be checked, but in the AUT itself the check-box

is not checked, then the comparison between the two results will fail.

The purpose of mock-up GUIs, with respect to this research, is to simply provide

a way of giving the specification writer a general idea of what the resulting GUI would

look like. However, limitations will exist based on the specification language itself,

which is only a prototype. For example, while the mock-up will be able to let the

specifier know where a button should possibly be located within its container, it will

not provide any way to denote colour, size, etc.



3. Methodology 21

The above descriptions are further explained within the subsequent chapters.



Chapter 4

TUIL

TUIL, or Testable User Interface Language, is an application of XML that speci-

fies the behaviour of the UI of a software program, in a form that can be used for

automating the testing process and generating mock-up GUIs to confirm the proper

layout of controls within each container.

4.1 Why Use XML?

XML is mainly used to store and transfer data between different applications. The

reasons why this language was chosen as a basis for TUIL are given below [31].

• It provides us with a way to define our own elements and types, that make use

of XML’s built in constructs and data types.

• The language can be defined within XML Schema files, that can be used to

validate any XML documents based on them.

• XML is an open standard, it is platform independent, and supported by a

22



4. TUIL 23

multitude of different programming languages and applications. This is espe-

cially important to GUI specifications because this allows the specification to

be ported to different programming languages for processing and usage, rather

than being tied down to a single language.

4.2 How TUIL is Different

As mentioned in section 2.5, there are many XML based languages used to describe

user interfaces that currently exist within industry or research communities. Some of

these include:

• XAML [35, 36] - XAML, or eXtensible Application Markup Language, is Mi-

crosoft’s XML application that can be used to specify the UI for .NET appli-

cations by providing a means to describe the interface components separately

from the actual .NET application code.

• eFace [37] - An XAML solution designed for Java applications.

• XUL [38] - Mozilla’s XML based application UI specification language.

• XMLTalk [39,40] - An XML based specification language, that is used to specify

user interfaces for Java/Swing applications.

• xForms [41] - A W3C funded development of forms technology for web based

applications based off XML.

• GUI Toolkit [31] - An XML based GUI toolkit for development of GUIs. It

displays these using the Java platform.



24 4. TUIL

• VIEWS [28] - Has an XML specification language for modeling the GUI and a

layer to handle dynamic GUI behaviour.

• XIML [42] - Specifies the user interface and any relations that exist between

components in XML. One of XIML’s goals is to have one specification that can

be displayed in multiple platforms and devices.

TUIL differs from the above languages in the following ways:

• It does not provide a means to automatically render the GUI and the defined

event behaviour.

• Unlike XIML, TUIL is not capable of dynamic display and management of the

interface.

• TUIL does not contain dynamic event behaviour, but rather specifies what is

correct behaviour for the application. Only when the application is implemented

will the event behaviour actually work.

• Not only does the language provide a way to describe a GUI, but it can also

describe test cases for a GUI.

A GUI is a state based system, that can move from one state to another by way of

an event. Events will be covered in a later section, but Figure 4.1 shows an example

GUI state graph. It is implied in this state graph that each button must be visible

and enabled for each event to occur. For Button B to be clicked by a mouse, it must

be visible and enabled within State A. This is similar for the other buttons and State

B.

Due to the fact that a GUI is inherently state based, TUIL must be able to

both specify it, as well as describe the current state. A state contains properties



4. TUIL 25

Figure 4.1: An Example GUI State Graph

that directly link back to some visual representation of the GUI component they are

associated with. As such, different properties are required based on the component.

If we think of the state in this manner, we can divide the properties into two sets:

• Common visual properties represent those that are common across all GUI

components. These include, but are not limited to, layout, size, location, and

whether the component is visible.

• Component specific properties represent those that are specific to a particular

GUI component or a set of components. For example, radio buttons and check-

boxes have a property that denotes whether they are selected. As well, a text

box may appear disabled when its read only property is turned on, and prevent

a user from entering text.



26 4. TUIL

The component specific properties can be used in two important ways within a

GUI application:

1. To be saved as the application’s configured settings, either in their raw form or

as a more usable form for the application. These can be loaded again the next

time the application starts.

2. To change the state of other GUI components. For example, selecting a check-

box that in turn enables a text box for user input.

Common visual properties such as layout, whether the component is enabled,

has focus, and is visible are required by our language. Layout allows us to orient the

components within containers, and will be essential for mock-up creation, as discussed

in chapter 7. Enabled, focused, and visibility can have an effect on event processing

during test case generation, which is further discussed in chapter 5.

Properties, such as colour, location, size, shape, font, etc, are not included in the

TUIL language, even though they are used to define the look-and-feel of the GUI.

These properties affect how the GUI looks, however, they do not directly affect how

events would be processed nor how mock-ups are generated. As well, these properties

will bloat the TUIL language and defeat its original purpose of being simplified and

light-weight, with as much abstracted out as possible. To this end, properties such

as these are left to the discretion of the implementing programmer to define.

The following lists the GUI components currently specified by TUIL with reference

to the most important of each one’s component specific properties. Emphasis is placed

on those properties that relate to the two ways they can be used within the GUI. Other

properties may exist, depending on the control, however these relate more to display

and layout, and are not discussed here. Please see Table 4.1 for the associated images



4. TUIL 27

of each one:

• Push Button - In its typical form, which TUIL uses, this component actually

has only visual properties, with the ability to fire events. The simplest way to

determine if performing an action on the button actually occurred, is to check

whether the specified event fired.

• Radio Button - The specific property for a radio button is whether the compo-

nent is selected or not.

• Radio Button Group - A radio button group is a grouping of radio buttons

either in a vertical or horizontal orientation, where only one of them can be

selected at a time. The radio button group is not a control within the TUIL

language, but rather it is denoted by an attribute of the button called a button

group. This attribute is always empty for a push button. The orientation is

determined by the layout mechanism that is discussed in a later section.

• Check-box Button - Similar to the radio button, a check-box’s specific property

is whether it is checked or not.

• Text Box - A text box accepts text entered by the user, though the form of

the text may sometimes be tailored, as in, for example, only allowing numbers

or expecting a password. Regardless of what the text box is used for, its most

important specific properties are the current text contained within it, along

with whether or not it is read only and/or multi-line.

• Label - A label is typically associated with another control, or is used to convey

information to the user. This may either be statically defined text or text that



28 4. TUIL

is updated based on what the user is doing. As such, a label’s specific property

is defined by its currently contained text.

• Slider - A slider is a control that contains a range of possible values, and allows

the user to select one of these. Each value is given an index, where the first

index is zero. Thus, its specific property set contains the allowed range of values

and the index of the currently selected value, along with the display orientation,

which is either vertical or horizontal.

• Combo Box - A typical combo box contains a set of items, that are usually

represented as strings, and displays the currently selected item. When the drop

down is displayed, it will either show a subset of the full list or the full list,

depending on the number of items. The specific properties for a combo-box

are a combination of the set of items currently in the list and the index of the

currently selected item.

• List Box - A list box is similar to a combo box, except that it will display as

many of its item set as possible given its dimensions. Scroll bars can appear

as necessary if the list is too long. There are two properties of a list-box that

can affect its specific property set: whether it is multiple selection or single

selection, and whether it has multiple columns or not. In its base form, the

specific property set for a list-box is the same as the combo-box above. When

multiple columns are included, the set of items in the list is changed to be the

set of rows, that contain multiple values. When multiple selection is included,

the currently selected item index is changed to the currently selected indexes.

• Group Box - The group box is meant to group controls with similar purpose



4. TUIL 29

together, so that they can be displayed in a logical manner to the user. Similar

to the radio button group, however, it is not a true control in the same manner

as the others. Instead its only specific property is a set of control ids denoting

what controls are to be displayed within it. The ids will be discussed later in

the chapter.

• Container - A container is the only component within the TUIL language that

is allowed to have child controls. As such, its specifc property set is the combi-

nation of all the child control property set, plus a layout mechanism.

Based on the above, TUIL documents a combined view of the UI, bringing together

the following two aspects:

• GUI state - As defined previously, and abstracted as much as possible.

• Event Behaviour - Required to show interactions between different parts of the

application. This is abstracted as much as possible. An event defines what

happens when a GUI changes state, and is further discussed in sections 4.3.2

and 4.3.5.

4.3 The Schema Files

The general purpose of the TUIL specification language is to describe a Finite-State

Machine. With this in mind, the language is structured as a way to define state

nodes interconnected by state transitions. Please see the supplementary files for the

full TUIL schema.

The language is broken out into several modules in order to group the Specification

and Test Case aspects separately. They both, however, make use of common language



30 4. TUIL

Table 4.1: Typical Control Images
Control Image

Push Button

Selected Radio Button

Unselected Radio Button

Vertical Radio Button Group

Horizontal Radio Button Group

Checked Checkbox

Unchecked Checkbox

Text Box

Label

Vertical Slider

Horizontal Slider

Combo Box

List Box

Multi-column List

Group Box

Container



4. TUIL 31

components. The rest of this section describes key aspects of the TUIL language, and

how they relate back to our FSM structure.

4.3.1 Unique Identification

The gui id type is a restriction on the base string type, where you cannot have

whitespaces and there is a maximum of 64 characters. We use string as the base type

so that the maximum number of unique possible values is increased. This type is

used to differentiate GUI component objects and to aid with event processing. There

are two uses for this type:

• id - The name of the current object.

• parent id - The name of the current object’s parent container object.

Within the Specification module the identifiers are used to create a tree or hierar-

chy of connections between UI components, to denote the parent to child relationships.

At the root or top of this, we have the main container object for the application UI,

which is denoted using a parent id of ’NULL’ or simply an empty string, meaning

it does not have a parent container. All other containers and child controls will have

their parent id attribute filled out with the container that they are displayed in,

or which owns them. The id attribute is always filled out for each component, and

should be unique in the following ways:

• Each child control should have a unique identifier within its parent container.

This is so that it can easily be distinguished from the other child controls within

the same container. As well, this allows for the re-use of child ids within different

parent containers, as the two controls are seen as unique.



32 4. TUIL

• Each parent container should have a unique identifier within the entire specifi-

cation. This is to distinguish different containers from one another so that it is

easier to find them during test case generation and oracle application.

For example, to specify that a container owns a button, we would give the button

an id of ’ButtonOne’ and a parent id of ’ContainerOne’. In turn, the container

would then have an id value of ’ContainerOne’.

The Test Case module uses only the id value, however, as it organizes the contain-

ers and control objects in a different way, thus negating the need for the parent id

to be used directly.

4.3.2 Shared Event Properties

There are some event elements and attributes that are shared by the Specification

and Test Case modules. These are comprised of:

• Actions - Encompasses all actions available within the language, which are

limited to the most commonly used actions. Please see section 4.3.5 where

events are discussed in more detail.

• event object - Denotes what object is currently being affected by the action or

reaction (See section 4.3.5). It includes both the id and parent id attributes,

and allows the id attribute to be ’NULL’ or empty string. Using one of these

values means the component within which the event is defined is the one being

affected.



4. TUIL 33

4.3.3 TUIL’s Container Object

tuil container describes a container object, or an object that can contain child

controls, and is the main element used to specify a UI. For the purpose of this research,

a tuil container will be restricted to the UI containers window/frame and dialog,

since they are widget based, as discussed in section 1.2. To minimize the issues with

finding what XML document contains what tuil container, it is good practice to

only specify one per file, and name the file accordingly.

Most container objects will have child controls, such as buttons, combo boxes,

etc., and even though for the TUIL language the visual aspects of the UI components

have been abstracted out as much as possible, we still need a way to denote control

layout within the container. To account for this, we use the children element, which

is of the child group type. It groups child elements in a particular orientation,

either vertically or horizontally. However, these groups can also be nested within

each other to allow for more advanced layouts. By doing this, we can ignore such

things as extent and location. For an example of how the layout works on the TUIL

specification side, see Listing 4.1. To see what this specification would look like as an

actual dialog, please see Figure 4.2.

Listing 4.1: TUIL Specification of an Example Dialog
<?xml version="1.0" encoding="UTF -8"?>

<tuil_container id="TUILExampleDialog" parent_id="NULL" type="dialog"

is_modal="true" use_default_button_placement="true">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >true</has_focus >

<text >TUIL Example Dialog </text >

<children orientation="vertical">

<child_group orientation="horizontal">

<button id="checkThis" parent_id="TUILExampleDialog"

is_default="false">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >true</has_focus >

<text >Check this</text >

<type >checkbox </type >

<is_checked >true</is_checked >



34 4. TUIL

</button >

<child_group orientation="vertical">

<button id="checkFirst"

parent_id="TUILExampleDialog" is_default="false">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >false</has_focus >

<text >Check this first!</text >

<type >checkbox </type >

<is_checked >false</is_checked >

</button >

<button id="checkSecond"

parent_id="TUILExampleDialog" is_default="false">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >false</has_focus >

<text >Check this second!</text >

<type >checkbox </type >

<is_checked >false</is_checked >

</button >

</child_group >

</child_group >

<button id="ID_OK" parent_id="TUILExampleDialog"

is_default="true">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >false</has_focus >

<text >OK</text >

<type >push</type >

</button >

</children >

</ tuil_container >

Figure 4.2: TUIL Example Dialog



4. TUIL 35

4.3.4 TUIL’s Base Object

tuil elem is used to describe the most common attributes of all UI components,

including the tuil container. In Listing 4.1, the following XML elements are all

part of the base element type:

• is visible - Whether a particular component is visible or not.

• is enabled - Denotes whether a component is enabled or disabled. Not as

applicable for tuil container.

• has focus - Is true for whichever component has the focus. With respect to the

tuil container components, it defines the container that currently has focus or

that contains the currently focused control. This can become important when

multiple containers are open at the same time.

• text - Describes the textual information that is displayed, whether this is a

title, with respect to containers, or the text displayed in a push button. For

text boxes and labels this actually a control specific property.

4.3.5 Specifying Event Behaviour

Event behaviour is very important for any language that attempts to specify a GUI.

But what is an event? In terms of a GUI, it is what causes the GUI to move from

one state to another. In [46], Lee describes an event as actions performed on GUI

components, such as clicking a button on the screen or pressing a key, which the

software should respond to. The GUI code catches these events and ensures that the

required behaviour occurs.



36 4. TUIL

However, for the purposes of the TUIL language, this type of event is not descrip-

tive enough. How can we define GUI behaviour if the only thing we know about an

event is the action that causes it to occur? To do this properly, we also need to know

what the software response is with respect to the GUI components. Thus, we define

an event differently by breaking it down into two parts:

• A single action - What occurs to cause the GUI to change state. An action

can either be external or internal. External actions are initiated through mouse

clicks, keyboard input, etc. Internal actions are generated from the application

code, for example to update a control based on a timer. Application code is

defined as any code within the application that is not part of the GUI code

itself.

• One or more reactions - What happens to the GUI when the corresponding

action is applied. There must always be at least one reaction defined for an

event. The reason for this is that an event will only be used when its action can

be successfully applied to the associated GUI component. This is described in

more detail in section 5.3.

Unlike the XML languages mentioned in section 4.2, TUIL is designed to be light-

weight, thus we do not provide the set of all possible actions and reactions that can

occur within a GUI. Those included in the language can be combined into events that

are of importance to the GUI in question, and most relevant to its behaviour. Thus,

only those that are specified are included in the test case/oracle generation process.

Those not specified are essentially ignored, and any behaviour for these is allowed. It

is left up to the implementer, programming language, and operating system, within

which the application is run, to define the behaviour for these ignored events.



4. TUIL 37

It is recognized that by not specifying some events we are taking a risk of these

events interfering with our defined behaviour, thus polluting the results when applying

oracles. However, we have tried to mitigate this as much as possible, by providing

a list of limitations for what types of programs we will cover, as per section 1.2. As

well, our test cases/oracles will only encompass what events were specified, thus we

will not be interacting with the GUI in any other way. It is more likely that internal

actions from the application code would cause unknown behaviour.

In TUIL, an event is described using the event element, that contains one ac-

tion pair element and one or more reaction pair elements. These are defined as

follows:

• action pair:

– action element - Describes the type of action that is being applied.

– event object element - The GUI component the action is applied to.

• reaction pair:

– reaction element - Describes the type of reaction that should be applied.

– event object element - The GUI component the reaction should be ap-

plied to.

The event object element, used by both action pair and reaction pair, pro-

vides the associated GUI component’s unique identifiers, as discussed in section 4.3.2.

For descriptions of the actions and reactions possible within TUIL, please see Ap-

pendix A.

To handle the instance where a tuil container is updated by the application

code, which was defined earlier, TUIL provides the following:



38 4. TUIL

• code action is how the tuil container is either initialized or updated from

the program code itself.

• container updated is the result or reaction that occurs when a

tuil container is initialized or updated by the program code.

The original definition of event given earlier would describe a function similar to

B below.

B : state × event → state
′

The state mentioned in B will be discussed in further detail in chapter 5. Here it

will simply encompass the state of the GUI.

Using the TUIL version of event, we can define event as follows:

event = (action object, (reaction object)∗)

action object = (action, event object)

reaction object = (reaction, event object)

We can rearrange function B above in to the form of a Mealy machine [47], B1,

using our action object and one or more reaction object.

B1 : state × action object → state × (reaction object)∗

An example of an external event would be clicking the OK button on a message

pop-up dialog, causing the pop-up to close. This would be defined, using function B1

and our definition of event, as:

state s1 = dialog displayed

event = (Ok button clicked, (dialog closes))

B1(s1, Ok button clicked) = s2, where state s2 = (s1, dialog closes)



4. TUIL 39

Listing 4.2 gives the specification of the TUIL Example Dialog again, but this time

with the event elements specified as well. The FSM for the specification is given in

Figure 4.3.

Listing 4.2: TUIL Specification of an Example Dialog with Events Provided
<?xml version="1.0" encoding="UTF -8"?>

<tuil_container id="TUILExampleDialog" parent_id="NULL" type="dialog"

is_modal="true" use_default_button_placement ="true">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >true</has_focus >

<text >TUIL Example Dialog </text >

<children orientation="vertical">

<child_group orientation="horizontal">

<button id="checkThis" parent_id="TUILExampleDialog"

is_default="false">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >true</has_focus >

<text >Check this</text >

<type >checkbox </type >

<is_checked >true</is_checked >

<event >

<action_pair >

<action >

<mouse_action >mouse_click </mouse_action >

</action >

<event_object id="NULL" parent_id="TUILExampleDialog"/>

</action_pair >

<reaction_pair >

<reaction >

<button_reaction >toggle_check </ button_reaction >

</reaction >

<event_object id="NULL" parent_id="TUILExampleDialog"/>

</ reaction_pair >

</event >

<event >

<action_pair >

<action >

<button_action >toggle_check_on </button_action >

</action >

<event_object id="NULL" parent_id="TUILExampleDialog"/>

</action_pair >

<reaction_pair >

<reaction >

<base_reaction >enable </ base_reaction >

</reaction >

<event_object id="checkFirst" parent_id="TUILExampleDialog"/>

</ reaction_pair >

<reaction_pair >

<reaction >

<base_reaction >enable </ base_reaction >

</reaction >

<event_object id="checkSecond" parent_id="TUILExampleDialog"/>

</ reaction_pair >

</event >

<event >



40 4. TUIL

<action_pair >

<action >

<button_action >toggle_check_off </ button_action >

</action >

<event_object id="NULL" parent_id="TUILExampleDialog"/>

</action_pair >

<reaction_pair >

<reaction >

<base_reaction >disable </ base_reaction >

</reaction >

<event_object id="checkFirst" parent_id="TUILExampleDialog"/>

</ reaction_pair >

<reaction_pair >

<reaction >

<base_reaction >disable </ base_reaction >

</reaction >

<event_object id="checkSecond" parent_id="TUILExampleDialog"/>

</ reaction_pair >

</event >

</button >

<child_group orientation="vertical">

<button id="checkFirst" parent_id="TUILExampleDialog"

is_default="false">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >false</has_focus >

<text >Check this first!</text >

<type >checkbox </type >

<is_checked >false</is_checked >

<event >

<action_pair >

<action >

<mouse_action >mouse_click </mouse_action >

</action >

<event_object id="NULL" parent_id="TUILExampleDialog"/>

</action_pair >

<reaction_pair >

<reaction >

<button_reaction >toggle_check </ button_reaction >

</reaction >

<event_object id="NULL" parent_id="TUILExampleDialog"/>

</reaction_pair >

</event >

</button >

<button id="checkSecond" parent_id="TUILExampleDialog"

is_default="false">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >false</has_focus >

<text >Check this second!</text >

<type >checkbox </type >

<is_checked >false</is_checked >

<event >

<action_pair >

<action >

<mouse_action >mouse_click </mouse_action >

</action >

<event_object id="NULL" parent_id="TUILExampleDialog"/>

</action_pair >

<reaction_pair >



4. TUIL 41

<reaction >

<button_reaction >toggle_check </ button_reaction >

</reaction >

<event_object id="NULL" parent_id="TUILExampleDialog"/>

</reaction_pair >

</event >

</button >

</child_group >

</child_group >

<button id="ID_OK" parent_id="TUILExampleDialog"

is_default="true">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >false</has_focus >

<text >OK</text >

<type >push</type >

<event >

<action_pair >

<action >

<mouse_action >mouse_click </mouse_action >

</action >

<event_object id="NULL" parent_id="TUILExampleDialog"/>

</action_pair >

<reaction_pair >

<reaction >

<container_reaction >close_container </ container_reaction >

</reaction >

<event_object id="TUILExampleDialog" parent_id="NULL"/>

</ reaction_pair >

</event >

</button >

</children >

<event >

<action_pair >

<action >

<code_action >initialize_container </code_action >

</action >

<event_object id="NULL" parent_id="NULL"/>

</action_pair >

<reaction_pair >

<reaction >

<container_reaction >container_updated </ container_reaction >

</reaction >

<event_object id="NULL" parent_id="NULL"/>

</ reaction_pair >

</event >

</ tuil_container >

4.3.6 Test Cases

As described earlier, the TUIL specification language is designed to describe a FSM.

The test case structure used in TUIL is that of a single path through a FSM.

Typically test cases take the form of a set of transitions to apply to the AUT.



42 4. TUIL

Figure 4.3: TUIL Example Dialog FSM

However, TUIL defines the test case differently, in that it combines the oracles into

the test case as well. Thus, instead of a set of transitions, we have both a sequence

of expected states and the transitions between those states, hence a path.

Earlier we defined the change of state using the TUIL event definition, and the

idea of one action and a set of reactions. If we consider a path in these terms, then

a path is a sequence of states and transitions between states, that proceeds from a

start state and finishes in an end state. Each transition is a single transition of the



4. TUIL 43

Mealy machine B1, as defined in section 4.3.5.

4.3.7 Test Case Components

The main element to look at for test cases is tuil test case, which represents a single

path. The components that make up the tuil test case, and how they relate to the

definitions already discussed are:

• edge - The path is made up of a sequence of these elements. Each one contains

two node elements and a single action pair. It represents a single transition

between states.

• node - Each edge contains both a start and an end node. They represent the

states involved in the transition, and can potentially be equal.

• action pair - The action that causes the state transition.

A tc node type represents the state of a GUI, and provides a Boolean attribute

that is set to true only if the tc node equals the initial start state of the AUT. This

allows for proper comparisons during the application of oracles. Both the start and

end nodes mentioned earlier are of this type. We define the current state of the GUI

in the following way:

GUI State is the combination of all available Container States, where the

number of containers is variable.

Note that the GUI State can be empty if all containers have been closed, including

the root container. This represents when the application itself has ended.



44 4. TUIL

The container object used here is the tc container type, which contains a few

attributes and the set of tc child elements. Similar to that of the GUI state, the

current state of a container is defined as:

Container State is the combination of all control states within the con-

tainer.

The manner in which the container elements and tc child elements are organized

is different from when the objects were defined within the original TUIL specifica-

tion. Here each container and tc child is matched with their id attribute to make

a pair. All pairs are grouped into sets. This is different in that, within a TUIL spec-

ification, container objects are placed in their own files, whereas here a container

element is part of a set contained within the tc node element type. As well, each

tuil container knows both its parent id attribute and id attribute, whereas here

it is only the id attribute that is known. The reason for this is that we are less

interested in which is the main container, and instead are interested in the set of

containers as a whole. This is based on the assumption, that all container elements

have unique id attributes within the entire specification, as mentioned in the section

4.3.1.

For examples of what the XML for a test case may look like, we will use the TUIL

example specification provided earlier in Listing 4.2. To increase the readability of

the examples, some text has been removed.

Listing 4.3: TUIL Test Case Toggle Check Example XML
<?xml version="1.0" encoding="UTF -8"?>

<tuil_test_case >

<path >

<edge >

<start root_node="true">

<entry >

<id>TUILExampleDialog </id>

<container type="dialog" is_modal="true">



4. TUIL 45

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >true</has_focus >

<text >TUIL Example Dialog </text >

<entry >

<id>checkThis </id>

<tc_button >

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >true</has_focus >

<text >Check this</text >

<type >checkbox </type >

<is_checked >true</is_checked >

</tc_button >

</entry >

.

.

.

</container >

</entry >

</start >

<end>

<entry >

<id>TUILExampleDialog </id>

<container type="dialog" is_modal="true">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >true</has_focus >

<text >TUIL Example Dialog </text >

<entry >

<id>checkThis </id>

<tc_button >

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >true</has_focus >

<text >Check this</text >

<type >checkbox </type >

<is_checked >false</is_checked >

</tc_button >

</entry >

.

.

.

</container >

</entry >

</end>

<action_pair >

<action >

<mouse_action >mouse_click </mouse_action >

</action >

<event_object id="checkThis" parent_id="TUILExampleDialog" />

</action_pair >

</edge >

</path >

</ tuil_test_case >



46 4. TUIL

Listing 4.4: TUIL Test Case Close Container Example XML
<?xml version="1.0" encoding="UTF -8"?>

<tuil_test_case >

<path >

<edge >

<start root_node="true">

<entry >

<id>TUILExampleDialog </id>

<container type="dialog" is_modal="true">

<is_visible >true</is_visible >

<is_enabled >true</is_enabled >

<has_focus >true</has_focus >

<text >TUIL Example Dialog </text >

.

.

.

</container >

</entry >

</start >

<end />

<action_pair >

<action >

<mouse_action >mouse_click </mouse_action >

</action >

<event_object id="ID_OK" parent_id="TUILExampleDialog" />

</action_pair >

</edge >

</path >

</ tuil_test_case >

How test cases are decided and generated, including design considerations, is

further discussed in the next chapter.



Chapter 5

Test Case Generation

As stated previously, testing of a GUI is complicated. According to Memon [4],

Even when tools are used to generate GUIs automatically, these tools

themselves may contain errors that may manifest themselves in the gen-

erated GUI leading to software failures. Hence, testing of GUIs continues

to remain an important aspect of software testing.

In other words, regardless of whether a GUI is created automatically or manually,

the potential for introducing faults remains.

In chapter 4, we introduced the concepts of the TUIL language, and the abilities

of the language to specify a GUI and its behaviour in a light-weight, platform in-

dependent manner. In this section, we introduce the process of automatic test case

generation based on TUIL specifications, as well as a prototype tool to accomplish

this.

47



48 5. Test Case Generation

5.1 The TUIL Specification

As discussed in section 1.2, the main programming language used for manipulating

and processing the specifications is Java.

To load the specification into Java for processing, we use the Java package JAXB

[48,49] and XJC [50,51]. Please see Appendix B for how XJC is used to generate the

tuil Java package, as well as one of the generated Java files.

Instances of the following JAXB variables are required:

• JAXBContext - How the XML/Java binding information, required to perform

unmarshalling/marshalling, is managed [52].

• Unmarshaller - Parses the XML file contents into corresponding Java class in-

stances, or throws an error if the XML files do not conform properly to the

JAXBContext defined.

Please see section B.2 for examples of how these variables may be instantiated.

The JAXBContext created is associated with the tuil package of Java classes that

we generated using XJC. The Unmarshaller object is then created from this JAXB-

Context, thus it is already setup to handle conversion from an XML file to these Java

classes.

It is assumed that each XML file provided will yield a single TuilContainer object

instance. This refers back to the TUIL section 4.3.3, where it is suggested, as good

practice, to limit the contents of each XML file to a single tuil container element.

Thus, in order to process all XML files for a particular specification, there has to be

one unmarshal call for each file. This will yield a complete set of TuilContainer

instances to work with.



5. Test Case Generation 49

5.2 The Graph

In this research, a graph is defined as [53]

A collection of vertices and edges that join pairs of vertices.

In many cases, vertices are called nodes or points, while edges are called arcs

or lines, and may be directed or undirected. An undirected edge means that the

edge may be traversed from either of its vertices, while a directed edge may only be

traversed from one vertex. For the extent of this research, we will use nodes and

edges/arcs to describe these.

A graph relates directly to GUIs, which is why FSMs or similar structures have

been used to model them. The following aspects of a GUI are modeled by the graph:

• An edge is a transition from one node to another. When associating this with

a GUI, a transition would typically be linked to an event on the GUI. However,

since this research defines an event differently, as seen in section 4.3.5, an edge

is instead associated with an action on the GUI.

• An edge links two nodes together within a graph. Within a GUI, an action

transitions a GUI from one state to another. Therefore a node is associated

with a GUI state.

• A GUI should be modeled as a directed graph, where the edges transition in

one direction only.

With respect to test case generation, if the GUI is modeled as a directed graph,

then as mentioned in the TUIL section 4.3.6, a test case is a single path through that

graph, from the initial state to an end state determined by the goal of the test case

itself. So a test case is made up of three parts:



50 5. Test Case Generation

• An initial state, which would typically represent when the GUI application has

just been opened.

• An end or goal state, which could be as simple as a check-box being selected.

• A set of actions to move from initial state to end state.

5.2.1 annas Graphing Library

The test case generation process uses the February 21, 2010 release of the Java based

graphing library annas, created by Sam Wilson [54]. This library provides a set of

generic classes that can be extended to create an implementation specific to this

research. The rest of this section introduces the aspects of the library used, and some

of the inner workings thereof.

Three classes are required here:

• A node class to represent the GUI’s state at a particular moment.

• An arc class to represent an action being applied to the GUI.

• A directed graph class that makes use of both the node and arc classes.

The node class created is called TUILNode. It is used to hold a set of containers

ordered by keys having the following form ’parent id+id’, where the two values are

replaced by the two unique id attributes for each container. It allows access to the

current state of each container or control for the purposes of manipulation or state

checking.

In the annas library, an arc is an object that extends from one node to another.

The node being extended from is called the tail, while the node the arc extends



5. Test Case Generation 51

towards is called the head. As well, arcs are generally given a weight, which can be

used in graphing algorithms for cost analysis of paths, etc. The arc class created is

TUILArc, which extends annas’s ArcInterface< N >, where the ’N’ generic type

parameter is replaced by TUILNode. A TUILArc not only encompasses the two

TUILNodes it spans, but also the action that will be applied to the GUI, and a

default arc weight of 1.

The annas class DirectedGraph< N,A >, where ’N’ is the node type parameter

and ’A’ is the arc type parameter, is extended upon to create TUILGraph. ’N’

and ’A’ are replaced with TUILNode and TUILArc respectively. The underlying

default methods are used as much as possible for manipulating the graph object,

however, extra functionality was added as required.

One important piece of functionality is when adding an arc into the graph. Direct-

edGraph only provides a way to add a generic arc, defined only by its two nodes and a

weight value. This default behaviour would prevent access to the action saved within

the TUILArc class. Thus, since access to this information is needed, another addArc

method was implemented, taking a TUILArc as its parameter. As well, a method

was added to the TUILGraph to allow a search to be done for all TUILArcs where

a container is closed. The TUILNodes associated with this arc are then returned

to aid in test case generation. Another method that was added allowed a search to

be done within the graph to determine if a TUILNode passed in was the head of at

least one TUILArc.

The base graph class within the annas library uses a protected Hashtable<

N,MultiHashMap < N,A >> nodeMap. The MultiHashMap mentioned is also

defined within the library, where the node type is the key into the HashMap and the

arcs are the values.



52 5. Test Case Generation

All nodes must be added to this Hashtable regardless of whether or not they have

arcs extending from them. If both nodes are not contained here, then the arc cannot

be added between them. When an arc is added, the tail node is used as the key into

the Hashtable, while the MultiHashMap portion has a key-value pair of (head node,

arc). Each node could have multiple arcs coming out of it to other nodes, or back to

itself if the arc is redundant. This makes determining what actions cause a state to

change easier.

Due to the fact that the annas base implementation uses hashing data structures

for storage, all TUILNodes, TUILArcs, and class types stored within them, must

implement both base Java Object methods equals and hashCode. This is so that the

keys and values can be compared properly with the structures.

Two other classes from the library are used as examples for classes here, however,

these have more relevance in the section 5.4, where the actual test case generation

process is described.

5.3 Generating a Graph

This section discusses how the test case generation process actually generates a graph.

Several algorithms are used in order to generate a graph. Algorithm 1 provides the

pseudo-code for the main method that begins the graph generation process.

In order to ensure easier access to required data during the generation process,

the TuilContainer class is not used. Instead each TuilContainer is converted to a

ContainerState, including all of its child controls, which are converted to a matching

state class, eg. TuilSlider to SliderState (Please see Appendix C for one of the state

Java classes). This particular conversion allows access to the child control information



5. Test Case Generation 53

Algorithm 1 Test Case Graph Generation Algorithm

function Generate(mapParsedSpec)
if mapParsedSpec invalid then

return FALSE
end if
for all tuilContainer in mapParsedSpec do

if tuilContainer has a set of children then
get all container events, if any
if child events retrieved and event set is not empty then

save event set for container
end if
create default container state
save default container state into mapDefaultStates

end if
end for
get root container key . root has ’NULL’ or ” parent id value
if root container key not found then

display error message
return FALSE

end if
graph ← new TUILGraph instance
start ← new TUILNode instance
n ← null
isGen ← GenerateContainerBranch(rootContainerKey, start, n, n, n, graph)
if isGen then

save graph
end if
return isGen

end function



54 5. Test Case Generation

in a simpler manner, since instead of being linked in with layout information, they

are stored in a set with their id attribute value as the key. All ContainerState

objects are then stored in a set with their respective ’parent id+id’ string key, as

mentioned earlier in section 5.2.1.

During this conversion process, all Event objects from the TuilContainer and

its child controls are broken out as a group and saved into a set using the same key

as the ContainerState set. This is so that if one of these can be accessed properly,

the other one can also be accessed. While doing this, the EventObject attributes

are filled in properly to prevent any ’NULL’ or empty string values. These values are

typically used to say that the Action or Reaction is to be applied to the control

or container the Event is specified within. However, since the Event is no longer

associated here, the proper values must be used instead. When the child events

are retrieved, any toggle check reactions are saved into one of two lists, for either

toggle check on or toggle check off. This makes it easier to apply the reactions

during graph generation, as either one can be used based on whether the child control

was toggled on or off by its associated action.

The root or main container object is identified by searching the set of TuilCon-

tainers for the one with a parent id attribute value of ’NULL’ or empty string. Not

being able to determine a root container is an error condition, as the graphing process

itself starts at the root container identified, and extends depth-wise from there in a

recursive manner using the GenerateContainerBranch method (Please see Listing

5.1 for this method’s signature). After the root container is dealt with, this method

will only ever be called if an open container reaction is encountered. The method

takes as input, the following parameters:

• key - The key into the ContainerState set that represents the container to be



5. Test Case Generation 55

worked on.

• start - The previous TUILNode, or the tail node of the TUILArc causing

this container to be worked on. This parameter should never be null, as this

would mean we have no way to attach this branch into the graph. For example,

when beginning the graphing process, a new, empty TUILNode is created and

passed in.

• inProgress - The TUILNode that represents a partial end state. This means

reactions were applied to start before the open container reaction was en-

countered, and thus, they also need to be taken into account. If this is not the

case, then null is used.

• connector - The TUILArc causing a container to be opened and worked on

cannot be added to the graph until its head node is also added. The head node

being the one where the container is now displayed. For all cases where the

connecting TUILArc is not required, null is used.

• extraEvents - A set of events, decomposed to more accessible objects, that do

not originate from the container to be worked on, but which may also be applied.

This is really only applicable if a non-modal container is opened from within

a modal container, and thus the modal container’s events are also applicable

here. The decomposition of the Event object is discussed further below.

• graph - The TUILGraph as it exists so far.

Listing 5.1: GenerateContainerBranch Method Signature
public boolean GenerateContainerBranch(String key , TUILNode start , TUILNode

inProgress , TUILArc connector , List <Pair <TUILArc , ArrayList <ReactionObject >>>

extraEvents , TUILGraph graph);



56 5. Test Case Generation

Within the GenerateContainerBranch method, the work can be divided into

three sections, as shown in Algorithm 2.

Algorithm 2 The GenerateContainerBranch Algorithm

function GenerateContainerBranch(key, start, inProgress, connector, ex-
traEvents, graph)

setup initial state for branch
setup event set to process
apply event sequences

end function

During the initial node setup, the start node, provided as a parameter to the

method, is first copied. Copying TUILNode instances is continued throughout the

rest of the method and sub-methods, in order to ensure that any changes made will not

affect the original TUILNode. The newly opened container about to be processed

is then added into the copied TUILNode instance. If this new node has not been

added into the graph yet, and the container being worked on is the root container,

then this node is saved as the start node for the entire application. This allows access

to the initial node when generating test cases.

Event setup is a bit more complex. The first step is to gather together the set of

Events to be applied to the container being worked on. These are taken from two

different sources:

1. Those that were specified for the container itself.

2. Events from other currently displayed non-modal containers. However, if the

container being worked on is modal, then of these, only those Events that

originate from the code behind the GUI are allowed, as user interactions are

not.



5. Test Case Generation 57

This, possibly combined, set of Events is then broken down one-by-one into a

single TUILArc and a set of ReactionObject type objects. The TUILArc will

be the actual arc object used as an edge in the graph, however, in its current state it

has no associated node objects. The ReactionObject class is used to encapsulate

the reactions in a manner where it is easier to do checks for type.

However, the set of events is not fully realized at this point. Any existing items

in the extraEvents parameter must also be taken into account. If there are any, they

are added into the current set if they do not already exist within it. This will prevent

duplicates from being processed.

Next the initialize container event, if it exists within the event set, is applied.

This must be applied first, before any event processing is performed, otherwise the

container could be initialized multiple times. However, this step is more for future use,

as the current implementation of graph generation does not save state for a container

after it has been closed. For the moment, this step is responsible for ensuring that

the default state, as defined by the specification, is applied to the container. Once

the initialize container event has been applied, it is removed from the set of events.

If the node with the container initially loaded has already been seen, the method is

exited. This is to prevent processing the same container, within the same overall

application state, multiple times.

The set of event sequences is then generated from the event set. This is basically

an array of sequences, where each element of a sequence represents the index of an

event to apply, and each sequence represents a permutation of events. Exhaustive

sequence generation, meaning all possible event permutations are included, is very

memory intensive and time consuming. In order to ensure that the memory and time

costs are reduced, both the sequence and permutation generation must be brought



58 5. Test Case Generation

down to a manageable number. Permutations are used, as the only events evaluated

for the GUI are those that are specified for it, thus, any sequence will simply be a

reordering of events. The following describes, by way of an example, the arbitrary

method developed in this research to accomplish this.

Say there are four events, named Event0, Event1, Event2, and Event3. They are

assigned indexes 0, 1, 2 and 3 respectively.

The first sequence is: (
0 1 2 3

)
For the first set of sequences, the first sequence above is shifted to the left by one

item, for the number of items that are left. Here, this means it is shifted three times.

This yields the following set of sequences:
1 2 3 0

2 3 0 1

3 0 1 2


Next, the second set of sequences is generated by simply reversing the first four.

This gives the following set of sequences:

3 2 1 0

0 3 2 1

1 0 3 2

2 1 0 3


There are now two sets of four sequences. However, since this is a small subset

to work with, a few more operations will be performed. For each sequence currently

generated, the initial event is frozen in its current location. Then, the rest of the



5. Test Case Generation 59

events in each sequence are shifted to the left by one each time. In this example, this

operation will be performed twice. The following shows the result of this shifting for

the first sequence only. The other sequences are also shifted, but the results will not

be shown here. 
0 1 2 3

0 2 3 1

0 3 1 2


In total, the number of event sequences generated, S, is equal to 2E(E-1), where

E is the number of events being processed.

If this equation is applied to the example above, the total number of sequences

generated is 24, each containing 4 events.

Once the set of event sequences has been determined, they are applied to the

container in order. For each sequence the following actions are performed:

• The container to apply the event against is retrieved using its key value. By

default, this is the key of the container being worked on, however, it may also

be the key for the modal parent container or other non-modal container, since

events from these may be allowed.

• The event is evaluated to determine if it can currently be applied. For any

event to be applied to a control, that control must exist in the event container’s

current state and cannot be disabled or hidden. If an event is to be applied to a

container, then the container must exist within the current TUILNode state,

and must not be disabled or hidden. It is normal if an event cannot be applied,

as not all events will be applicable in all scenarios. Instead, it is simply ignored



60 5. Test Case Generation

and the process moves on to the next event in the sequence. If it is applicable,

then it is applied.

• If something fails during event application, the process fails. There are two

possible outcomes to a successful event application:

1. A new container needs to be opened from the current event container.

A recursive call is made to GenerateContainerBranch, after setting up

the connector TUILArc properly, and determining if the rest of the events

in the sequence need to be passed to the method as the extraEvents set.

2. No container was opened and there is a resulting TUILNode. This is

saved into the current TUILArc as the head node, and both are saved

into the graph. The head node is then assigned to the tail node for the

next event application. Please see Algorithm 3 for an example of saving

the data into the graph.

• Processing ends when all events that need to be applied have been, and all

recursive calls have returned.

Algorithm 3 How to Add the Nodes and Arc to a Graph

function AddInformationToGraph(graph, tailNode, headNode, arc)
arc tail ← tailNode
arc head ← headNode
add tailNode to graph
add headNode to graph
add arc to graph

end function

When each event sequence is finished, the tail node is reset and the next event

sequence is started. Once all sequences have been processed, if everything went well,



5. Test Case Generation 61

i.e., no failure conditions were encountered, the graph generation process is said to

have succeeded.

The graph is then saved for generating the test cases. This is explained in the

next sub-section.

5.4 Generating Test Cases

Graph generation must have been successful, and at least one container must have

been selected, for test cases to be generated properly. If a graph was generated, then

a worker thread is started. This thread is responsible for generating the test cases

and displaying a message box of the outcome. However, before any test cases can be

generated from the graph, the directory structure is created.

The directory structure used is designed to ensure that if multiple test case sets are

required, they can be generated without erasing or overwriting the previous set. This

is done by way of time stamps. The main directory name has the form ’Test Cases

%s UTC’, where the %s is to be replaced by a date/time string. This date/time

string is the current date/time converted into string form using the format dd-MM-

yyyy ’T’HHmmss. The current date/time is in UTC or Coordinated Universal Time,

which is synonymous with GMT or Greenwich Mean Time, hence the UTC at the end

of the directory name. UTC time is used to prevent ambiguity with respect to when

a set of test cases was generated. Inside of this main directory, sub-directories for

each selected container will be created when that container has test cases generated

for it.

Before this happens, however, the TUILGraph must be placed in a more usable

form for test case generation, by running the single-source version of Djikstra’s algo-



62 5. Test Case Generation

rithm on it. This calculates the shortest path from a single start node to all other

nodes in the graph. There are limitations to using this algorithm, as GUI events do

not operate based on shortest paths. Thus, some events may not lie on shortest paths

and be ignored. However, the algorithm will provide us with a working set of test

cases to make use of.

To this end, a class which mimics most of the functionality of the annas library’s

Dijkstra class was created, and called TUILDijkstra. It performs the single-source

version of the algorithm, instead of only calculating the shortest path(s) between

two known nodes. This allows the shortest path from that start node to any other

node in the graph to be determined. All shortest paths are determined based on the

limitation that, if there are multiple TUILArc’s having the same distance, one of

these is randomly chosen.

The annas library also has a class GraphPath, that represents a single path through

the main graph, and holds the information in the form of a smaller graph, with the

start and end nodes defined. Similar to the Dijkstra class, this class cannot be used

directly for the following reasons:

1. The class cannot be extended because, while it provides a means to specify the

node and arc types, the type of the graph used cannot be overridden. This

becomes troublesome, because as mentioned in the annas section 5.2.1, the

ability to save a TUILArc object into the graph is required.

2. The class does not provide a method to generate a path from end to start, which

is how the Dijkstra algorithm works here where each node has knowledge of the

previous node before it in the graph. Instead, the GraphPath class generates

its path from start to end.



5. Test Case Generation 63

Again, a class based heavily on the ideas and form of the GraphPath class is

created and called TUILGraphPath. This class has the ability to copy itself, and

to merge an existing TUILGraphPath into itself, as long as a connection between

the two exists and both are finished. The connection is that the end node of one is the

same as the start node of the other. Besides that, it makes use of the TUILGraph

class for its graph, so that TUILArc objects can be added directly. As stated, the

addition of nodes will go from end of the path to the start, to mimic the progression

through the Dijkstra path.

Now that the two classes required for test case generation are introduced, how

these are used to generate test case paths for each container selected is described.

The following is done:

1. Determine the shortest path from the graph’s start node to the one where the

container is first opened. This requires checking for a transition where the

first node does not have the container within it, but the second does. If the

container is the root container identified during graph generation, then the start

node itself is the entire shortest path here. A failure condition will occur if the

container is not the root, but an open path could not be determined.

2. Using the open path found, all paths leading from this to an end node are

determined. An end node is defined as one where the container is no longer

displayed. This limits test case generation to container types that can be closed

definitively, windows/frame and dialog-types. Only finished and valid paths are

allowed in the final set, however, a failure will occur if no paths are found.

If each container selected for test case generation has a set of paths generated for

it, this means test case paths were successfully found. Thus, the next step in the



64 5. Test Case Generation

process is to export these to XML files using the classes discussed in section 4.3.7.

To this end, the TUILGraphPath class is provided with a method which returns a

TuilTestCase version of itself. To be able to accomplish this, the rest of the affiliated

path variables are also equipped with methods similar to this:

• TUILArc - Converts to TcEdge. Must be provided the start node for com-

parison purposes.

• TUILNode - Converts to TcNode.

• All state object classes convert to corresponding tuil versions of themselves.

Conversion is performed through the ToTcObject method, that returns a tuil

object representing the current state object. For example, a ButtonState will

return a TcButton object from this method.

However, before conversion takes place, each container’s individual directory must

be created. This takes the form of parentId id, where these placeholders are replaced

by the string equivalent of the container’s parent id and id attributes respectively.

Each directory contains a single XML file for each test case exported. The naming

convention used for the XML file names is %d.xml, where %d represents a number,

starting from zero, and with zero padding on the front to ensure proper sorting in

the folder.

Exporting to the XML files is handled by JAXB marshalling. Some of the setup

for this was discussed in section 5.1. The Marshaller object is used to take a Java

class instance from the tuil package and export it in some form. Here exporting will

be to an XML file.

If errors occur when exporting all of the TuilTestCase objects to file then a failure

message is displayed. However, if everything worked properly, a success message is



5. Test Case Generation 65

displayed on screen. The worker thread will be ended in either case in preparation

for the next test case generation request.

5.5 TUIDE

TUIDE, or Testable User Interface Development Environment, is a prototype tool,

written entirely in Java, that is used for performing all automation tasks involved

with this research.

TUIDE itself has no support for generating TUIL specifications. Instead these

must be written in an outside application, such as a text editor. However, it does have

support for reading them in and processing them accordingly. Please see Appendix

D for how to load a TUIL specification into TUIDE. TUIDE’s specification parsing

has been implemented based on the suggestion of a single tuil container defined per

XML file.

TUIDE’s test case generation process, that was described in the previous sections,

is initiated by the method outlined in Appendix E.

Automatic testing is unable to exist without test cases. They are one of the most

important aspects. Several algorithms are given in this chapter that allow a TUIL

specification to be turned into a set of test cases on one or more of the specified

containers. These test cases contain both the set of actions to apply, as well as

the state of the GUI before and after each action. This essentially combines the

generation of test cases with the generation of oracles. The TUIDE test cases become

more powerful than simple sets of actions using this combination.



Chapter 6

Oracles

This chapter presents the design concepts, processes, and algorithms used to apply

the generated oracles against an AUT. In [25], Weyuker describes an oracle as the

mechanism that checks the correctness of an application’s response to a particular set

of inputs.

Please see Appendix G for details on how to actually run the oracles within TUIDE

itself. As noted there, certain steps must be completed before the oracles can be

applied. They include:

1. A loaded set of test cases, that were previously generated from TUIDE. These

also contain the generated oracles, as mentioned in chapters 3 and 5.

2. Selection of the runnable JAR file, or Java ARchive file, representing the imple-

mentation of the AUT. Appendix H contains a set of guidelines for implementing

the GUI of the AUT for a successful oracle application process. The guidelines

are somewhat restrictive in nature, and would be prohibitive in the case of

adapting an existing application to the oracle process, unless the application is

66



6. Oracles 67

very small. However, the benefits of using them far outweigh the restrictiveness,

as it means the oracle process can run more smoothly, and be more accurate

with result comparisons, as it gets its generated state information directly from

the controls themselves.

TUI Utils is a Java library designed to be used by both TUIDE and the AUT. It

is built into a non-runnable JAR file, that is then added to the referenced libraries

list for each application, however, not all parts of the code are usable by both of the

applications. The AUT makes use of some packages that are not used by TUIDE,

and vice versa. The following two sections describe the parts of the library that each

uses.

6.1 TUIDE Oracles

The oracle functionality within TUIDE is actually simplified in comparison to that

of the AUT. This is because TUIDE merely initiates each oracle, and is not designed

to handle anything more in depth.

The oracle manager class makes use of a worker thread from which to initiate each

oracle. This means that it will not hold up the entire TUIDE application in order

to run, and once all oracles have been applied the thread exits. The algorithm used

within this thread is defined in Algorithm 4.

As can be seen in the aforementioned algorithm, the thread creates both a main

oracle results directory, as well as directories for each container encountered during

iteration, to ensure that the results are organized. The main directory is timestamped

with the current UTC timestamp to ensure that each oracle application run is unique

from other runs. This folder is always created in the TUIDE application directory.



68 6. Oracles

Algorithm 4 TUIDE’s Oracle Thread Algorithm

function run
stop ← FALSE
isRunFinished ← FALSE
jarF ile ← the runnable JAR file′s canonical path
cmdLineFormat ← ′javaw − jar \′ %s \′ − oracle − testCase \′ %s \′ −

logF ile \′ %s \′ ′
oracleDir ← CreateOracleDir(void)
testCaseSet ← the test case map′s entry set
testCaseIterator ← null
setup the rest of the required variables
while !stop do

if testCaseIterator = null or testCaseIterator has no items left then
if containerIterator has next item then

entry ← the next containerIterator value
testCaseIterator ← entry′s value property′s iterator
containerDir ← CreateContainerDir(oracleDir, entry’s key property)
if containerDir = null then continue
containerDir ← containerDir + ′\\′

else
display completed message and exit while loop

end if
else

testCasePair ← next testCaseIterator value
testCaseF ile ← second value in testCasePair
logF ile ← GetF ilenameWithoutExtension(testCaseF ile)
if logF ile = null then continue
logF ile ← containerDir + logF ile + ′.log′

if jarF ile = null then exit while loop
cmdLine ← Format(cmdLineFormat, jarFile, testCaseFile, logFile)
jarProcess ← execution of cmdLine
if jarProcess = null then continue
wait until AUT communications setup or 10 seconds pass
wait until message received from AUT or 30 seconds pass
examine any message received
destroy jarProcess and clean up AUT communications channel

end if
end while
isRunFinished ← TRUE

end function



6. Oracles 69

Each container directory is created within this main directory, and provided with a

name that uniquely denotes the container by using its parent id and id properties.

Test cases are organized into groups, based on what container they were generated

for. Each test case is used to generate two file paths:

• The file path for the test case to run.

• The file path for the results from running the test case against the AUT. This

will be referred to as the log file from here-on-out. The file name for the log

file is the same as the associated test case file, so that it is easier to distinguish

what log file is associated with what test case for reviewing the final results.

When the command line is generated, in order to run the AUT JAR file, we pass

both file names to it as parameters. These will be discussed further in the next

section. The JAR file is run within its own javaw process to ensure that it has a

separate set of memory to work with, rather than sharing TUIDE’s.

TUIDE makes use of the OracleCommunication class within the TUI Utils li-

brary. OracleCommunication allows String communication only, and provides an

input queue and output queue, onto which Strings are stored depending on whether

they were received or sent respectively. This class, on the TUIDE side, sets up a

server connection to the local port 33333, on which it listens for the AUT to send

messages to denote whether the oracle being applied has finished or whether an error

state was encountered. First, however, the TUIDE thread waits to ensure the AUT

has established a client connection before proceeding. This is provided with a time-

out of ten seconds, after which the AUT JAR process will be shut down if no client

connection was established. Once a connection is established, the thread waits for a

finished or failure message to be sent from the AUT. This is also given a timeout,



70 6. Oracles

that is set to thirty seconds. At this stage, the thread will have the same response

whether the time out occurred, the connection to the AUT was terminated, or the

AUT sent us a valid response: the AUT JAR process is shut down and execution

continues to the next test case, if any. The timeouts used here prevented indefinite

lock ups of the oracle application process, and were chosen based on how well they

worked for the application instance being tested (please see Chapter 8).

Once all of the oracles have been run, the user is notified that the oracles have

completed and where the results can be found. This will happen regardless of how

many oracles were completed successfully.

6.2 The AUT and Oracles

As stated previously, the AUT contains the majority of the oracle functionality, since

it is the AUT that will apply the actions and gather the GUI states. As such, it

makes use of more classes within the TUI Utils library, the main class being the

AUTHandler. This class must be instantiated before the view is up and running,

and have its Start method called after this. This works very well within Model-View-

Controller architectures.

Any command line arguments received by the AUT are passed to the AUTHandler

for processing. There are three such arguments that this class is interested in:

• -oracle - Only when this argument is present, will the oracle functionality be

enabled within the AUT. This allows the AUT to be built with the TUI Utils

library once, but depending on how the JAR file is instantiated at runtime, it

may or may not run with the oracle code available.

• -testCase - The value associated with this argument is the file path for the test



6. Oracles 71

case to apply against the AUT. The file is unmarshaled into a TuilTestCase

object, using JAXB, to allow for easier access to its contained information.

• -logFile - The value that follows this argument is the file path for the log file

that all oracle results will be written to. A FileWriter object is created for

saving these results.

If either one of these arguments is missing from the command line, or either

the TuilTestCase or FileWriter could not be created successfully, all further oracle

processing is ended and a failure message, in the form of a string ”AUT FAILURE

OCCURRED\r\n”, is sent back to the TUIDE application, using the OracleCommu-

nications channel created.

The AUTHandler makes use of an internal thread to apply the oracle to the GUI.

The pseudo-code for the thread’s algorithm can be seen in Algorithm 5.

6.2.1 Applying Actions

In order for the AUTHandler to apply each action from the parsed test case to the

AUT GUI, the code to do this must be run in a special way. Code that accesses or

modifies the state of Swing objects must always be executed on the event dispatch

thread [55]. Rather than use a SwingWorker [56] implementation however, the method

SwingUtilities.invokeAndWait [57] is used. Listing 6.1 is an example of a code-snippet

that would represent how to use the SwingUtilities.invokeAndWait method.



72 6. Oracles

Listing 6.1: How to Code SwingUtilities.invokeAndWait
try

{

final checkbox = m_CheckBox;

SwingUtilities.invokeAndWait(new Runnable ()

{

public void run()

{

checkbox.setSelected(true);

}

});

}

catch(Exception ex) {}

Listing 6.2: ApplyAction Method
public boolean ApplyAction(ActionPair p)

{

if(p == null || p.getAction () == null || p.getEventObject () == null)

{

return false;

}

String parent = p.getEventObject ().getParentId ();

String child = p.getEventObject ().getId();

if(parent == null || child == null || child.isEmpty ())

{

return false;

}

boolean isRoot = (parent.isEmpty () || parent.equals(new String("NULL")));

ComponentFinder finder = new ComponentFinder(parent , child);

Window w = finder.FindWindow ();

if(w != null)

{

if(! isRoot)

{

Object o = finder.FindComponent(w);

if(o != null)

{

if(!(o instanceof TuideTitledBorder))

{

return ApplyAction(p, (Component)o);

}

}

}

else

{

return ApplyAction(p, w);

}

}

return false;

}

The invokeAndWait method places the code found inside the Runnable.run

method onto the AWT event dispatch thread, thus enabling it to interact with the



6. Oracles 73

Algorithm 5 AUTHandler Algorithm

function run
stop ← FALSE
isRunFinished ← FALSE
stepCount ← −1
currentNode ← null

if testCase = null then
exit run function

end if

edges ← testCase edge set
edge ← null
currentEdge ← 0
edgeCount ← size of edges
empty ← empty ActionPair
while !stop do

if currentEdge = edgeCount then
send complete message to TUIDE
exit while loop

end if
edge ← edges.get(currentEdge)
increment currentEdge by one
if edge 6= null then

p ← null
if stepCount 6= −1 then

currentNode ← edge′s end node
p ← edge′s ActionPair value

else
currentNode ← edge′s start node
p ← empty
currentEdge ← 0 . reset to get end node next

end if
clear current StateHandler values
save p into StateHandler
write p to log file
apply action to GUI
sleep for 1 second
retrieve GUI state
if log file valid then

write state result to log file
end if
backup current StateHandler values for next iteration

end if



74 6. Oracles

stepCount ← stepCount + 1
sleep for 10 milliseconds

end while

shutdown communications channel to TUIDE
close log file writer
isRunFinished ← TRUE

end function

GUI properly. The method blocks the current thread from continuing until all pend-

ing AWT events generated are completed. Any variables declared outside the method

that need to be used internally, must be declared final or assigned to a final temporary

variable to be used. Exception handling must also be included in some manner, as

the invokeAndWait method can throw either an InterruptedException or an Invoca-

tionTargetException.

The AUTHandler uses this to access the ActionHandler class, which is responsible

for everything to do with the actions. The ActionHandler is provided with the Action-

Pair object, representing the action to apply. The EventObject, from the ActionPair,

provides the names of the parent container and the control. This information is used,

along with the ComponentFinder class from TUI Utils, to find the object that the

action needs to be applied to (See Listing 6.2 for the ApplyAction method code).

ComponentFinder works on the Window.getWindows() method, then iterates

through to see if any of the current set of application Window objects has a name

equal to the EventObject’s parent id value. If the Window is found, the controls

contained within it are searched in a recursive manner to see if there is one with its

name equal to the id value of the EventObject.

The root Window is considered to be a special case here, as there is no actual

control to manipulate, but rather the Window is manipulated. As well, at the moment



6. Oracles 75

the TuideTitledBorder cannot be manipulated by an action, as it does not extend

upon Component or JComponent like the other controls do.

Once the control/container is found, it is cast to an appropriate type, based on

the type of action about to be performed. The control/container is first given focus

before the action itself is applied. Several actions are more complex to apply than

others:

• Key Press Actions - Makes use of the Robot class’s keyPress and keyRelease

methods to simulate pressing the key on said control. Part of the Java AWT

package, Robot provides a means to manipulate the controls within the GUI

through Java code. Through use of this class, we have the ability to click a

button, select a check box, and even simulate pressing a key on the keyboard,

as mentioned above.

• Key + Mouse Actions - These represent actions such as, Shift+Left Mouse click,

etc. The Robot class is also used here. Please see Listing 6.3 for the code that

is used to apply this type of action.

• Mouse Actions - Makes use of the Robot class as well. As with the Key + Mouse

Action above, the mouseMove method must be called to ensure the mouse cursor

is over the control before calling any subsequent functions. For a single click,

mousePress is called followed by mouseRelease, with the appropriate button

value passed in. To simulate a double click, mousePress and mouseRelease are

called in order, and then this is repeated.

• Item actions - This includes both selecting an item, de-selecting an item, and

selecting a specific item. Since the test cases do not provide an actual item

index to use for selection, the ActionHandler must determine this itself. It uses



76 6. Oracles

a random index generator method found in TUI Utils, which takes the count

of items in the list object and returns a random index from this, in the range

[0, count). If the action is to de-select an item, then items must already be

selected, and the random index must be the index for one of these. If the action

is instead a select item action, then there must be an index available to select.

• Code actions - Code actions are slightly different than a normal action, as

they are usually called from background code itself. To simulate, a CodeEvent

class is created, which is then fired off to all current IAUTEventListeners. The

UpdateContainer or the InitializeContainer methods are used here, depending

on the code action that needs to be performed. As discussed previously in

section 5.3, the test case generation code action to initialize container only

uses the default settings for a container, thus similar should be implemented

within the AUT overridden methods.

Listing 6.3: Code for Applying a Key+Mouse Action
if(action.getKeyMouse () != null)

{

c.requestFocusInWindow ();

Robot robot = null;

try

{

robot = new Robot();

}

catch (AWTException e)

{

robot = null;

}

if(robot == null)

{

return false;

}

Point pt = c.getLocationOnScreen ();

robot.mouseMove ((int)(pt.x + c.getWidth ()/2), (int)(pt.y + c.getHeight ()/2));

switch(action.getKeyMouse ())

{

case CTRL_PLUS_MOUSE_CLICK:



6. Oracles 77

robot.keyPress(KeyEvent.VK_CONTROL);

robot.mousePress(InputEvent.BUTTON1_MASK);

robot.mouseRelease(InputEvent.BUTTON1_MASK);

robot.keyRelease(KeyEvent.VK_CONTROL);

break;

case SHIFT_PLUS_MOUSE_CLICK:

robot.keyPress(KeyEvent.VK_SHIFT);

robot.mousePress(InputEvent.BUTTON1_MASK);

robot.mouseRelease(InputEvent.BUTTON1_MASK);

robot.keyRelease(KeyEvent.VK_SHIFT);

break;

default:

return false;

}

}

Once the action has been applied, the next step in the process is to request the

GUI’s state.

6.2.2 Getting Current GUI State

The current state of the GUI is retrieved only after the action has been applied, includ-

ing a pause to give the event queue enough time to push our action through to the GUI

controls themselves. State generation is done by way of an event, StateRequestEvent,

and an event interface, IAUTEventListener. The IAUTEventListener provides inter-

face methods each GUI container should implement in order to enable the state

request process to work properly, namely OnStateRequest and CompileControls. As

well, the ActionPair that was applied is saved for state generation, since in some cases

it may be required.

As the state generation process will be accessing the GUI containers and their

controls, it must also be wrapped in a SwingUtilities.invokeAndWait call. Listing 6.4

shows the method used to call the OnStateRequest event function for each container

currently associated.

Listing 6.4: fireStateRequestEvent Method



78 6. Oracles

protected synchronized TcNode fireStateRequestEvent ()

{

StateRequestEvent event = new StateRequestEvent(this);

for(IAUTEventListener isrel : m_Listeners)

{

isrel.OnStateRequest(event);

}

return event.GetNode ();

}

As each Window receives the OnStateRequest call, it in turn calls the Compile-

Controls method, which adds all applicable controls into a List of Objects. As per

Appendix H, one of the implementation guidelines discussed there states that if there

are any JComboBoxes, JLists, or JSlider controls, then their JLabels must be paired

with them, and the pair itself is saved into the List. This is to ensure the text ele-

ment information is available. It then makes use of the StateHandler to add its set

of controls into the StateRequestEvent object. See Listing 6.5 for an example of the

implementation of the OnStateRequest method.

Listing 6.5: OnStateRequest Example Implementation
@Override

public void OnStateRequest(StateRequestEvent e)

{

List <Object > controls = CompileControls ();

StateHandler.AddToCurrent(e, false , this , controls);

}

The AddToCurrent method converts the controls and the container to their asso-

ciated TUIL test case objects, then adds them all into a TcNode.Entry. To convert

the controls, the previous state or applied action type is sometimes required, espe-

cially when dealing with combo box, list, and slider objects. Listing 6.6 provides the

method code for converting a JComboBox into its associated TUIL object, which

requires knowing whether the action just applied was a select item action on said

control. As well, it can be noted that the conversion does not take the focused state

into account here, as seen by the line c.setHasFocus(false);. The focused state is

instead handled outside of the individual conversion methods, and is only set if the



6. Oracles 79

conversion was successful and a focused control or container could be determined.

Listing 6.6: ConvertCombo Code
public TcContainer.Entry ConvertCombo(boolean selectItemAction , String label ,

JComboBox current)

{

if(current != null)

{

TcContainer.Entry ret = new TcContainer.Entry();

ret.setId(current.getName ());

TcCombo c = new TcCombo ();

c.setHasFocus(false);

c.setIsEnabled(current.isEnabled ());

c.setIsVisible(current.isVisible ());

c.setText(label);

c.setListShown(current.isPopupVisible ());

ItemList list = new ItemList ();

List <String > items = list.getItem ();

for(int i = 0; i < current.getItemCount (); ++i)

{

items.add(( String)current.getItemAt(i));

}

c.setItems(list);

int selectedItem = current.getSelectedIndex ();

c.setSelectedItem(BigInteger.valueOf(selectedItem));

if(selectedItem != -1)

{

c.setSelectState(SelectionState.SINGLE_SELECTION);

if(selectItemAction)

{

c.setItemChangeState(ItemChangeState.UPDATE_SINGLE);

}

else

{

c.setItemChangeState(ItemChangeState.NO_CHANGE);

}

}

else

{

c.setSelectState(SelectionState.NO_SELECTION);

c.setItemChangeState(ItemChangeState.NO_CHANGE);

}

ret.setTcChild(m_Factory.createTcCombo(c));

return ret;

}

return null;

}

Once the event requests for all Window objects have been received, the state is

compared to the expected result in the test case itself. This is described in the next

section. However, when the result has been logged, the current state is saved so that



80 6. Oracles

it can be used for the next state request, if necessary.

6.2.3 Logging Results

This section describes how the code logs the oracle result from each step of a test case

to a log file. The file structure was mentioned previously, so here the actual result

process will be discussed.

However, before the state requested from the AUT is compared and the result

logged, the action that was applied by the AUTHandler is first logged. This ensures

that the action that was applied is known, along with what the result was based on

this.

The first action applied is the empty action, which retrieves the first state of GUI.

This is denoted as the start-up action and initial state. After this, each Action is

denoted by what type of action was performed on what control in what container.

The State line provides the state comparison result.

Comparisons are performed between the generated and expected TcNode in-

stances, and then the comparisons tunnel down to the containers and their controls.

Algorithm 6 shows the main comparison method, which is responsible for actually

writing the result to the log file.

As can be seen, the CompareTcNodes method call returns a string result rather

than a boolean. This is so that the result information written to the log file is as

detailed as possible when a difference is found, denoting what failed and why. The

current implementation works by returning only the first difference found. If more

exist at this point in the test case, then they will not be noted in the log file. If

everything was as expected, the following value is entered for the state:



6. Oracles 81

Algorithm 6 LogFile WriteResultToFile Algorithm

function WriteResultToFile(TcNode exp, TcNode gen, int count, String
value)

if writer = null then
display message to user using invokeAndWait
return FALSE

end if
outputString ← null
if exp = null and gen = null and value 6= null and value not empty then

output ← value
else

result ← CompareTcNodes(exp, gen)
if count = −1 then

output ← initialStateString + result + lineEndString
else

output ← String.format(stateFormat, count + 1) + result + lineEnd-
String

end if
end if
write output to writer
flush writer
if an exception occurred during write then

display message to user using invokeAndWait
return FALSE

else
return TRUE

end if
end function



82 6. Oracles

\tPass: States identical!\r\n

The following are differences that would cause a failure result message to be logged:

• If the expected TcNode contained the root node for the AUT, but the actual

TcNode did not.

• The opposite of the above, the root node was not expected, but it was found.

• If the expected TcNode was null, but the generated TcNode was not.

• The opposite of the above, where generated is null, but expected is not.

• If the number of expected TcNode.Entry objects is different from the number

generated.

• If the comparison between the expected and generated TcNode.Entry objects

fails. This can occur for several reasons, some of which include:

– Similar null and number comparisons to above, but with respect to the

TcContainer and TcContainer.Entry objects.

– The expected base state values of an object are different from its generated

base state values. This includes focused, enabled, visible, text, etc. Please

see Listing 6.7 for the base state comparison method.

– The expected control type specific values of an object are different from

its generated specific value. An example of control specific properties is

whether a text control is read only, or the selection state of a list is the

same. The actual selected index values are never compared, as the test

cases do not support this functionality. Please see Listing 6.8 for the

TcButton object comparison.



6. Oracles 83

Listing 6.7: Comparison Between TcBase objects
protected String CompareTcBase(TcBase ours , TcBase theirs)

{

String ret;

String ourText = ours.getText ();

String theirsText = theirs.getText ();

if (( ourText != null && theirsText != null && ourText.equals(theirsText)) || (

ourText == null && theirsText == null))

{

if (ours.isHasFocus () == theirs.isHasFocus ())

{

if (ours.isIsEnabled () == theirs.isIsEnabled ())

{

if (ours.isIsVisible () == theirs.isIsVisible ())

{

ret = m_OK;

}

else

{

ret = String.format(new String("Visibility state not same , expected (%s)

vs generated (%s)"), ours.isIsVisible (), theirs.isIsVisible ());

}

}

else

{

ret = String.format(new String("Enabled state not same , expected (%s) vs

generated (%s)"), ours.isIsEnabled (), theirs.isIsEnabled ());

}

}

else

{

ret = String.format(new String("Focused state not same , expected (%s) vs

generated (%s)"), ours.isHasFocus (), theirs.isHasFocus ());

}

}

else

{

ret = String.format(new String("Text value not same , expected (%s) vs generated

(%s)"), ourText , theirsText);

}

return ret;

}

Listing 6.8: Comparison Between TcButton objects
if (oursC == TcButton.class)

{

TcButton b1 = (TcButton) oursE.getValue ();

TcButton b2 = (TcButton) theirsE.getValue ();

String localResult = CompareTcBase(b1, b2);

if(localResult.equals(m_OK))

{

if (b1.getType () != b2.getType ())

{

result = String.format(new String("Button Type state not same , expected (%s) vs

generated (%s)"), b1.getType ().toString (), b2.getType ().toString ());

}



84 6. Oracles

else if (b1.isIsChecked () != b2.isIsChecked ())

{

result = String.format(new String("IsChecked state not same , expected (%s) vs

generated (%s)"), b1.isIsChecked (), b2.isIsChecked ());

}

else

{

String b1group = b1.getButtonGroup ();

String b2group = b2.getButtonGroup ();

// Basically if we’re comparing "null" and "empty" together , these essentially

mean the same thing:

// there is no button group.

boolean b1groupEmpty = (b1group != null && b1group.equals(new String("")));

boolean b2groupEmpty = (b2group != null && b2group.equals(new String("")));

if(( b1group == null && b2group != null && !b2groupEmpty) || (b1group != null &&

b2group == null && !b1groupEmpty) || (b1group != null && b2group != null

&& !b1group.equals(b2group)))

{

result = String.format(new String("ButtonGroup state not same , expected (%s)

vs generated (%s)"), b1group , b2group);

}

}

}

else

{

result = localResult;

}

}

The following Listing 6.9 shows an example of what a possible log file could look

like, including some failure results:

Listing 6.9: Example Log File

Action: Start -up

Initial State:

Failure: Root node expected!

Action: mouse_click on ID_OPEN_DLG_BUTTON within container ID_MAIN_DLG

State 1:

Pass: States identical!

Action: return_key pressed on ID_CHECK_ONE within container ID_DLG

State 2:

Pass: States identical!

Action: mouse_click on ID_CHECK_TWO within container ID_DLG

State 3:

Pass: States identical!

Action: select_item on ID_LIST within container ID_DLG

State 4:

Pass: States identical!

Action: mouse_click on ID_OK within container ID_DLG

State 5:



6. Oracles 85

Failure: The Node was expected to contain 0 containers , instead contained 1

containers!



Chapter 7

Mock-up GUIs

This chapter describes the process by which a GUI mock-up can be generated based

on a TUIL specification. Mock-up can be defined as follows [58]:

A usually full-sized scale model of a structure, used for demonstration,

study, or testing.

With respect to GUI mock-ups within the TUIDE application, a mock-up is ex-

actly this, simply a model of what the GUI could look like when implemented. There

are two main reasons for generating a mock-up for a TUIL specification:

1. To ensure that the TUIL language is both expressive and precise enough to be

useful. Can it properly describe the layout and appearance of a GUI?

2. To provide the specification designer the ability to check their specification, to

determine if the GUI container being specified appears in the manner expected:

Are the controls in the correct locations? Orientations? Are the properties,

such as text and list contents, displayed correctly?

86



7. Mock-up GUIs 87

As a mock-up is for layout and appearance purposes only, the following design

considerations are used:

• The underlying event system within the specification will be ignored.

• All controls will be enabled and visible, so that the designer can see all of them

at once.

7.1 Generating a Mock-up

The mock-up generation process is illustrated using an example specification con-

sisting of one main root window, and two child dialogs. Since the purpose is for

generating a mock-up, and not test cases, no events have been included in the specifi-

cation’s design. Please see Appendix F for how to load the container selection dialog

for mock-up generation.

The designer is only able to select a single container from the list to mock-up.

The reason behind this, is that if more than one container is selected, the screen may

become too cluttered. By restricting this to only one extra window, the designer is

better able to focus their attention on each mock-up properly.

The first part of the mock-up process is to take the TuilContainer object as-

sociated with the container selected, and create the equivalent JSwing component

from it. The following is the ContainerType options and their equivalent JSwing

components:

• window ≡ JFrame

• dialog ≡ JDialog



88 7. Mock-up GUIs

There is a design consideration that has been used when creating the JFrame

component, and which has been documented in the container type XML type dec-

laration. That is, where JFrame components are not modal by default, the property

available for TuilContainer objects, is modal, must always be false. We do this so

that we can adhere to the default JSwing functionality as much as possible. If this

property is ever true, it is ignored during mock-up generation.

Once the main container component has been created, a recursive process is

started to fill out the JSwing container with all of the child controls. The goal

here, is to create the JPanel that holds them and then add this into the container.

The recursive process is called on the original set of children, which is basically

a child group type. See section 4.3.3 for more details on this. The main thing

to note, is that it is a way to group child controls in a particular orientation, and

that these groups can be nested to increase the complexity of the layout. As well, it

directly corresponds to the JAXB stub class ChildGroupType.

Each ChildGroupType is associated with its own JPanel, and its own Grid-

BagLayout and set of GridBagConstraints [59]. Then each of the controls it contains

is looped through and added into the JPanel based on when they are encountered. If

a ChildGroupType is found, then a recursive call is made to generate the JPanel

representing this group, which is then added into our current JPanel at the proper

location based on the GridBagConstraints. Special considerations are made for the

following:

• Button group - A set of current TuideButtonGroup objects is saved for the

duration of the mock-up process, as each button group is encountered. This

is so that when JRadioButtons or JCheckBoxes are found that are associated

with a button group, they can be added to that group properly, even if they



7. Mock-up GUIs 89

reside in different ChildGroupType objects.

• JButton - When a JButton is marked as a default button, the placement of it

is in the bottom-right corner.

• JCombo, JList/JTable, JSlider - These components typically have a label asso-

ciated with them. The text property of the TUIL specification for these types

of controls is directly associated to a JLabel component. Since there are now

two controls instead of one, a sub-JPanel is created to contain them. Then this

JPanel is added into the current one.

• TuilGroupBox - This control is simply converted into a TuideTitledBorder and

added as the border for the current JPanel.

• JTable/JList - All JTable objects are associated with a JScrollPane, which is

set to enable the vertical and horizontal scrollbars as needed. This is helpful in

case the number of items is very large, and thus would cause problems with the

layout.

• JTextField/JTextArea - We are forced to give the text components a minimum

size for the layout in order to get them to display. Otherwise, they will be

shrunk to a small rectangle where no text can be entered into it.

• JTextArea - Requires a JScrollPane in case the text is too large for the text

area displayed.

The mock-up generation process does a reasonable job at laying out the controls,

in order to provide an idea of what the specification describes. The following sub-

section will show examples of how well the process works.



90 7. Mock-up GUIs

7.2 Mock-up from a Specification

This section compares an example specification to the mock-up generated from it.

Listings 7.1 to 7.3 match up with Figures 7.1 to 7.3 respectively.

Listing 7.1: MainWindow.xml
<?xml version="1.0" encoding="UTF -8"?>

<tuil_container id="MAIN_WINDOW" parent_id="" type="window" is_modal="true"

use_default_button_placement="false"

xmlns:xs="http:\www.w3.org \2001\ XMLSchema.xsd" xmlns:tuil="../../ TUIL/

Specification/TUILContainer.xsd">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >The Main Window </text >

<children orientation="vertical">

<button name="first_button" id="FIRST_BUTTON" parent_id="MAIN_WINDOW" is_default=

"false">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >First Button </text >

<type >push</type >

</button >

<button name="second_button" id="SECOND_BUTTON" parent_id="MAIN_WINDOW"

is_default="false">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Second Button </text >

<type >push</type >

</button >

<button name="exit_button" id="EXIT_BUTTON" parent_id="MAIN_WINDOW">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Exit</text >

<type >push</type >

</button >

</children >

</tuil_container >

Listing 7.2: FirstDialog.xml
<?xml version="1.0" encoding="UTF -8"?>

<tuil_container id="FIRST_DIALOG" parent_id="MAIN_WINDOW" type="dialog" is_modal="

true" use_default_button_placement="true"

xmlns:xs="http:\www.w3.org \2001\ XMLSchema.xsd" xmlns:tuil="../../ TUIL/

Specification/TUILContainer.xsd">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >



7. Mock-up GUIs 91

Figure 7.1: Mock-up of Main Window

<is_visible >true</is_visible >

<text >The First Dialog </text >

<children orientation="vertical">

<child_group orientation="horizontal">

<child_group orientation="vertical">

<button name="first_button" id="FIRST_RADIO" parent_id="FIRST_DIALOG"

is_default="false">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >One</text >

<type >radio</type >

<is_checked >true</is_checked >

<text_horiz_align >right</text_horiz_align >

<button_group >ID_MAIN_CHOICE_GROUP </button_group >

</button >

<button name="second_button" id="SECOND_RADIO" parent_id="FIRST_DIALOG"

is_default="false">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Two</text >

<type >radio</type >

<is_checked >false</is_checked >

<text_horiz_align >right</text_horiz_align >

<button_group >ID_MAIN_CHOICE_GROUP </button_group >

</button >

<button name="third_button" id="THIRD_RADIO" parent_id="FIRST_DIALOG"

is_default="false">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Three</text >

<type >radio</type >

<is_checked >false</is_checked >

<text_horiz_align >right</text_horiz_align >

<button_group >ID_MAIN_CHOICE_GROUP </button_group >

</button >

</child_group >

<list_box name="big_listbox" id="BIG_LIST" parent_id="FIRST_DIALOG">

<has_focus >false</has_focus >

<is_enabled >false</is_enabled >



92 7. Mock-up GUIs

<is_visible >true</is_visible >

<text >List:</text >

<multicolumn >true</multicolumn >

<select_type >multiple </select_type >

<rows>

<row>

<item>R1C1</item>

<item>R1C2</item>

<item>R1C3</item>

</row>

<row>

<item>R2C1</item>

<item>R2C2</item>

<item>R2C3</item>

</row>

<row>

<item>R3C1</item>

<item>R3C2</item>

<item>R3C3</item>

</row>

<row>

<item>R4C1</item>

<item>R4C2</item>

<item>R4C3</item>

</row>

<row>

<item>R5C1</item>

<item>R5C2</item>

<item>R5C3</item>

</row>

</rows>

<columns >

<item>Column 1</item>

<item>Column 2</item>

<item>Column 3</item>

</columns >

<count>5</count>

<select_state >no_selection </select_state >

<initial_selection >-1</initial_selection >

</list_box >

</child_group >

<button name="ok_button" id="IDOK" parent_id="FIRST_DIALOG" is_default="true">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >OK</text >

<type >push</type >

</button >

</children >

</tuil_container >

Listing 7.3: SecondDialog.xml
<?xml version="1.0" encoding="UTF -8"?>



7. Mock-up GUIs 93

Figure 7.2: Mock-up of First Dialog

<tuil_container id="SECOND_DIALOG" parent_id="MAIN_WINDOW" type="dialog" is_modal="

true" use_default_button_placement="true"

xmlns:xs="http:\www.w3.org \2001\ XMLSchema.xsd" xmlns:tuil="../../ TUIL/

Specification/TUILContainer.xsd">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >The Second Dialog </text >

<children orientation="vertical">

<child_group orientation="horizontal">

<child_group orientation="vertical">

<button name="first_check" id="FIRST_CHECK" parent_id="SECOND_DIALOG"

is_default="false">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >One</text >

<type >checkbox </type >

<is_checked >false</is_checked >

<text_horiz_align >right</text_horiz_align >

</button >

<button name="second_check" id="SECOND_CHECK" parent_id="SECOND_DIALOG"

is_default="false">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Two</text >

<type >checkbox </type >

<is_checked >false</is_checked >

<text_horiz_align >right</text_horiz_align >

</button >

<button name="third_check" id="THIRD_CHECK" parent_id="SECOND_DIALOG"

is_default="false">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Three</text >

<type >checkbox </type >



94 7. Mock-up GUIs

<is_checked >false</is_checked >

<text_horiz_align >right</text_horiz_align >

</button >

</child_group >

<child_group orientation="vertical">

<child_group orientation="horizontal">

<label name="textbox_label" id="TEXTBOX_LABEL" parent_id="SECOND_DIALOG">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter Text Here:</text >

<text_vert_align >center </text_vert_align >

<text_horiz_align >left</text_horiz_align >

<text_bounds_interaction >none</text_bounds_interaction >

</label >

<text_box name="enter_textbox" id="ENTER_TEXTBOX" parent_id="SECOND_DIALOG"

>

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<is_multiline >false</is_multiline >

<is_readonly >false</is_readonly >

<text >Testing ...</text >

</text_box >

</child_group >

<combo name="first_combo" id="FIRST_COMBO" parent_id="SECOND_DIALOG">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Select Item:</text >

<drop_arrow_side >left</drop_arrow_side >

<is_sorted >false</is_sorted >

<select_state >single_selection </select_state >

<initial_selection >0</initial_selection >

<count>5</count>

<items>

<item>Item 1</item>

<item>Item 2</item>

<item>Item 3</item>

<item>Item 4</item>

<item>Item 5</item>

</items >

</combo >

</child_group >

</child_group >

<button name="ok_button" id="IDOK" parent_id="SECOND_DIALOG" is_default="true">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >OK</text >

<type >push</type >

</button >

</children >

</tuil_container >



7. Mock-up GUIs 95

Figure 7.3: Mock-up of Second Dialog

The results of the comparisons are:

1. There are some issues with spacing, sizing, and alignment, but these are mini-

mal in comparison with the overall outcome, which is that the mock-up layout

algorithm displays the controls in the proper orientation and order, as found

within the specification.

2. Control properties as defined in the specification are properly displayed within

the mock-ups. For example, in the First Dialog, the radio button with text

’One’ is initially selected, as per its specification.

3. The size of the container is defined by the number and orientation of the controls

contained within it. Thus, the Main Window mock-up is smaller than what

would typically be implemented, as noted by the title text being barely visible.

4. The multi-column list box control specified in the First Dialog is generated as

a JTable. However, the JScrollPane the JTable is placed in is much larger than

is required. We use generic sizing here to ensure that the control displays in a

manner similar to an implementation.

The majority of the issues noted here are related to sizing, spacing, and alignment.

In section 4.3.3 we discussed how we abstracted out as much of the visual aspects of



96 7. Mock-up GUIs

the controls as possible, and instead use the layout mechanism put in place to handle

actual layout. This was done to ensure that TUIL is a light-weight specification

language. Thus, to include the exact values for spacing, alignment, sizing, etc, while

improving the look of the mock-ups, would only increase the complexity of TUIL and

be contrary to what we are attempting to achieve here.

Regardless of the issues found, the main goals we attempted to achieve with the

mock-up generation were achieved. We can say that TUIL is expressive enough to

specify the look and layout of a GUI, and that the mock-ups can give a designer some

indication of whether their specification is specifying what they want it to. The issues

found would be correctable during the implementation phase, without affecting our

TUIL specification or the behaviour it defines.



Chapter 8

Application of Research

This chapter illustrates the approach developed in this work using a demonstration

application, called Food Orderer. The purpose of Food Orderer is to allow a user to

make menu selections for ordering food at a restaurant.

The design of the Food Orderer application is broken down into four windows:

• Main Dialog - Used to access the other three dialogs, and to enter any allergies

that are applicable to the user.

• Appetizer Dialog - Allows the user to order from a selection of appetizers, with

some variations allowed.

• Entrée Dialog - The user is given the choice of one main dish, from a selection

of dishes, with a choice of sides.

• Dessert Dialog - The user is provided with a set of dessert options to choose

from.

The specification for this application can be found in the supplementary files. The

guideline of one container window to a specification file was followed. The first thing

97



98 8. Application of Research

that is required is to load this specification into the TUIDE application, following

the step-by-step instructions in Appendix D. When this is done the result dialog in

Figure 8.1 is displayed.

Figure 8.1: Specification Result Dialog

After the specification is successfully loaded into TUIDE, it can be used to generate

test cases and mock-ups respectively.

8.1 Test Case Generation

Test case generation is described in chapter 5. Here we discuss this with respect to

the Food Orderer application. The user sees very little when generating a graph or set

of test cases, however they are provided with result messages denoting the outcome

of each step. The graph generation step is successful here. Please see Figure 8.2 for

an example partial graph for this specification.

When the Generate Test Cases menu is clicked, the user is prompted with the

container selection dialog, which decides what containers will have test cases generated

for them. As can be seen in Figure 8.3, all containers within Food Orderer are selected.

Then the test cases for this specification are all generated successfully.



8. Application of Research 99

Figure 8.2: Food Orderer Partial Graph Example

For the Food Orderer specification, the following is the breakdown of the number

of test cases generated per container. Please see Appendix I for a few examples of

these generated test case files.

• Main Dialog - 21

• Appetizer Dialog - 23

• Entrée Dialog - 39

• Dessert Dialog - 6



100 8. Application of Research

Figure 8.3: Container Selection Dialog

The test cases generated were examined with respect to how well they covered

the set of events provided by the specification. Table 8.1 gives the event coverage

breakdown for the Main Dialog. Please see Appendix J for the other event coverage

tables.

Table 8.1: Main Dialog Event Coverage

Control/Container Event Usage Count
ID_APPETIZER_BUTTON mouse_click 23
ID_ENTREE_BUTTON mouse_click 39
ID_DESSERT_BUTTON mouse_click 6
ID_ALLERGY_TEXTBOX text_change 20

ID_PLACE_ORDER_BUTTON mouse_click 21
ID_FOOD_ORDERER_DLG initialize_container 0

The following are the results of examining the event coverage:



8. Application of Research 101

1. 84% of events within the specification were used at least once, with some being

used much more than this. The other results below explain why some events

were not used.

2. No initialize container actions were found in the generated test cases. This

may be due to the fact that if this action will cause a cycle within the graph,

as in starting and ending in the same state, it will be ignored.

3. In some cases, either the return key action or the mouse click action was

never fired for a particular control. This may be due to the randomness of

TuilArc selection, as described in section 5.4. Another reason could be that

the action ignored was not on one of the shortest paths within the graph.

4. Within the Entrée dialog, the steak cook option slider’s mouse click action

was never fired. The reason for this is currently unknown, but may result from

it not lying on one of the shortest paths in the graph.

5. The text change action was used more often than it needed to be for proper

testing. This may result from the GUID generated each time a text change

action is encountered during the graph modeling process.

Each time test case generation occurred, it resulted in the same number of test

cases per container. The contents of the test case files, however, were never guaranteed

to stay the same, which is as designed. There are two reasons why this randomness

occurs:

1. The random selection between TuilArcs could return a different index each

time.

2. The paths through the graph may be returned in a different order from previous.



102 8. Application of Research

8.2 Implementation

This section introduces the implementation of the Food Orderer application, which

will be used for the following sections in this chapter to:

• Compare the generated mock-ups against.

• Be used as the AUT during the application of oracles.

• Be used as the basis for seeding errors into the AUT for testing the oracles

ability to find them.

The implementation of the application was done using the specification as a guide

for layout, types of controls, events to hook-up, and default settings for each container.

We followed the guideline that the id attribute of each control and container within

the specification be mapped to the setName/getName methods of the equivalent

Swing component.

The screen captures of the four dialogs within the application can be seen in

Figures 8.4 to 8.7.

Figure 8.4: Main Dialog Implementation



8. Application of Research 103

Figure 8.5: Appetizer Dialog Implementation

8.3 Mock-ups

The TUIDE mock-ups, as discussed in chapter 7, can be generated by selecting each

container individually from a dialog similar to Figure 8.8. Figures 8.9 to 8.12 are

shown in response to these selections.

Comparing these mock-ups to the implemented dialog screen captures from the

previous section, we can see that overall the mock-ups generate a good representation

of the containers. There are some issues to do with alignment and spacing during

layout, as well as setting preferred sizes of containers and some controls, however,

these are relatively minor. The general purpose of the mock-ups, which is to give the

designer an idea of what the container could look like, has been met successfully.

8.4 Oracles

The oracles are discussed within Chapter 6. For the Food Orderer application, the

amount of time required to apply all 89 test cases against the runnable JAR file for

the AUT was approximately fifteen minutes.



104 8. Application of Research

Figure 8.6: Entrée Dialog Implementation

Please see Appendix K for some generated oracle result files, using the proper

implementation of the Food Orderer application. As a result, the test cases were all

successful, except for the inability to catch the close of a dialog to get the proper end

state for the test case. This is a known problem within the oracle side of the AUT

implementation, where the closing event on a Window is not caught and thus, the

Window is not removed from the IAUTEventListener list properly. Please refer to

Figure 8.7: Dessert Dialog Implementation



8. Application of Research 105

Figure 8.8: Container Selection Dialog for Mock-ups

Figure 8.9: Main Dialog Mock-up

section 6.2.2 for details on this listener and the state request process.

8.5 Implementation Errors

Two copies were made of the Food Orderer implemented solution, in order to be

able to seed each copy with certain faults to test for. One copy was seeded for

faults within the Main dialog, while the other copy was seeded for faults within the

Appetizer, Entrée, and Dessert dialogs. The reason for dividing them up is that only

the first fault found is reported during the state comparison and logging phase. If

we only used one version of the AUT for seeding faults, the faults in the Main dialog

would be the only ones reported. Many of the faults seeded were based on mistakes

that can easily happen during software implementation, such as copy-paste errors,

etc. The following is a list of all faults seeded:



106 8. Application of Research

Figure 8.10: Appetizer Dialog Mock-up

1. The Allergy text box within the Main dialog is disabled on start-up, even though

it should be enabled.

2. The Allergy text box label in the Main dialog contains an extra space at the

end.

3. The Dessert button will open the Appetizer dialog instead of opening the

Dessert dialog.

4. The Sundae Sauce combo in the Dessert dialog is disabled on startup by checking

for the wrong dessert being selected. Instead of checking for Sundae being the

default dessert, which it is, it checks for the Cheesecake option.

5. The Soup Crackers check box in the Appetizer dialog uses the Nachos check box

being selected to determine whether it should enable itself. This is wrong, as it

should use the Soup check box. As well, the check to see if it should enable/dis-

able itself is only done when the Soup check box is selected or deselected.

6. The Steak radio button in the Entrée dialog should disable the chicken sub-

radio-buttons for white and dark meat, however here it enables them.



8. Application of Research 107

Figure 8.11: Entrée Dialog Mock-up

7. Selections in the Side Dish One combo in the Entrée dialog enable/disable the

Dressing combo in the opposite manner. When Garden Salad item is selected,

the Dressing combo is disabled, and when any other Side Dish One is selected,

the Dressing combo is enabled.

8. Added an extra item, Cherry, to the Sundae Sauce combo in the Dessert dialog.

9. Removed the Cajun Sauce item from the Perogie Sauce combo in the Appetizer

Figure 8.12: Dessert Dialog Mock-up



108 8. Application of Research

Table 8.2: Faults Seeded Into AUT
Fault Java File Line

Number
Nature Group Compile

Type
1 MainDlg 138 Incorrect boolean N/A Separate
2 MainDlg 129 Bad spelling N/A Separate
3 MainDlg 158-159 Copy-paste N/A Separate
4 DessertDlg 167 Incorrect enum Enable/

Disable
Grouped

5 AppetizerDlg 342 and 452 Wrong control Enable/
Disable

Grouped

6 EntreeDlg 657-658,
1283-1284

Incorrect boolean Enable/
Disable

Grouped

7 EntreeDlg 1353-1361 Incorrect booleans Enable/
Disable

Grouped

8 DessertDlg 136 Extra item List Items Grouped
9 AppetizerDlg 159 Missing item List Items Grouped
10 EntreeDlg 407 Bad spelling List Items Grouped

dialog.

10. Renamed the Sweet-n-Sour item, of the Stirfry Sauce list in the Entrée dialog,

to be Sweet and Sour.

Table 8.2 lists the faults described above, in order and using more details.

As can be noted from the table, several compilations were required to prevent

contamination between different faults. The generated JAR files were also named

appropriately to prevent confusion. Faults within the three child dialogs were done

in sets. One set represented enable/disable errors, while another represented list item

errors.

Some of the Oracle results can be found within Appendix L. Table 8.3 provides a

summary of these results.

As can be seen in Table 8.3, all seeded faults were successfully found. In some

cases, where subsequent events were dependent upon the original outcome of the



8. Application of Research 109

Table 8.3: Oracle Results for Seeded Faults
Fault # of Test Cases

That Found It
Test Case for Appendix

L Result
1,2 89 Main Dialog’s 000.xml
3,4 6 Dessert Dialog’s 004.xml
5 15 Appetizer Dialog’s 011.xml,

013.xml, 016.xml
6 7 Entrée Dialog’s 036.xml
7 22 Entrée Dialog’s 036.xml
8 6 Dessert Dialog’s 004.xml
9 23 Appetizer Dialog’s 016.xml
10 39 Entrée Dialog’s 036.xml

event with the fault, more errors were generated. We can compare each faulty result

from Appendix L to the result from the proper implementation in Appendix K.

Thus, with all the aspects of this research applied to the Food Orderer demon-

stration application, we can see that the research goals have been met, and its usage

is valid with respect to its current capabilities.



Chapter 9

Conclusion

The original goals of this research were the following:

1. Create a specification language that would describe both the GUI, as well as its

behaviour, in a light-weight manner, and in a format that was easily configurable

and transferable. The language would then be usable for multiple purposes

within the realm of testing and GUI development.

2. Develop a method to automatically generate test cases for a particular specifi-

cation.

3. Develop a method by which the test cases generated would be applied to an

implementation of the GUI, called the Application Under Test or AUT, and

results gathered.

4. Develop a method to take a particular specification and generate a mock-up of

what different containers within the GUI could look like if implemented.

Based on the results noted in the previous chapters, all of these goals have been

met. We have created a prototype of the specification language, which we have called

110



9. Conclusion 111

TUIL, or Testable User Interface Language. To go along with this, we have created a

prototype application, called TUIDE, or Testable User Interface Development Envi-

ronment, which combines the ability to generate test cases, run Oracles, and generate

mock-ups.

The most telling results of this research include the following:

• The specification language does work to describe the functionality, look, and

layout of a GUI. However, it is a cumbersome language to read and write man-

ually, thus decreasing the usability of the language for the specifier.

• The mock-ups generated a reasonably accurate visual representation of the ac-

tual GUI, barring issues with alignment and sizing.

• The oracles were able to catch all faults seeded into the demonstration applica-

tion. However, more testing would need to be performed in order to determine

how well it can catch other types of faults.

• The test case generation process created test cases that not only were able to

help accurately find the faults when applied by the oracles, they also covered

the majority of events within the specification, except for some considerations,

which are provided below. The Dijkstra’s algorithm used in this research did not

provide full graph coverage with respect to generating test cases for all events.

Some of the missed events, however, were independent to the algorithm itself,

and instead were affected by our own design considerations, also noted below.

If these had been implemented differently, the event coverage would have been

higher. As well, Dijkstra’s shortest path algorithm is a good starting point for

generating test cases, as it is simple to implement and use, and as can be seen

in this research, even with its limitations, it was able to do a reasonable job.



112 9. Conclusion

– Some events are not applied if the start and end node for the action are

the same. This is to prevent adding cycles to the graph. One example of

this would be the initialize container action.

– When multiple actions lead from the same start node in the graph to the

same end node, we randomly select only one of these to apply. This can

cause some actions to be starved of use.

– Due to Dijkstra’s shortest path algorithm, some actions may lie on the non-

shortest paths and thus, will not be included in the test cases generated.

There is great potential for this research. Currently, however, it is in the prototype

stage and requires work in order to be more usable in practice. Improvements, as

outlined in the next section, would increase this research from the prototype level to

that of a proper toolkit.

9.1 Future Work

Since the TUIL language and TUIDE program are prototypes, there is still much

room for improvements and features. These can be broken up into four separate

groupings:

1. Implementation specific improvements - Requires modifications to different as-

pects of the tools and the language to increase functionality.

2. Expanded functionality - This represents larger pieces of work to increase us-

ability and portability.

3. Tool support - Describes different plug-ins or add-ons that could be created



9. Conclusion 113

to be incorporated into applications such as Eclipse, Visual Studio, etc, or by

further development of our own TUIDE tool.

4. Further testing

The following is the list of improvements that have been flagged as implementation

specific, in order to increase the capabilities of this research:

1. Update the TUIL language to increase the number of container types, control

types, and events/actions/reactions supported. Some of these would include

adding in panel, canvas, menu, and menu item types, and scrolling events. This

would then require updating both test case generation, as well as oracles, to

handle the new additions.

2. Expand TUIL allow it to represent the model state of the GUI, to further

improve the testing process. Subsequent changes would be required to test case

generation and oracles.

3. The text bounds interaction property in the specification for TUIL labels is

not directly assignable to a JLabel property. Consideration should be given

to extending the JLabel class to add this in, or implement some sort of draw

capability for this. This affects mock-ups, test case generation, and Oracles.

4. The knob orientation property in the specification for TUIL sliders is not di-

rectly assignable to a JSlider property. Again, we would either have to extend

on the JSlider class to implement this property, or handle it through draw/paint

capabilities. This also affects all three uses of the TUIL specification.

5. Fine tune the mock-up generation process to improve layout and alignment of

controls.



114 9. Conclusion

6. Multiple default buttons may result in incorrect layout during mock-up gener-

ation. This would need to be tested more fully.

7. Currently, only one arc between two state nodes is selected randomly for the

test case. If multiple arcs exist, and their shortest path weighting is equal,

then we should generate a test case per arc. This could possibly be done using

multigraph or pseudograph.

8. More work needs to be done to ensure the software will be able to generate

test cases for specifications where non-modal containers, other than the main

container, are allowed.

9. The code action initialize container currently only works with default states

during test case generation. Modifications should be made to ensure that saved

state can also be worked with. This may require changes to the TUIL language

as well, to denote whether a container allows for saved state initialization or

not. This would work well with the model state future work item noted earlier.

10. Currently, combo boxes, list boxes, and slider controls all have statically defined

sets of items. Many applications, however, use dynamically allocated lists to

display information to the user. To this end, several additions to the function-

ality of these control types are required:

• The control would need to specify whether its item set is defined as static

or dynamic.

• If the item set is to be static, then the burden of item selection should fall

to the test case generation process, as opposed to the Oracles, which it is

currently. This would simplify the oracle process here.



9. Conclusion 115

• Dynamic item sets require more consideration, as they complicate how

we generate test cases. It is difficult to generate a test case containing a

select item action if we do not know that there is actually an item to

select ahead of time. This may put the burden back on the oracle side,

since at this point, we would know what the item set is.

11. When running Oracles, there is an existing issue whereby when a window is

closed, it is still able to receive our state request event.

12. When a combo box, list box, or slider control item set is compared during

the Oracles, it is assumed that the item sets are in the same order. We do

not currently define whether a set of items is sortable within the specification

language. This should be added, and the items organized appropriately before

comparison.

13. The MOUSE DRAG mouse action is not currently handled within the Ora-

cles.

14. If an action is being applied to a TuideTitledBorder, then it is currently ignored

within the Oracles, as it is not an underlying Component object. This needs to

be resolved.

15. Expand the logging capabilities of Oracles to provide even more in depth results

about failures.

16. Multiple column list states should contain the set of column names for comple-

tion. This would enable us to declare a problem if the implemented version has

differing column names from the specification.



116 9. Conclusion

17. Mouse actions applied during the oracles cause the mouse clicks to occur on the

center of the control in question. Perhaps this location should be more random,

depending on the control type.

18. Investigate ways to improve the graph modeling and test case generation pro-

cess. Different graph coverage schemes may find paths that Dijkstra’s shortest

path algorithm did not, thus increasing the capabilities of our test cases and

oracles.

19. Reduce the number of states generated for a text change action by investigat-

ing the type of text to use to test this control properly.

20. Expand the action and reaction capabilities by allowing the specifier to add in

constraints on whether the action or reaction is feasible, given the states of other

controls/containers. This would require changes to the test case generation

process as well.

21. Investigate different oracle application methods, including not using the AUT

to contain the bulk of the oracle functionality.

22. Update the Food Orderer application mentioned in Chapter 8 for the new func-

tionality and retest. As well, create two more demonstration applications to

compare results with.

The following describes the expanded functionality:

1. Put in the ability to allow multiple specifications to concurrently exist within

TUIDE. This, in turn, would require that multiple test graphs, sets of test

cases, and JAR files be concurrently allowed. Changes would need to be made



9. Conclusion 117

to ensure that when oracles are run, we choose what test case set and JAR file

are to be used beforehand. As well, when generating test cases, we would need

to add the ability to select what graph to generate from and what containers

to generate for.

2. Currently TUIDE only has the ability to mock-up a single TUIL container at

a time. Consider allowing multiple to be selected and mocked-up. This would

need to take into account screen real-estate.

3. The only way to close a mock-up dialog is to click the X button in the title bar,

or to hit ESC or ALT+F4. It would be nice to have another more built-in way

to do this.

4. Add in the ability to mock-up event interactions and behaviour, so that the

specifier can also test this as the specification is being developed.

5. Consider porting TUIL to C++ or C# to make it even more powerful.

6. Potentially put in the ability to automatically generate the implementation class

code for the specified GUI in different implementation languages.

The following deals with tool support for the different aspects of this research.

These would include:

1. A plug-in or add-on to handle creation of TUIL specifications in a visual manner,

and generation of mock-ups. These two parts compliment each other, and would

work well as a single plug-in/add-on.

2. A plug-in or add-on to encompass test case generation and oracle application,

as again, these two would work well together.



118 9. Conclusion

3. Further development to the TUIDE application itself, to generate the specifi-

cation in a visual manner rather than manually. This is important to increase

usability of the language as a whole.



References

[1] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Using a goal-driven approach to

generate test cases for GUIs,” in Proceedings of the 21st International Conference

on Software Engineering, pp. 257–266, May 1999.

[2] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Automated test oracles for

GUIs,” in SIGSOFT ’00/FSE-8: Proceedings of the 8th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, (New York, NY,

USA), pp. 30–39, ACM Press, 2000.

[3] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage critiria for GUI

testing,” in Proceedings of the 8th European Software Engineering Conference

(ESEC) and 9th ACM SIGSOFT International Symposium on the Foundations

of Software Engineering (FSE-9), pp. 256–267, Sept 2001.

[4] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI test case gener-

ation using automated planning,” IEEE Transactions on Software Engineering,

vol. 27, no. 2, pp. 144–155, 2001.

[5] A. M. Memon, “GUI testing: Pitfalls and process,” IEEE Computer, vol. 35,

pp. 90–91, Aug 2002.

119



120 REFERENCES

[6] A. M. Memon, I. Banerjee, and A. Nagarajan, “What test oracle should i use for

effective GUI testing?,” in Proceedings of the 18th IEEE International Conference

on Automated Software Engineering (ASE’03), 2003.

[7] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse engineer-

ing of graphical user interfaces for testing,” in Proceedings of the 10th Working

Conference on Reverse Engineering, Nov 2003.

[8] A. M. Memon, “An event-flow model of GUI-based applications for testing,”

Software Testing, Verification and Reliability, 2007.

[9] C. Campbell and M. Veanes, “State exploration with multiple state groupings,”

in Proceedings of the 12th International Workshop on Abstract State Machines

(ASM’05), Abstract State Machines, (Paris, France), pp. 119–130, March 8-11

2005.

[10] T. S. Chow, “Testing software design modeled by finite-state machines,” IEEE

Transactions on Software Engineering, vol. SE-4, pp. 178–187, Sept 1978.

[11] R. K. Shehady and D. P. Siewiorek, “A method to automate user interface testing

using variable finite state machines,” in FTCS’97: Proceedings of the 27th Annual

International Symposium on Fault-Tolerant Computing, pp. 80–88, June 1997.

[12] R. E. K. Stirewalt, S. Rugaber, and G. D. Abowd, “Automating the design

of specification interpreters,” GVU Technical Report GIT-GVU-96-14, Georgia

Institute of Technology, College of Computing, Georgia Institute of Technology,

Atlanta, Georgia, 30332-0280, 1996.



REFERENCES 121

[13] F. Belli, “Finite-state testing and analysis of graphical user interfaces,” in Pro-

ceedings of the 12th International Symposium on Software Reliability Engineering

(ISSRE’01), pp. 34–43, Nov 2001.

[14] A. C. R. Paiva, N. Tillmann, J. C. P. Faria, and R. F. A. M. Vidal, “Modeling and

testing hierarchical GUIs,” in Proceedings of the 12th International Workshop on

Abstract State Machines (ASM’05), Abstract State Machines, (Paris, France),

pp. 329–344, March 8-11 2005.

[15] L. White, “Controlling the effects of complexity in software testing (testing of

GUI systems),” in Workshop on Software Assessment (WOSA), Part of the 2001

International Symposium on Software Reliability Engineering (ISSRE’01), (Hong

Kong), Nov 2001.

[16] L. Apfelbaum and J. Schroeder, “Reducing the time to thoroughly test a GUI,”

in Proceedings of the 11th International Software Quality Week Conference

(QW’98), (Sheraton Palace Hotel, San Francisco, CA, USA), May 1998.

[17] C. Erickson, R. Palmer, D. Crosby, M. Marsiglia, and M. Alles, “Make haste, not

waste: Automated system testing,” in Extreme Programming and Agile Methods

- XP/Agile Universe 2003, vol. 2753/2003 of Lecture Notes in Computer Science,

pp. 120–128, Springer Berlin/Heidelberg, September 2003.

[18] M. Caswell, V. Aravamudhan, and K. Wilson, “Introduction to jfcUnit.” http:

//jfcunit.sourceforge.net/, Last visited on September 24, 2014.

[19] “Jemmy framework.” https://jemmy.java.net/, Last visited on September 24,

2014.



122 REFERENCES

[20] Oracle Corporation and/or its affiliates, “Class Robot.” http://docs.oracle.

com/javase/7/docs/api/java/awt/Robot.html, Last visited on September 24,

2014.

[21] T. Wall, “Getting started with the Abbot java GUI test framework.” http://

abbot.sourceforge.net/doc/overview.shtml, Last visited on September 24,

2014.

[22] Jalian Systems Pvt. Ltd., “Marathon: Opensource java GUI testing tool.” http:

//marathontesting.com/marathon/, Last visited on September 24, 2014.

[23] D. K. Peters and D. L. Parnas, “Using test oracles generated from program doc-

umentation,” IEEE Transactions on Software Engineering, pp. 161–173, March

1998.

[24] D. K. Peters, M. Lawford, and B. T. con y Widemann, “An IDE for software de-

velopment using tabular expressions,” in Newfoundland Electrical and Computer

Engineering Conference, (St. John’s, NL, Canada), Nov 2007.

[25] E. J. Weyuker, “On testing non-testable programs,” The Computer Journal,

vol. 25, no. 4, pp. 465–470, 1982.

[26] “XML.” http://en.wikipedia.org/wiki/XML, Last visited on February 17,

2015.

[27] “Extensible markup language (XML).” http://www.w3.org/XML/, Last visited

on February 17, 2015.

[28] J. Bishop and N. Horspool, “Developing principles of GUI programming using

views,” SIGCSE Bulletin, vol. 36, pp. 373–377, March 2004.



REFERENCES 123

[29] J. Bishop, “Multi-platform user interface construction a challenge for software

engineering-in-the-small,” in Proceedings of the 28th International Conference on

Software Engineering, pp. 751–760, May 20-28 2006.

[30] “Reflection.” https://msdn.microsoft.com/en-us/library/cxz4wk15(v=vs.

80).aspx, Last visited on February 17, 2015.

[31] W. Xin, “XML specification of GUI,” masters of science: computer systems

engineering programme, Technical University of Denmark, Technical University

of Denmark, Informatics and Mathematical Modelling Building 321, DK-2800

Kongens Lyngby, Denmark, March 2006.

[32] M. A. A. Salam, A. E. Keshk, N. A. W. Ismail, and H. M. Nassar, “Specification-

driven automated testing of java swing GUIs using XML,” in 5th International

Conference on Information and Communications Technology (ICICT), pp. 84–

88, 2007.

[33] M. A. A. Salam, A. E. Keshk, N. A. W. Ismail, and H. M. Nassar, “Automated

testing of java menu-based GUIs using XML visual editor,” in International

Conference on Computer Engineering and Systems (ICCES), pp. 313–318, 2007.

[34] M. Tubishat, I. Alsmadi, and M. Al-Kabi, “Using XML files to document the

user interfaces of applications,” in 5th IEEE GCC Conference and Exhibition,

pp. 1–4, 2009.

[35] Microsoft, “XAML overview (WPF).” http://http://msdn.microsoft.com/

en-us/library/ms752059(v=vs.110).aspx, Last visited on September 24,

2014.



124 REFERENCES

[36] “Extensible application markup language.” http://en.wikipedia.org/wiki/

Extensible_Application_Markup_Language, Last visited on September 24,

2014.

[37] Soyatec, “eFace.” http://www.soyatec.com/eface/, Last visited on September

24, 2014.

[38] Mozilla, “XUL.” http://developer.mozilla.org/En/XUL, Last visited on

September 24, 2014.

[39] F. Sauer, “XMLTalk.” http://sourceforge.net/projects/xmltalk/, Last

visited on September 24, 2014.

[40] F. Sauer, “XMLTalk: A framework for automatic GUI rendering from XML

specs,” Java Report, pp. 16–23, October 2001.

[41] The Forms Working Group, “XForms.” http://www.w3.org/Markup/Forms/,

Last visited on September 24, 2014.

[42] XIML Forum, “XIML.” http://www.ximl.org/, Last visited on September 24,

2014.

[43] H. Tran, “Test generation using model checking.” Report from CSC2108 Auto-

mated Verification, Fall’00, Instructor: Marsha Chechik, Department of Com-

puter Science, University of Toronto, 2000.

[44] M. B. Dwyer, V. Carr, and L. Hines, “Model checking graphical user interfaces

using abstractions,” in Proceedings of the European Software Engineering Con-

ference and ACM SIGSOFT International Symposium on the Foundations of

Software Engineering, pp. 244–261, 1997.



REFERENCES 125

[45] S. R. Ganov, C. Killmar, S. Khurshid, and D. E. Perry, “Test generation for

graphical user interfaces based on symbolic execution,” in In Proceedings of the

3rd International Workshop on Automation of Software Test (AST’08), (New

York, NY, USA), pp. 33–40, 2008.

[46] X. Lee, “JavaScript + DOM: Intro to event-based programing.” http://xahlee.

info/js/events.html, Last visited on September 24, 2014.

[47] “Mealy machine.” http://en.wikipedia.org/wiki/Mealy_machine, Last vis-

ited on February 10, 2015.

[48] Oracle Corporation and/or its affiliates, “JAXB Reference Implementation.”

http://jaxb.java.net/, Last visited on September 24, 2014.

[49] Oracle Corporation and/or its affiliates, “JAXB Tutorial.” http://jaxb.java.

net/tutorial/, Last visited on September 24, 2014.

[50] Oracle Corporation and/or its affiliates, “JAXB RI 2.2.4 - binding compiler

(xjc).” http://jaxb.java.net/2.2.4/docs/xjc.html, Last visited on Septem-

ber 24, 2014.

[51] IBM, “xjc command for JAXB applications.” http://pic.dhe.ibm.com/

infocenter/wasinfo/v7r0/index.jsp?topic=%2Fcom.ibm.websphere.

express.doc%2Finfo%2Fexp%2Fae%2Frwbs_xjc.html, Last visited on Septem-

ber 24, 2014.

[52] Oracle Corporation and/or its affiliates, “JAXBContext Javadoc.” http://

docs.oracle.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html,

Last visited on September 24, 2014.



126 REFERENCES

[53] Merriam-Webster, Inc., “Graph.” http://www.merriam-webster.com/

dictionary/graph, Last visited on September 24, 2014.

[54] S. Wilson, “annas.” https://sites.google.com/site/annasproject/, Last

visited on September 24, 2014.

[55] Oracle Corporation and/or its affiliates, “The event dispatch thread.” http://

docs.oracle.com/javase/tutorial/uiswing/concurrency/dispatch.html,

Last visited on September 24, 2014.

[56] Oracle Corporation and/or its affiliates, “Worker threads and SwingWorker.”

http://docs.oracle.com/javase/tutorial/uiswing/concurrency/worker.

html, Last visited on September 24, 2014.

[57] Oracle Corporation and/or its affiliates, “SwingUtilities Javadoc.” http://docs.

oracle.com/javase/7/docs/api/javax/swing/SwingUtilities.html, Last

visited on September 24, 2014.

[58] Houghton Mifflin Company, “The american heritage dictionary of the en-

glish language.” http://www.thefreedictionary.com/mock-up, Last visited

on September 24, 2014.

[59] Oracle Corporation and/or its affiliates, “Class GridBagLayout.”

http://download.java.net/jdk7/archive/b123/docs/api/java/awt/

GridBagLayout.html, Last visited on September 24, 2014.



Appendix A

TUIL Action/Reaction Definitions

127



128 A. TUIL Action/Reaction Definitions

Table A.1: Breakdown of Actions

Name Type Description
mouse click mouse A single mouse click

l mouse click mouse A single left button click
r mouse click mouse A single right button click

mouse dbl click mouse A double mouse click
l mouse dbl click mouse A double left button click
r mouse dbl click mouse A double right button click

mouse button down mouse A mouse button press
mouse button up mouse A mouse button release

mouse drag mouse Dragging the mouse cursor across the
screen

ctrl plus mouse click key+mouse Holding the Ctrl key and clicking the
mouse

shift plus mouse click key+mouse Holding the Shift key and clicking the
mouse

return key key The Enter or Return key being pressed
and released

tab key key The Tab key being pressed and released
select item item Select an item within a combo/list

deselect item item Deselects a previously selected item in
a combo/list

toggle check on button Used in conjunction with another ac-
tion that toggle’s the selected state of
the radio/check button. Represents
when it is toggled on or selected, and
is paired with the reactions that should
result when this happens.

toggle check off button Used in conjunction with another ac-
tion that toggle’s the selected state of
the radio/check button. Represents
when it is toggled off or deselected, and
is paired with the reactions that should
result when this happens.

initialize container code Called from the code behind the GUI to
initialize the container when it is first
created and displayed.

. . .



A. TUIL Action/Reaction Definitions 129

Name Type Description
update container code Similar to initialize container, but it

can occur while the container is already
displayed.

text action text Combines the text to be applied along
with the type of text action to perform.
Currently only text change is allowed.

select specific action item Represents an item action that is per-
formed on either a specific item within
a combo/list, or on any item but that
specific one.

Table A.2: Breakdown of Reactions

Name Type Description
enable base Enables a control/container for user in-

teraction.
disable base Disables a control/container to prevent

user interaction.
focus on base Gives a control/container focus. An ex-

ample is that a text control can only
have text entered into it when it has
focus.

hide base Hides a control/container from view.
show base Shows a control/container so that it is

visible to the user.
toggle check button Represents when an action is performed

on a radio button or check-box that
would cause it to be selected/dese-
lected, meaning the selected state is
toggled. When a toggle check reac-
tion is included for one of these con-
trols, it is advised to have both the tog-
gle check on and toggle check off ac-
tions also included, as they go together.
These two actions are explained in the
previous table.

. . .



130 A. TUIL Action/Reaction Definitions

Name Type Description
radio group select button Implies that a button within a but-

ton group was selected, and all other
buttons within that group should be
deselected. These reactions are han-
dled differently, in that their associated
event object id parameter is set to the
value of the button group attribute for
said group.

radio group enable button Enables all buttons within a button
group. Again, the event object id pa-
rameter is set to the button group at-
tribute value for said group.

radio group disable button Disables all buttons within a button
group. The event object id parameter
here is also set to the button group at-
tribute value for said group.

show list combo The reaction when the drop down list
of a combo-box is displayed to the user.

remove selection item Decreases the number of selected items
in a list by one. This is not allowed for
combo-box or slider controls, as these
only allow single selection.

single selection item Selects one item within a list-type con-
trol. This is allowed for all list, combo-
box, and slider controls.

multi selection item Increases the number of selected items
in a list by one. This is only allowed for
list controls that are defined as multi-
ple selection, and that have at least one
more item available for selection.

open container container Displays a container to the user. At the
moment, this means with the default
settings, as defined in the specification,
loaded.

close container container Closes a container and hides it from the
user. A typical example of this would
be when the user clicks on an Ok but-
ton in a dialog.

. . .



A. TUIL Action/Reaction Definitions 131

Name Type Description
container updated container The reaction that occurs when a code

action is performed. Denotes that the
container’s settings have been initial-
ized or updated in some way.

text update text Denotes that the text within a text con-
trol has been modified.



Appendix B

Generate Java Package tuil

The Java application XJC is used to compile the schema files mentioned in section

4.3 into a package of Java stub-classes. It will also validate the syntax of the schema

files to ensure they are correct with respect to standard XML syntax, as well as any

new constructs created as part of the TUIL language. The command line used to

perform the compilation for the TUIL schema files is:

xjc.exe ”TUIL/Specification/TUILContainer.xsd” ”TUIL/TestCase/TU-

ILTestCase.xsd” -d ”TUIL/GeneratedFiles” -p tuil

To breakdown the command:

• The reference paths to the TUILContainer.xsd file and TUILTestCase.xsd file

denote the main elements of the specification and test case sides of the TUIL

language respectively.

• The -d command and path value after it denote where the generated Java files

should be placed.

132



B. Generate Java Package tuil 133

• The -p and its value denote that name of the Java package to generate, which

will contain all the Java files generated.

The following section contains one of the generated files.

B.1 Generated Java Files

Listing B.1: TuilContainer.java
//

// This file was generated by the JavaTM Architecture for XML Binding(JAXB) Reference

Implementation , vJAXB 2.1.10 in JDK 6

// See <a href =" http :// java.sun.com/xml/jaxb">http :// java.sun.com/xml/jaxb </a>

// Any modifications to this file will be lost upon recompilation of the source

schema.

// Generated on: 2014.01.24 at 04:02:16 PM NST

//

package tuil;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlAttribute;

import javax.xml.bind.annotation.XmlRootElement;

import javax.xml.bind.annotation.XmlType;

/**

*

* The main element for the TUIL language , and which represents a container

GUI component , such

* as a window/frame/dialog/etc.

*

*

* <p>Java class for anonymous complex type.

*

* <p>The following schema fragment specifies the expected content contained within

this class.

*

* <pre >

* &lt;complexType >

* &lt;complexContent >

* &lt;extension base ="{} tuil_elem">

* &lt;sequence >

* &lt;element name =" children" type ="{} child_group_type " minOccurs ="0"/ >

* &lt;/ sequence >

* &lt;attGroup ref ="{} container_base_attribGroup "/>

* &lt;attribute name =" use_default_button_placement " type ="{ http :// www.w3.org

/2001/ XMLSchema }boolean" default =" true" />

* &lt;/ extension >

* &lt;/ complexContent >

* &lt;/ complexType >



134 B. Generate Java Package tuil

* </pre >

*

*

*/

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "", propOrder = {

"children"

})

@XmlRootElement(name = "tuil_container")

public class TuilContainer

extends TuilElem

{

protected ChildGroupType children;

@XmlAttribute(name = "use_default_button_placement")

protected Boolean useDefaultButtonPlacement;

@XmlAttribute(required = true)

protected ContainerType type;

@XmlAttribute(name = "is_modal")

protected Boolean isModal;

/**

* Gets the value of the children property.

*

* @return

* possible object is

* {@link ChildGroupType }

*

*/

public ChildGroupType getChildren () {

return children;

}

/**

* Sets the value of the children property.

*

* @param value

* allowed object is

* {@link ChildGroupType }

*

*/

public void setChildren(ChildGroupType value) {

this.children = value;

}

/**

* Gets the value of the useDefaultButtonPlacement property.

*

* @return

* possible object is

* {@link Boolean }

*

*/

public boolean isUseDefaultButtonPlacement () {

if (useDefaultButtonPlacement == null) {

return true;

} else {

return useDefaultButtonPlacement;

}

}



B. Generate Java Package tuil 135

/**

* Sets the value of the useDefaultButtonPlacement property.

*

* @param value

* allowed object is

* {@link Boolean }

*

*/

public void setUseDefaultButtonPlacement(Boolean value) {

this.useDefaultButtonPlacement = value;

}

/**

* Gets the value of the type property.

*

* @return

* possible object is

* {@link ContainerType }

*

*/

public ContainerType getType () {

return type;

}

/**

* Sets the value of the type property.

*

* @param value

* allowed object is

* {@link ContainerType }

*

*/

public void setType(ContainerType value) {

this.type = value;

}

/**

* Gets the value of the isModal property.

*

* @return

* possible object is

* {@link Boolean }

*

*/

public boolean isIsModal () {

if (isModal == null) {

return false;

} else {

return isModal;

}

}

/**

* Sets the value of the isModal property.

*

* @param value

* allowed object is

* {@link Boolean }

*



136 B. Generate Java Package tuil

*/

public void setIsModal(Boolean value) {

this.isModal = value;

}

}

B.2 Unmarshalling a TUIL XML File

Listings B.2 and B.3 are provided as examples of how JAXB can be used to convert

a single TUIL XML file into a TuilContainer Java class instance for processing/-

manipulation. TuilTestCase objects may also be loaded in this manner. They are

examples only, as the TUIDE code declares the variables differently and performs

error checking. However, how TUIDE instantiates these variables is similar.

Listing B.2: Example JAXB Variable Instantiation
JAXBContext tuilContext = JAXBContext.newInstance("tuil");

Unmarshaller unmarshaller = tuilContext.createUnmarshaller ();

Listing B.3: Example JAXB Unmarshal a Single XML File
public TuilContainer UnmarshalFile(String filename)

{

JAXBContext tuilContext = JAXBContext.newInstance("tuil");

Unmarshaller unmarshaller = tuilContext.createUnmarshaller ();

TuilContainer c = (TuilContainer)unmarshaller.unmarshal(new File(filename));

}



Appendix C

Example of State Object Classes

137



138 C. Example of State Object Classes

Listing C.1: BaseState.java

/**

* Represents all the base data state attributes that all other state objects extend

on.

*/

package tuide.test_case.state_objects;

import tuil.TcBase;

/**

* @author Krista A King

* @version 1.0.10

*/

public class BaseState

{

/**

* Makes it possible to tell the difference between state objects , and to know what

to cast the BaseState object to , in order to access

* the correct information .

*/

public enum Types { BASE , BUTTON , COMBO , GROUP_BOX , LABEL , TEXT_BOX , SLIDER ,

LISTBOX , MULTI_SELECT_LISTBOX , MULTI_COLUMN_LISTBOX ,

MULTI_SELECT_MULTI_COLUMN_LISTBOX , CONTAINER };

protected Types m_Type = Types.BASE;

protected boolean m_HasFocus = false;

protected boolean m_Enabled = false;

protected boolean m_Visible = false;

protected String m_Text = new String("");

public BaseState(boolean focused , boolean enabled , boolean visible , String text)

{

m_HasFocus = focused;

m_Enabled = enabled;

m_Visible = visible;

// Leave as empty string if this value is null

if(text != null)

{

m_Text = text;

}

}

/**

* Makes a deep copy of this instance and returns it.

*/

public BaseState Copy()

{

BaseState ret = new BaseState(m_HasFocus , m_Enabled , m_Visible , m_Text);

return ret;

}

// @return The Types value representing what kind of control this state object is

associated with.

public Types GetType () { return m_Type; }

// @return A boolean denoting whether the associated control/ container has focus or

not.

public boolean HasFocus () { return m_HasFocus; }



C. Example of State Object Classes 139

/**

* Sets whether the associated control/ container has focus or not.

* @param focused A boolean denoting focused (true) or unfocused (false).

*/

public void SetFocus(boolean focused) { m_HasFocus = focused; }

// @return A boolean denoting whether the associated control/ container is enabled/

disabled.

public boolean IsEnabled () { return m_Enabled; }

/**

* Sets whether the associated control/ container is enabled or not.

* @param enable A boolean denoting enabled (true) or disabled (false).

*/

public void SetEnabled(boolean enable) { m_Enabled = enable; }

// @return A boolean denoting whether the associated control/ container is visible/

hidden.

public boolean IsVisible () { return m_Visible; }

/**

* Sets whether the associated control/ container is visible or not.

* @param visible A boolean denoting visible (true) or hidden (false).

*/

public void SetVisible(boolean visible) { m_Visible = visible; }

// @return The String representing the text part of the associated control/

container .

public String GetText () { return m_Text; }

/**

* Sets the text component of this control

* @param text The String representing the new text component .

*/

public void SetText(String text) { m_Text = text; }

/**

* Determines the equality between this BaseState and the o parameter .

* @param o An Object to compare against.

* @return A boolean denoting equality , true mean equal , false means not equal.

*/

public boolean equals(Object o)

{

if(o == null || o.getClass () != BaseState.class)

{

return false;

}

return IsEquals (( BaseState)o);

}

/**

* Generates the hash code for this BaseState .

*/

public int hashCode ()

{

return GetHashCode ();

}

/**

* Determines equality between the parameter b and this BaseState .



140 C. Example of State Object Classes

* @param b A BaseState object to compare against.

* @return A boolean denoting equality. True means equal , false means not equal.

*/

public boolean IsEquals(BaseState b)

{

if(m_Type == b.GetType ())

{

if(m_HasFocus == b.HasFocus ())

{

if(m_Enabled == b.IsEnabled ())

{

if(m_Visible == b.IsVisible ())

{

if(m_Text.compareTo(b.GetText ()) == 0)

{

return true;

}

}

}

}

}

return false;

}

/**

* Generates the hash code for this BaseState . Used by the extension classes so

* that they can determine the base hash code.

* @return An int value which represents the hash code for this instance.

*/

public int GetHashCode ()

{

int ret = 31;

ret += m_Type.hashCode ();

ret += (m_HasFocus) ? 1 : 0;

ret += (m_Enabled) ? 1 : 0;

ret += (m_Visible) ? 1 : 0;

ret += m_Text.hashCode ();

return ret;

}

/**

* @return A TcBase instance which represents the current

* state of this object.

*/

public TcBase ToTcObject ()

{

TcBase ret = new TcBase ();

FillTcBase(ret);

return ret;

}

/**

* Fills the passed in TcBase instance with this object ’s

* current settings.

* @param base The TcBase instance to set values on.

*/

public void FillTcBase(TcBase base)

{

if(base == null)

{



C. Example of State Object Classes 141

return;

}

base.setHasFocus(m_HasFocus);

base.setIsEnabled(m_Enabled);

base.setIsVisible(m_Visible);

base.setText(GetText ());

}

}



Appendix D

How to Load a TUIL Specification

into TUIDE

142



D. How to Load a TUIL Specification into TUIDE 143

To load a TUIL specification into TUIDE, the first step is to open the TUIL menu

as shown in Figure D.1.

Figure D.1: The TUIL Menu

By selecting the Parse Specification Files menu item, the user is prompted with a

directory open dialog. This allows the user to select a directory, within which it will

search for .xml files. All sub-directories will also be searched. Once it has found a

set of XML files to parse, it will use JAXB to load the files into corresponding sets

of TuilContainer instances.

When the parsing has completed, TUIDE will display a summary to the user

denoting the validation state of all files. Figure D.2 shows the result when an example

specification has been loaded into TUIDE, however, one of the specification files

contained an error, and thus failed validation.



144 D. How to Load a TUIL Specification into TUIDE

Figure D.2: The TUIL Result Dialog



Appendix E

How to Generate Test Cases From

TUIDE

145



146 E. How to Generate Test Cases From TUIDE

In order to generate test cases from TUIDE, a TUIL specification must have been

loaded into the program (see Appendix D), and a graph must have been generated

(see section 5.3).

The Test Case Generation menu, as seen in Figure E.1, contains two items of

interest:

1. Generate Graph

2. Generate Test Cases

Figure E.1: The Test Case Generation Menu

E.1 Generate Graph Menu Item

To begin this process, the Generate Graph menu item must be selected from the Test

Case Generation menu.

The first thing that is checked is that there is a proper TUIL specification loaded

into the system, otherwise TUIDE will prevent graph generation from occurring. As

well, if an error condition or exception occurs during the generation process, execution

of the process will end.

Regardless of whether the process ends with an error or success, the user is pro-

vided with a message denoting the outcome.

Please see section 5.3 for more details into the algorithm used to handle generating

the graph.



E. How to Generate Test Cases From TUIDE 147

E.2 Generating Test Cases Menu Item

The process begins with selecting the Generate Test Cases menu item. A dialog is

then displayed which allows one or more of the containers within the specified GUI to

be selected for test case generation (Please see Figure E.2). There is also a check-box

which, if checked, will select all of the containers. The selected containers are then

saved into a set and passed on for further processing.

Figure E.2: Test Case Generation Container Selection

If the graph could not be generated successfully, TUIDE will prevent the test

case generation from continuing. If it was, then a worker thread is started, which is

responsible for generating the test cases and displaying a message box of the outcome.

If the outcome is successful, then the directory into which the test cases were

saved is provided to the user.



148 E. How to Generate Test Cases From TUIDE

Please see section 5.4 for the complete explanation of the test case generation

process.



Appendix F

How to Generate a Mock-up in

TUIDE

149



150 F. How to Generate a Mock-up in TUIDE

To generate a mock-up within TUIDE, the designer must use the Mock-up menu

as shown in Figure F.1. There is only one option available here, which is Generate

Mock-ups.

Figure F.1: The TUIDE Mock-up Menu

A TUIL specification must already have been loaded into the application, using

the process outlined in Appendix D. If a TUIL specification has not been loaded into

the system, an error message is displayed as seen in Figure F.2.

Figure F.2: The No TUIL Specification Error

When the Generate Mock-ups menu item is selected, a dialog, as shown in Figure

F.3, is displayed. It will have the list of containers within a table, where both the

parent id and id attributes are shown.

If the designer closes the dialog without selecting a container, an error message is

displayed, as seen in Figure F.4.



F. How to Generate a Mock-up in TUIDE 151

Figure F.3: Select a Container To Mock-up Dialog

Figure F.4: No Container Selected Error



Appendix G

How to Run an Oracle from

TUIDE

152



G. How to Run an Oracle from TUIDE 153

G.1 How to Load a Set of TUIL Test Cases

The following describes the steps required to load a set of TUIL test cases into the

TUIDE program for use with different sections of it.

First, select the option Parse Test Case Files from the TUIL menu as shown in

Figure G.1.

Figure G.1: The TUIL Menu

This will display a directory find dialog. Navigate to the directory containing

the test cases to parse, and select ok/open. This will start the process of iterating

through the directory and sub-directories to find all XML files. Then each of these

XML files is parsed against the TUIL test case schema files to ensure they are valid.

If no test cases could be found, then an error message is displayed as seen in Figure

G.2.

Figure G.2: The No Test Cases Parsed Error Message

If test cases could be found, then the validation summary is displayed in another

dialog. Figure G.3 shows how the dialog will look when all files were successfully

validated. If some files failed, then a second list is shown containing information for

those files.



154 G. How to Run an Oracle from TUIDE

Figure G.3: The Test Case Parsing Summary Dialog

Once this dialog is closed, the system is now setup with a parsed set of test cases

to work with.



G. How to Run an Oracle from TUIDE 155

G.2 How to Load a Runnable JAR File

This section will describe how to load a Runnable JAR file into TUIDE so that

corresponding test cases can be run against it using Oracles.

The first thing to do is to go to the Oracles menu and choose the Select Runnable

JAR File option, as seen in Figure G.4.

Figure G.4: The Oracle Menu

This will display a file selection dialog. Navigate to where the JAR file is located,

select it in the file list and press Open. The TUIDE application will give no output

to tell the user if the operation was successful or not. All it simply does is save the

filename for future use.



156 G. How to Run an Oracle from TUIDE

G.3 How to Run an Oracle

This section will describe how to state the Oracles running from TUIDE.

The first thing to do is to go to the Oracles menu and choose the Run Oracles

option, as seen in Figure G.4. The user must have first loaded a set of test cases into

the system already, as describe in section G.1, and selected a runnable JAR file, as

described in section G.2. If one or both of these were not completed previously, then

the application will display a warning, as seen in Figure G.5, and the Oracles will not

be performed.

Figure G.5: The Oracle Warning Message If Missing Information

Otherwise, the system will start running the Oracles. Once the Oracles have

completed, TUIDE will display a message to the user denoting the folder containing

the results of the Oracles.



Appendix H

Guidelines for Application Under

Test GUI Design

The following are guidelines on how the AUT’s GUI should be implemented for our

oracle application process to be successful. If these are not followed, then this process

may fail. Some of the guidelines make use of classes and/or interfaces from the

TUI Utils library, that was designed as part of this research.

• The GUI should be written using Java Swing objects.

• The id attribute within each TUIL container and control specification object

should be assigned to the associated Swing object using the setName property.

• Any Window type object, which is part of the specification, needs to implement

the IAUTEventListener, and register itself with the AUTHandler class. This

is to be able to receive certain event calls from the AUT oracle code. As well,

the Window objects should also call addWindowListener and pass an instance

of the WindowClosingAdapter class provided.

157



158 H. Guidelines for Application Under Test GUI Design

• As the initialize container action only handles the default state of a container

for now, the Java implementation code for the CodeEvent methods should also

only load the default settings. This is to ensure consistency for now.

• The specification of all controls contains a text element. For some controls,

this can be directly associated to one of the control’s properties. An example

of this is a container object, whose text is associated with the title or caption

for the actual Swing container. Others do not have a property that is directly

associated. An example of this would be the combo box. It is a list type

control, and thus, the text value represents the type of information the combo

box contains. This should be added to a JLabel. Similar controls to the combo

box are:

– Lists

– Sliders

• Since ButtonGroup objects and TitledBorders are not extended from Compo-

nent or JComponent, TUI Utils provides extension classes for these which have

name property available through the getName and setName functions. It is

encouraged that these are used in the implementation of the AUT instead.



Appendix I

Food Orderer: Subset of

Generated Test Cases

159



160 I. Food Orderer: Subset of Generated Test Cases

Listing I.1: Main Dialog Test Case 1

<?xml version="1.0" encoding="UTF -8" standalone="yes"?>

<tuil_test_case >

<path >

<edge >

<start root_node="true">

<entry >

<id>+ID_FOOD_ORDERER_DLG </id>

<container is_modal="false" type="dialog">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer </text >

<entry >

<id>ID_ALLERGY_ENTRY_LABEL </id>

<tc_label >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter any allergy information: </text >

</tc_label >

</entry >

<entry >

<id>ID_ALLERGY_TEXTBOX </id>

<tc_textbox >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text ></text >

<is_readOnly >false</is_readOnly >

<is_multiline >false</is_multiline >

</tc_textbox >

</entry >

<entry >

<id>ID_APPETIZER_BUTTON </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Appetizer </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_DESSERT_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Dessert </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_ENTREE_BUTTON </id>

<tc_button >



I. Food Orderer: Subset of Generated Test Cases 161

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Entree </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_PLACE_ORDER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Place Order </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

</container >

</entry >

</start >

<end>

<entry >

<id>+ID_FOOD_ORDERER_DLG </id>

<container is_modal="false" type="dialog">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer </text >

<entry >

<id>ID_ALLERGY_ENTRY_LABEL </id>

<tc_label >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter any allergy information: </text >

</tc_label >

</entry >

<entry >

<id>ID_ALLERGY_TEXTBOX </id>

<tc_textbox >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >06c1f6d6 -7af5 -4205 -b623 -4 bd6d2289b11 </text >

<is_readOnly >false</is_readOnly >

<is_multiline >false</is_multiline >

</tc_textbox >

</entry >

<entry >

<id>ID_APPETIZER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Appetizer </text >

<is_checked >false</is_checked >



162 I. Food Orderer: Subset of Generated Test Cases

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_DESSERT_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Dessert </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_ENTREE_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Entree </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_PLACE_ORDER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Place Order </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

</container >

</entry >

</end>

<action_pair >

<action >

<text_action >

<type >text_change </type >

<text >06c1f6d6 -7af5 -4205-b623 -4 bd6d2289b11 </text >

</text_action >

</action >

<event_object parent_id="ID_FOOD_ORDERER_DLG" id="ID_ALLERGY_TEXTBOX" />

</action_pair >

</edge >

<edge >

<start >

<entry >

<id>+ID_FOOD_ORDERER_DLG </id>

<container is_modal="false" type="dialog">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >



I. Food Orderer: Subset of Generated Test Cases 163

<is_visible >true</is_visible >

<text >Food Orderer </text >

<entry >

<id>ID_ALLERGY_ENTRY_LABEL </id>

<tc_label >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter any allergy information: </text >

</tc_label >

</entry >

<entry >

<id>ID_ALLERGY_TEXTBOX </id>

<tc_textbox >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >06c1f6d6 -7af5 -4205 -b623 -4 bd6d2289b11 </text >

<is_readOnly >false</is_readOnly >

<is_multiline >false</is_multiline >

</tc_textbox >

</entry >

<entry >

<id>ID_APPETIZER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Appetizer </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_DESSERT_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Dessert </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_ENTREE_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Entree </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_PLACE_ORDER_BUTTON </id>



164 I. Food Orderer: Subset of Generated Test Cases

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Place Order </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

</container >

</entry >

</start >

<end />

<action_pair >

<action >

<mouse>mouse_click </mouse>

</action >

<event_object parent_id="ID_FOOD_ORDERER_DLG" id="ID_PLACE_ORDER_BUTTON" />

</action_pair >

</edge >

</path >

</ tuil_test_case >



I. Food Orderer: Subset of Generated Test Cases 165

Listing I.2: Main Dialog Test Case 9

<?xml version="1.0" encoding="UTF -8" standalone="yes"?>

<tuil_test_case >

<path >

<edge >

<start root_node="true">

<entry >

<id>+ID_FOOD_ORDERER_DLG </id>

<container is_modal="false" type="dialog">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer </text >

<entry >

<id>ID_ALLERGY_ENTRY_LABEL </id>

<tc_label >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter any allergy information: </text >

</tc_label >

</entry >

<entry >

<id>ID_ALLERGY_TEXTBOX </id>

<tc_textbox >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text ></text >

<is_readOnly >false</is_readOnly >

<is_multiline >false</is_multiline >

</tc_textbox >

</entry >

<entry >

<id>ID_APPETIZER_BUTTON </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Appetizer </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_DESSERT_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Dessert </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_ENTREE_BUTTON </id>

<tc_button >



166 I. Food Orderer: Subset of Generated Test Cases

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Entree </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_PLACE_ORDER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Place Order </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

</container >

</entry >

</start >

<end />

<action_pair >

<action >

<mouse>mouse_click </mouse>

</action >

<event_object parent_id="ID_FOOD_ORDERER_DLG" id="ID_PLACE_ORDER_BUTTON" />

</action_pair >

</edge >

</path >

</ tuil_test_case >



I. Food Orderer: Subset of Generated Test Cases 167

Listing I.3: Dessert Dialog Test Case 1

<?xml version="1.0" encoding="UTF -8" standalone="yes"?>

<tuil_test_case >

<path >

<edge >

<start root_node="true">

<entry >

<id>+ID_FOOD_ORDERER_DLG </id>

<container is_modal="false" type="dialog">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer </text >

<entry >

<id>ID_ALLERGY_ENTRY_LABEL </id>

<tc_label >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter any allergy information: </text >

</tc_label >

</entry >

<entry >

<id>ID_ALLERGY_TEXTBOX </id>

<tc_textbox >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text ></text >

<is_readOnly >false</is_readOnly >

<is_multiline >false</is_multiline >

</tc_textbox >

</entry >

<entry >

<id>ID_APPETIZER_BUTTON </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Appetizer </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_DESSERT_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Dessert </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_ENTREE_BUTTON </id>

<tc_button >



168 I. Food Orderer: Subset of Generated Test Cases

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Entree </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_PLACE_ORDER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Place Order </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

</container >

</entry >

</start >

<end>

<entry >

<id>+ID_FOOD_ORDERER_DLG </id>

<container is_modal="false" type="dialog">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer </text >

<entry >

<id>ID_ALLERGY_ENTRY_LABEL </id>

<tc_label >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter any allergy information: </text >

</tc_label >

</entry >

<entry >

<id>ID_ALLERGY_TEXTBOX </id>

<tc_textbox >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text ></text >

<is_readOnly >false</is_readOnly >

<is_multiline >false</is_multiline >

</tc_textbox >

</entry >

<entry >

<id>ID_APPETIZER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Appetizer </text >

<is_checked >false</is_checked >



I. Food Orderer: Subset of Generated Test Cases 169

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_DESSERT_BUTTON </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Dessert </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_ENTREE_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Entree </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_PLACE_ORDER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Place Order </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

</container >

</entry >

<entry >

<id>ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG </id>

<container is_modal="true" type="dialog">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer - Desserts </text >

<entry >

<id>ID_APPLE_PIE </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Apple Pie</text >

<is_checked >false</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >



170 I. Food Orderer: Subset of Generated Test Cases

</entry >

<entry >

<id>ID_CHEESECAKE </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Chocolate Cheesecake </text >

<is_checked >false</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_OK</id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Done</text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_SUNDAE </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Ice Cream Sundae </text >

<is_checked >true</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_SUNDAE_SAUCE </id>

<tc_combo >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Sauce: </text >

<select_state >no_selection </select_state >

<items>

<item>Chocolate Fudge</item>

<item>Strawberry </item>

<item>Pineapple </item>

<item>Caramel </item>

<item>Butterscotch </item>

</items >

<item_change_state >no_change </item_change_state >

<selected_item >-1</selected_item >

<list_shown >false </list_shown >

</tc_combo >

</entry >

</container >

</entry >

</end>



I. Food Orderer: Subset of Generated Test Cases 171

<action_pair >

<action >

<mouse>mouse_click </mouse>

</action >

<event_object parent_id="ID_FOOD_ORDERER_DLG" id="ID_DESSERT_BUTTON" />

</action_pair >

</edge >

<edge >

<start >

<entry >

<id>+ID_FOOD_ORDERER_DLG </id>

<container is_modal="false" type="dialog">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer </text >

<entry >

<id>ID_ALLERGY_ENTRY_LABEL </id>

<tc_label >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter any allergy information: </text >

</tc_label >

</entry >

<entry >

<id>ID_ALLERGY_TEXTBOX </id>

<tc_textbox >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text ></text >

<is_readOnly >false</is_readOnly >

<is_multiline >false</is_multiline >

</tc_textbox >

</entry >

<entry >

<id>ID_APPETIZER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Appetizer </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_DESSERT_BUTTON </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Dessert </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >



172 I. Food Orderer: Subset of Generated Test Cases

<entry >

<id>ID_ENTREE_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Entree </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_PLACE_ORDER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Place Order </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

</container >

</entry >

<entry >

<id>ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG </id>

<container is_modal="true" type="dialog">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer - Desserts </text >

<entry >

<id>ID_APPLE_PIE </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Apple Pie</text >

<is_checked >false</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_CHEESECAKE </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Chocolate Cheesecake </text >

<is_checked >false</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_OK</id>

<tc_button >



I. Food Orderer: Subset of Generated Test Cases 173

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Done</text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_SUNDAE </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Ice Cream Sundae </text >

<is_checked >true</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_SUNDAE_SAUCE </id>

<tc_combo >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Sauce: </text >

<select_state >no_selection </select_state >

<items>

<item>Chocolate Fudge</item>

<item>Strawberry </item>

<item>Pineapple </item>

<item>Caramel </item>

<item>Butterscotch </item>

</items >

<item_change_state >no_change </item_change_state >

<selected_item >-1</selected_item >

<list_shown >false </list_shown >

</tc_combo >

</entry >

</container >

</entry >

</start >

<end>

<entry >

<id>+ID_FOOD_ORDERER_DLG </id>

<container is_modal="false" type="dialog">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer </text >

<entry >

<id>ID_ALLERGY_ENTRY_LABEL </id>

<tc_label >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter any allergy information: </text >

</tc_label >



174 I. Food Orderer: Subset of Generated Test Cases

</entry >

<entry >

<id>ID_ALLERGY_TEXTBOX </id>

<tc_textbox >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text ></text >

<is_readOnly >false</is_readOnly >

<is_multiline >false</is_multiline >

</tc_textbox >

</entry >

<entry >

<id>ID_APPETIZER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Appetizer </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_DESSERT_BUTTON </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Dessert </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_ENTREE_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Entree </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_PLACE_ORDER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Place Order </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >



I. Food Orderer: Subset of Generated Test Cases 175

</container >

</entry >

<entry >

<id>ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG </id>

<container is_modal="true" type="dialog">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer - Desserts </text >

<entry >

<id>ID_APPLE_PIE </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Apple Pie</text >

<is_checked >false</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_CHEESECAKE </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Chocolate Cheesecake </text >

<is_checked >true</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_OK</id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Done</text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_SUNDAE </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Ice Cream Sundae </text >

<is_checked >false</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_SUNDAE_SAUCE </id>

<tc_combo >



176 I. Food Orderer: Subset of Generated Test Cases

<has_focus >false</has_focus >

<is_enabled >false</is_enabled >

<is_visible >true</is_visible >

<text >Sauce: </text >

<select_state >no_selection </select_state >

<items>

<item>Chocolate Fudge </item>

<item>Strawberry </item>

<item>Pineapple </item>

<item>Caramel </item>

<item>Butterscotch </item>

</items >

<item_change_state >no_change </item_change_state >

<selected_item >-1</selected_item >

<list_shown >false </list_shown >

</tc_combo >

</entry >

</container >

</entry >

</end>

<action_pair >

<action >

<mouse>mouse_click </mouse>

</action >

<event_object parent_id="ID_DESSERT_DLG" id="ID_CHEESECAKE" />

</action_pair >

</edge >

<edge >

<start >

<entry >

<id>+ID_FOOD_ORDERER_DLG </id>

<container is_modal="false" type="dialog">

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer </text >

<entry >

<id>ID_ALLERGY_ENTRY_LABEL </id>

<tc_label >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter any allergy information: </text >

</tc_label >

</entry >

<entry >

<id>ID_ALLERGY_TEXTBOX </id>

<tc_textbox >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text ></text >

<is_readOnly >false</is_readOnly >

<is_multiline >false</is_multiline >

</tc_textbox >

</entry >

<entry >

<id>ID_APPETIZER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >



I. Food Orderer: Subset of Generated Test Cases 177

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Appetizer </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_DESSERT_BUTTON </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Dessert </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_ENTREE_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Entree </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_PLACE_ORDER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Place Order </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

</container >

</entry >

<entry >

<id>ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG </id>

<container is_modal="true" type="dialog">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer - Desserts </text >

<entry >

<id>ID_APPLE_PIE </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Apple Pie</text >



178 I. Food Orderer: Subset of Generated Test Cases

<is_checked >false</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_CHEESECAKE </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Chocolate Cheesecake </text >

<is_checked >true</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_OK</id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Done</text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_SUNDAE </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Ice Cream Sundae </text >

<is_checked >false</is_checked >

<type >radio</type >

<button_group >ID_DESSERT_CHOICE_GROUP </button_group >

</tc_button >

</entry >

<entry >

<id>ID_SUNDAE_SAUCE </id>

<tc_combo >

<has_focus >false</has_focus >

<is_enabled >false</is_enabled >

<is_visible >true</is_visible >

<text >Sauce: </text >

<select_state >no_selection </select_state >

<items>

<item>Chocolate Fudge</item>

<item>Strawberry </item>

<item>Pineapple </item>

<item>Caramel </item>

<item>Butterscotch </item>

</items >

<item_change_state >no_change </item_change_state >

<selected_item >-1</selected_item >

<list_shown >false </list_shown >

</tc_combo >



I. Food Orderer: Subset of Generated Test Cases 179

</entry >

</container >

</entry >

</start >

<end>

<entry >

<id>+ID_FOOD_ORDERER_DLG </id>

<container is_modal="false" type="dialog">

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Food Orderer </text >

<entry >

<id>ID_ALLERGY_ENTRY_LABEL </id>

<tc_label >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Enter any allergy information: </text >

</tc_label >

</entry >

<entry >

<id>ID_ALLERGY_TEXTBOX </id>

<tc_textbox >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text ></text >

<is_readOnly >false</is_readOnly >

<is_multiline >false</is_multiline >

</tc_textbox >

</entry >

<entry >

<id>ID_APPETIZER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Appetizer </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_DESSERT_BUTTON </id>

<tc_button >

<has_focus >true</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Dessert </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_ENTREE_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >



180 I. Food Orderer: Subset of Generated Test Cases

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Entree </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

<entry >

<id>ID_PLACE_ORDER_BUTTON </id>

<tc_button >

<has_focus >false</has_focus >

<is_enabled >true</is_enabled >

<is_visible >true</is_visible >

<text >Place Order </text >

<is_checked >false</is_checked >

<type >push</type >

<button_group ></button_group >

</tc_button >

</entry >

</container >

</entry >

</end>

<action_pair >

<action >

<mouse>mouse_click </mouse>

</action >

<event_object parent_id="ID_DESSERT_DLG" id="ID_OK" />

</action_pair >

</edge >

</path >

</ tuil_test_case >



Appendix J

Food Orderer: Event Coverage

181



182 J. Food Orderer: Event Coverage

The term event coverage, with respect to this research, and the Food Orderer

application, means how often each event occurred within the entire set of test cases

generated. The usage counts provided were tabulated manually.

The Event column shows only the action type, as in this scenario each ac-

tion is unique within the set of events for each control. For example, the control

ID PEROGIES CHECK has two events listed, one initiated by a mouse click action,

and one initiated by a return key action.

Table J.1: Appetizer Dialog Events

Control/Container Event Usage Count
ID PEROGIES CHECK mouse click 12
ID PEROGIES CHECK return key 7

ID PEROGIE SAUCE COMBO mouse click 1
ID PEROGIE SAUCE COMBO select item 1

ID NACHOS CHECK mouse click 8
ID NACHOS CHECK return key 9

ID NACHOS EXTRA CHEESE CHECK mouse click 3
ID NACHOS EXTRA CHEESE CHECK return key 3
ID NACHOS ADD CHICKEN CHECK mouse click 3
ID NACHOS ADD CHICKEN CHECK return key 3

ID SQUASH SOUP CHECK mouse click 14
ID SQUASH SOUP CHECK return key 10

ID SOUP CRACKERS CHECK mouse click 4
ID SOUP CRACKERS CHECK return key 3

ID OK mouse click 13
ID OK return key 10

ID APPETIZER DLG initialize container 0



J. Food Orderer: Event Coverage 183

Table J.2: Entrée Dialog Events

Control/Container Event Usage Count
ID CHICKEN mouse click 0
ID CHICKEN return key 5

ID CHICKEN MEAT WHITE mouse click 0
ID CHICKEN MEAT WHITE return key 1
ID CHICKEN MEAT DARK mouse click 4
ID CHICKEN MEAT DARK return key 8

ID NEWYORK STEAK mouse click 2
ID NEWYORK STEAK return key 5

ID STEAK COOK OPTION mouse click 0
ID VEGGIE STIRFRY mouse click 8
ID VEGGIE STIRFRY return key 15
ID STIRFRY SAUCE select item 15
ID STIRFRY SAUCE deselect item 12
ID SIDEDISH ONE mouse click 25
ID SIDEDISH ONE select item

on Garden
Salad Only

19

ID SIDEDISH ONE select item
on all but

Garden Salad

4

ID SIDEDISH ONE DRESSING mouse click 15
ID SIDEDISH ONE DRESSING select item 15

ID SIDEDISH TWO mouse click 26
ID SIDEDISH TWO select item 22

ID OK mouse click 31
ID OK return key 8

ID ENTREE DLG initialize container 0

Table J.3: Dessert Dialog Events

Control/Container Event Usage Count
ID SUNDAE mouse click 0
ID SUNDAE return key 1

. . .



184 J. Food Orderer: Event Coverage

Control/Container Event Usage Count
ID SUNDAE SAUCE mouse click 3
ID SUNDAE SAUCE select item 2

ID APPLE PIE mouse click 1
ID APPLE PIE return key 1

ID CHEESECAKE mouse click 1
ID CHEESECAKE return key 0

ID OK mouse click 3
ID OK return key 3

ID DESSERT DLG initialize container 0



Appendix K

Food Orderer: Generated Oracle

Results

185



186 K. Food Orderer: Generated Oracle Results

K.1 Main Dialog Oracle Results

Listing K.1: Main Dialog Oracle Result 1
Action: Start -up

Initial State:

Pass: States identical

Action: text_change with text to apply equal to "06c1f6d6 -7af5 -4205-b623 -4 bd6d2289b11

" on ID_ALLERGY_TEXTBOX within container ID_FOOD_ORDERER_DLG

State 1:

Pass: States identical

Action: mouse_click on ID_PLACE_ORDER_BUTTON within container ID_FOOD_ORDERER_DLG

State 2:

Pass: States identical



K. Food Orderer: Generated Oracle Results 187

K.2 Appetizer Dialog Oracle Results

Listing K.2: Appetizer Dialog Oracle Result 12
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_APPETIZER_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Pass: States identical

Action: return_key pressed on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 2:

Pass: States identical

Action: mouse_click on ID_SOUP_CRACKERS_CHECK within container ID_APPETIZER_DLG

State 3:

Pass: States identical

Action: mouse_click on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 4:

Pass: States identical

Action: return_key pressed on ID_NACHOS_CHECK within container ID_APPETIZER_DLG

State 5:

Pass: States identical

Action: mouse_click on ID_NACHOS_CHECK within container ID_APPETIZER_DLG

State 6:

Pass: States identical

Action: return_key pressed on ID_PEROGIES_CHECK within container ID_APPETIZER_DLG

State 7:

Pass: States identical

Action: mouse_click on ID_PEROGIES_CHECK within container ID_APPETIZER_DLG

State 8:

Pass: States identical

Action: return_key pressed on ID_OK within container ID_APPETIZER_DLG

State 9:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers

Listing K.3: Appetizer Dialog Oracle Result 14
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_APPETIZER_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Pass: States identical

Action: return_key pressed on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 2:

Pass: States identical



188 K. Food Orderer: Generated Oracle Results

Action: return_key pressed on ID_NACHOS_CHECK within container ID_APPETIZER_DLG

State 3:

Pass: States identical

Action: return_key pressed on ID_PEROGIES_CHECK within container ID_APPETIZER_DLG

State 4:

Pass: States identical

Action: mouse_click on ID_PEROGIES_CHECK within container ID_APPETIZER_DLG

State 5:

Pass: States identical

Action: return_key pressed on ID_OK within container ID_APPETIZER_DLG

State 6:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers

Listing K.4: Appetizer Dialog Oracle Result 17
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_APPETIZER_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Pass: States identical

Action: mouse_click on ID_NACHOS_CHECK within container ID_APPETIZER_DLG

State 2:

Pass: States identical

Action: return_key pressed on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 3:

Pass: States identical

Action: return_key pressed on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 4:

Pass: States identical

Action: mouse_click on ID_OK within container ID_APPETIZER_DLG

State 5:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers



K. Food Orderer: Generated Oracle Results 189

K.3 Entrée Dialog Oracle Results

Listing K.5: Entrée Dialog Oracle Result 37
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_ENTREE_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Pass: States identical

Action: mouse_click on ID_SIDEDISH_ONE within container ID_ENTREE_DLG

State 2:

Pass: States identical

Action: select_item with text equal to "Garden Salad" on ID_SIDEDISH_ONE within

container ID_ENTREE_DLG

State 3:

Pass: States identical

Action: return_key pressed on ID_VEGGIE_STIRFRY within container ID_ENTREE_DLG

State 4:

Pass: States identical

Action: return_key pressed on ID_NEWYORK_STEAK within container ID_ENTREE_DLG

State 5:

Pass: States identical

Action: return_key pressed on ID_CHICKEN within container ID_ENTREE_DLG

State 6:

Pass: States identical

Action: return_key pressed on ID_OK within container ID_ENTREE_DLG

State 7:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers



190 K. Food Orderer: Generated Oracle Results

K.4 Dessert Dialog Oracle Results

Listing K.6: Dessert Dialog Oracle Result 5
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_DESSERT_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Pass: States identical

Action: mouse_click on ID_SUNDAE_SAUCE within container ID_DESSERT_DLG

State 2:

Pass: States identical

Action: select_item on ID_SUNDAE_SAUCE within container ID_DESSERT_DLG

State 3:

Pass: States identical

Action: return_key pressed on ID_SUNDAE within container ID_DESSERT_DLG

State 4:

Pass: States identical

Action: return_key pressed on ID_OK within container ID_DESSERT_DLG

State 5:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers



Appendix L

Food Orderer: Generated Oracle

Results with Faults

191



192 L. Food Orderer: Generated Oracle Results with Faults

L.1 Main Dialog Oracle Results

Listing L.1: Result 1 with Label Fault
Action: Start -up

Initial State:

Failure: Comparison between +ID_FOOD_ORDERER_DLG expected and generated Containers

yielded the following error: Comparison between ID_ALLERGY_ENTRY_LABEL expected

and generated Controls yielded the following error: Text value not same ,

expected (Enter any allergy information:) vs generated (Enter any allergy

information: )

Action: text_change with text to apply equal to "06c1f6d6 -7af5 -4205-b623 -4 bd6d2289b11

" on ID_ALLERGY_TEXTBOX within container ID_FOOD_ORDERER_DLG

State 1:

Failure: Comparison between +ID_FOOD_ORDERER_DLG expected and generated Containers

yielded the following error: Comparison between ID_ALLERGY_ENTRY_LABEL expected

and generated Controls yielded the following error: Text value not same ,

expected (Enter any allergy information:) vs generated (Enter any allergy

information: )

Action: mouse_click on ID_PLACE_ORDER_BUTTON within container ID_FOOD_ORDERER_DLG

State 2:

Pass: States identical

1

Listing L.2: Result 1 with Textbox Fault
Action: Start -up

Initial State:

Failure: Comparison between +ID_FOOD_ORDERER_DLG expected and generated Containers

yielded the following error: Comparison between ID_ALLERGY_TEXTBOX expected and

generated Controls yielded the following error: Enabled state not same ,

expected (true) vs generated (false)

Action: text_change with text to apply equal to "06c1f6d6 -7af5 -4205-b623 -4 bd6d2289b11

" on ID_ALLERGY_TEXTBOX within container ID_FOOD_ORDERER_DLG

State 1:

Failure: Comparison between +ID_FOOD_ORDERER_DLG expected and generated Containers

yielded the following error: Comparison between ID_ALLERGY_TEXTBOX expected and

generated Controls yielded the following error: Text value not same , expected

(06 c1f6d6 -7af5 -4205-b623 -4 bd6d2289b11) vs generated ()

Action: mouse_click on ID_PLACE_ORDER_BUTTON within container ID_FOOD_ORDERER_DLG

State 2:

Pass: States identical

Listing L.3: Result 5 with the Dessert Button Fault
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_DESSERT_BUTTON within container ID_FOOD_ORDERER_DLG

1The expected and generated label contents in the first Listing differ by only a space. This space
is located at the end of the generated version.



L. Food Orderer: Generated Oracle Results with Faults 193

State 1:

Failure: Generated TcNode did not contain all of the Containers expected

Action: mouse_click on ID_SUNDAE_SAUCE within container ID_DESSERT_DLG

State 2:

Failure: Generated TcNode did not contain all of the Containers expected

Action: select_item on ID_SUNDAE_SAUCE within container ID_DESSERT_DLG

State 3:

Failure: Generated TcNode did not contain all of the Containers expected

Action: return_key pressed on ID_SUNDAE within container ID_DESSERT_DLG

State 4:

Failure: Generated TcNode did not contain all of the Containers expected

Action: return_key pressed on ID_OK within container ID_DESSERT_DLG

State 5:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers



194 L. Food Orderer: Generated Oracle Results with Faults

L.2 Appetizer Dialog Oracle Results

Listing L.4: Result 12 with Soup Crackers Fault
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_APPETIZER_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Pass: States identical

Action: return_key pressed on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 2:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: Enabled state not same , expected (true) vs generated (false)

Action: mouse_click on ID_SOUP_CRACKERS_CHECK within container ID_APPETIZER_DLG

State 3:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: Focused state not same , expected (true) vs generated (false)

Action: mouse_click on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 4:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: IsChecked state not same , expected (true) vs generated (false)

Action: return_key pressed on ID_NACHOS_CHECK within container ID_APPETIZER_DLG

State 5:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: IsChecked state not same , expected (true) vs generated (false)

Action: mouse_click on ID_NACHOS_CHECK within container ID_APPETIZER_DLG

State 6:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: IsChecked state not same , expected (true) vs generated (false)

Action: return_key pressed on ID_PEROGIES_CHECK within container ID_APPETIZER_DLG

State 7:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: IsChecked state not same , expected (true) vs generated (false)

Action: mouse_click on ID_PEROGIES_CHECK within container ID_APPETIZER_DLG

State 8:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: IsChecked state not same , expected (true) vs generated (false)



L. Food Orderer: Generated Oracle Results with Faults 195

Action: return_key pressed on ID_OK within container ID_APPETIZER_DLG

State 9:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers

Listing L.5: Result 14 with Soup Crackers Fault
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_APPETIZER_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Pass: States identical

Action: return_key pressed on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 2:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: Enabled state not same , expected (true) vs generated (false)

Action: return_key pressed on ID_NACHOS_CHECK within container ID_APPETIZER_DLG

State 3:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: Enabled state not same , expected (true) vs generated (false)

Action: return_key pressed on ID_PEROGIES_CHECK within container ID_APPETIZER_DLG

State 4:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: Enabled state not same , expected (true) vs generated (false)

Action: mouse_click on ID_PEROGIES_CHECK within container ID_APPETIZER_DLG

State 5:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: Enabled state not same , expected (true) vs generated (false)

Action: return_key pressed on ID_OK within container ID_APPETIZER_DLG

State 6:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers

Listing L.6: Result 17 with Soup Crackers Fault
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_APPETIZER_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Pass: States identical



196 L. Food Orderer: Generated Oracle Results with Faults

Action: mouse_click on ID_NACHOS_CHECK within container ID_APPETIZER_DLG

State 2:

Pass: States identical

Action: return_key pressed on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 3:

Pass: States identical

Action: return_key pressed on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 4:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SOUP_CRACKERS_CHECK expected and generated Controls yielded the following

error: Enabled state not same , expected (false) vs generated (true)

Action: mouse_click on ID_OK within container ID_APPETIZER_DLG

State 5:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers

Listing L.7: Result 17 with List Fault
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_APPETIZER_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_PEROGIE_SAUCE_COMBO expected and generated Controls yielded the following

error: List sizes are not same , expected (4) vs generated (3)

Action: mouse_click on ID_NACHOS_CHECK within container ID_APPETIZER_DLG

State 2:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_PEROGIE_SAUCE_COMBO expected and generated Controls yielded the following

error: List sizes are not same , expected (4) vs generated (3)

Action: return_key pressed on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 3:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_PEROGIE_SAUCE_COMBO expected and generated Controls yielded the following

error: List sizes are not same , expected (4) vs generated (3)

Action: return_key pressed on ID_SQUASH_SOUP_CHECK within container ID_APPETIZER_DLG

State 4:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_APPETIZER_DLG expected and

generated Containers yielded the following error: Comparison between

ID_PEROGIE_SAUCE_COMBO expected and generated Controls yielded the following

error: List sizes are not same , expected (4) vs generated (3)

Action: mouse_click on ID_OK within container ID_APPETIZER_DLG

State 5:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers



L. Food Orderer: Generated Oracle Results with Faults 197

L.3 Entrée Dialog Oracle Results

Listing L.8: Result 37 with Enable Faults
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_ENTREE_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Pass: States identical

Action: mouse_click on ID_SIDEDISH_ONE within container ID_ENTREE_DLG

State 2:

Pass: States identical

Action: select_item with text equal to "Garden Salad" on ID_SIDEDISH_ONE within

container ID_ENTREE_DLG

State 3:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_ENTREE_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SIDEDISH_ONE_DRESSING expected and generated Controls yielded the following

error: Enabled state not same , expected (true) vs generated (false)

Action: return_key pressed on ID_VEGGIE_STIRFRY within container ID_ENTREE_DLG

State 4:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_ENTREE_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SIDEDISH_ONE_DRESSING expected and generated Controls yielded the following

error: Enabled state not same , expected (true) vs generated (false)

Action: return_key pressed on ID_NEWYORK_STEAK within container ID_ENTREE_DLG

State 5:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_ENTREE_DLG expected and

generated Containers yielded the following error: Comparison between

ID_CHICKEN_MEAT_DARK expected and generated Controls yielded the following

error: Enabled state not same , expected (false) vs generated (true)

Action: return_key pressed on ID_CHICKEN within container ID_ENTREE_DLG

State 6:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_ENTREE_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SIDEDISH_ONE_DRESSING expected and generated Controls yielded the following

error: Enabled state not same , expected (true) vs generated (false)

Action: return_key pressed on ID_OK within container ID_ENTREE_DLG

State 7:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers

Listing L.9: Result 37 with List Fault
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_ENTREE_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:



198 L. Food Orderer: Generated Oracle Results with Faults

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_ENTREE_DLG expected and

generated Containers yielded the following error: Comparison between

ID_STIRFRY_SAUCE expected and generated Controls yielded the following error:

The generated set of list items did not have all required items. Inequality on

expected (Sweet -n-Sour) vs generated (Sweet and Sour)

Action: mouse_click on ID_SIDEDISH_ONE within container ID_ENTREE_DLG

State 2:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_ENTREE_DLG expected and

generated Containers yielded the following error: Comparison between

ID_STIRFRY_SAUCE expected and generated Controls yielded the following error:

The generated set of list items did not have all required items. Inequality on

expected (Sweet -n-Sour) vs generated (Sweet and Sour)

Action: select_item with text equal to "Garden Salad" on ID_SIDEDISH_ONE within

container ID_ENTREE_DLG

State 3:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_ENTREE_DLG expected and

generated Containers yielded the following error: Comparison between

ID_STIRFRY_SAUCE expected and generated Controls yielded the following error:

The generated set of list items did not have all required items. Inequality on

expected (Sweet -n-Sour) vs generated (Sweet and Sour)

Action: return_key pressed on ID_VEGGIE_STIRFRY within container ID_ENTREE_DLG

State 4:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_ENTREE_DLG expected and

generated Containers yielded the following error: Comparison between

ID_STIRFRY_SAUCE expected and generated Controls yielded the following error:

The generated set of list items did not have all required items. Inequality on

expected (Sweet -n-Sour) vs generated (Sweet and Sour)

Action: return_key pressed on ID_NEWYORK_STEAK within container ID_ENTREE_DLG

State 5:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_ENTREE_DLG expected and

generated Containers yielded the following error: Comparison between

ID_STIRFRY_SAUCE expected and generated Controls yielded the following error:

The generated set of list items did not have all required items. Inequality on

expected (Sweet -n-Sour) vs generated (Sweet and Sour)

Action: return_key pressed on ID_CHICKEN within container ID_ENTREE_DLG

State 6:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_ENTREE_DLG expected and

generated Containers yielded the following error: Comparison between

ID_STIRFRY_SAUCE expected and generated Controls yielded the following error:

The generated set of list items did not have all required items. Inequality on

expected (Sweet -n-Sour) vs generated (Sweet and Sour)

Action: return_key pressed on ID_OK within container ID_ENTREE_DLG

State 7:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers



L. Food Orderer: Generated Oracle Results with Faults 199

L.4 Dessert Dialog Oracle Results

Listing L.10: Result 5 with Sauce Combo Fault
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_DESSERT_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SUNDAE_SAUCE expected and generated Controls yielded the following error:

Enabled state not same , expected (true) vs generated (false)

Action: mouse_click on ID_SUNDAE_SAUCE within container ID_DESSERT_DLG

State 2:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG expected and

generated Containers yielded the following error: Comparison between ID_SUNDAE

expected and generated Controls yielded the following error: Focused state not

same , expected (false) vs generated (true)

Action: select_item on ID_SUNDAE_SAUCE within container ID_DESSERT_DLG

State 3:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG expected and

generated Containers yielded the following error: Comparison between ID_SUNDAE

expected and generated Controls yielded the following error: Focused state not

same , expected (false) vs generated (true)

Action: return_key pressed on ID_SUNDAE within container ID_DESSERT_DLG

State 4:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SUNDAE_SAUCE expected and generated Controls yielded the following error:

Selection state not same , expected (SINGLE_SELECTION) vs generated (

NO_SELECTION)

Action: return_key pressed on ID_OK within container ID_DESSERT_DLG

State 5:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers

Listing L.11: Result 5 with List Fault
Action: Start -up

Initial State:

Pass: States identical

Action: mouse_click on ID_DESSERT_BUTTON within container ID_FOOD_ORDERER_DLG

State 1:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SUNDAE_SAUCE expected and generated Controls yielded the following error:

List sizes are not same , expected (5) vs generated (6)

Action: mouse_click on ID_SUNDAE_SAUCE within container ID_DESSERT_DLG

State 2:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG expected and

generated Containers yielded the following error: Comparison between



200 L. Food Orderer: Generated Oracle Results with Faults

ID_SUNDAE_SAUCE expected and generated Controls yielded the following error:

List sizes are not same , expected (5) vs generated (6)

Action: select_item on ID_SUNDAE_SAUCE within container ID_DESSERT_DLG

State 3:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SUNDAE_SAUCE expected and generated Controls yielded the following error:

List sizes are not same , expected (5) vs generated (6)

Action: return_key pressed on ID_SUNDAE within container ID_DESSERT_DLG

State 4:

Failure: Comparison between ID_FOOD_ORDERER_DLG+ID_DESSERT_DLG expected and

generated Containers yielded the following error: Comparison between

ID_SUNDAE_SAUCE expected and generated Controls yielded the following error:

List sizes are not same , expected (5) vs generated (6)

Action: return_key pressed on ID_OK within container ID_DESSERT_DLG

State 5:

Failure: The Node was expected to contain 1 Containers , instead contained 2

Containers


