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Abstract

In computer engineering, simulation is a popular and reasonable method to study

scientific problems, which evaluates the motion of different objects in various sizes of

simulation spaces. In order to achieve better performance, different approaches will

be applied. Nowadays, both GPU and cluster show great power in parallel computing.

In this thesis, a particle simulation is formulated by following the motion of inter-

acting particles as they move in some constrained space, colliding with each other

and the walls. We compare three solutions to this problem: i) using traditional (se-

rial) computing, ii) using general purpose computing on a graphics processing card

(GPGPU), and iii) using a distributed cluster architecture and the message passing

interface (MPI). Based on the experimental data gathered from the tests, the perfor-

mance of the algorithms is analyzed to show how the speedup varies across different

architectures and with the number of compute cores used.
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Chapter 1

Introduction

A major application of scientific problems solved by computers is scientific simulation,

which is distinguished by large data and time. In order to achieve better performance,

different structures, software and algorithms have been used. At first, the executing

code was done on only one core in one PC, then parallel programming, which can

divide the work among many cores on a multiprocessor or even several PCs was intro-

duced. Nowadays, programmers find that new applications like clusters or graphics

processing units will contribute a lot to operations of massive data. What’s more, the

combination of cluster and graphics processing unit is expected to be more effective.

1.1 Ice Simulation and Motivation

The aim of the research, which is supported by the Sustainable Technology for Polar

Ships and Structures project (referred to as STePS2), is to look further into the

best algorithms and architectures for ice simulation. The goal of ice simulation is to

describe the behaviour of a ship operating in pack ice and colliding with ice floes in

one area. The aim of STePS2 project is to gain a good understanding of interactions

between ice and steel structures. The ice floes are affected by currents, wind, and

1
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interact with land, ships and so on. Figure 1.1 shows the ice simulation view. The

results are found by a discrete time-stepping simulation, which runs much faster than

real-time and provides a guide and measure for planning ice management activities,

in which an ice capable vessel is used to break up or disperse a drifting ice field

so as to lessen the impact on another vessel, such as an oil rig. In his PhD work,

Shadi Alawneh [3] has tried a serial version using CPU and a parallel version using

GPU. The results and some former research by the others show that GPU has more

computing power than CPU for this type of simulation. Facing a small ice field of

456 ice floes, the parallel algorithm on the GPU shows the speedup up to 77 times

compared to the serial algorithm on the CPU. His design reduced the simulation time

of this ice field from over 88 minutes to about 68 seconds. Detailed information like

the model of vessel, different ice fields, and ice conditions is discussed in the chapter 6

of his PhD work. While the test has used small ice fields, large ice fields, will require

more powerful tools to achieve desired quicker results.

Figure 1.1: Ice Simulation Viewer [4]

As is illustrated in figure 1.1, an ice field consists of many ice floes colliding with

each other. The main computing structure of the ice simulation is the interaction of

objects moving in different sizes of area and the main idea of our research is applying
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new parallel design to the ice floe simulation. So we choose to study the particle sim-

ulation problem as a step on the way to solving the ice floe simulation problem. The

physical calculation between particles is simply and we can focus more on the parallel

designs of algorithms and architectures. Our particle simulation has same simula-

tion model in two dimensions and similar movement model as the ice floe simulation,

only with much less complex physics calculation between moving objects. Therefore

we think the relative performance of algorithms and architectures used in the parti-

cle simulation will translate to that work. In the particle simulation, I investigated

different computing architectures and algorithms.

Previous work has investigated a serial version and a GPU version of ice simulation.

In order to achieve different performance, different parallel structures are applied in

this work. In addition to the serial version and the GPU version, we also investigate

the particle simulation on a CPU cluster, using different algorithms.

1.2 Parallel Computers

The N body problem was first studied in the context of astronomy, to simulate the

motion of celestial bodies. This problem needs to calculate the forces between all the

bodies and the problem is O(n2) where n is the number of particles. For large problem

sizes, if n equals 1011(same as the stars in the galaxy), the computation would take

a long time on a single CPU. Even an extremely optimistic figure to compute once

is 10−6 seconds, it would almost take 109 years for one iteration. Better algorithms

were invented to reduce the problem complexity, such as Barnes-Hut algorithm, which

makes this problem O(nlogn) [34]. This algorithm is described in chapter two. The N

body problem is widely applied in chemical and biological areas at the molecular level

and takes an enormous time. Similar problems can be solved in a reasonable time
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on a small scale, but they also need to be calculated multiple times under different

conditions to get different results. Researchers have tried different ways to reduce the

computing time, such as introducing better algorithms, applying powerful hardware,

and changing simulation structures.

Instead of sequential program running on one processor, parallel programming

can be used to address this problem. Programmers can not only program on mul-

tiple processors in one computer, but also code on multiple computers in a network

simultaneously. There are two basic types of parallel computers, shared memory

multiprocessor and distributed-memory multicomputer [34]. Figure 1.2 shows the

structures of the single processor and the shared memory multiprocessor. The whole

task can be divided into several threads or processes. However, from the point of view

of the memory, all the threads or processors still need to access to the main memory.

Figure 1.2: Conventional computer with one processor and shared memory multipro-

cessor system

Different from the shared memory multiprocessor system, distributed-memory

multicomputer do not share the whole memory. Figure 1.3 shows the structure of

the distributed-memory multicomputer. Each computer owns their local main mem-

ory which is not accessible to other computers. Computers communicate with each
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other by sending messages through the interconnection network. Such multiprocessor

systems are usually called message-passing multiprocessors, or simply multicomput-

ers [34].

Figure 1.3: Message-passing multiprocessor/multicomputer system [34]

Programmers can use specific message-passing programming techniques to declare

the parallel section. OpenMP and MPI are two popular kinds of programming inter-

faces to write code using threads to access the main memory. They are also compatible

with C/C++ and FORTRAN. Our particle simulation in this thesis uses MPI and C

to program the code on a distributed-memory multicomputer cluster. Message pass-

ing interface (MPI) is a standardized and portable communication protocol that is

widely used to write message passing programs. MPI is a kind of programming model

and its aim is to serve for communication between processes. Both OpenMP and MPI

have high portability, so they can be used on almost all operating systems.

The Message-passing model takes advantage of synchronization mechanisms to do

parallel programming for serial programs, but is not convenient in sharing the data.

Data for running the program cannot be shared to all computers and they must be

copied to each computer’s local main memory. Sometimes, it is not necessary to copy

the entire memory, and only the relevant parts of the memory required for a parallel
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process to perform its task should be copied. If the amount of data is huge, a lot of

time will be wasted in copying. If a processor accesses the data not in its local memory

location, message passing will occur to pass data between processors. One drawback

is that accessing data in a remote location will make a great delay. There are two

algorithms tried on the CPU cluster, the master-slave algorithm and the heartbeat

algorithm. The former one copies the whole memory to the slave nodes and the latter

one distributes parts of the whole memory. Both are described in detail in chapter

three.

1.3 General Purpose GPU Computing

Beyond being used only for processing graphical information, graphics processing units

or GPUs are a powerful general purpose programming hardware. Many programmers

use GPU to solve scientific problems, which is known as general purpose GPU com-

puting or GPGPU. GPGPU has the advantage of more quickly solving computational

problems than CPU, such as numerical problems and parallel programming. The rea-

son is that GPU uses a many-core structure. Even though a computer can have several

cores, the number is limited. Intel has shown the prototype of a processor with 80

cores [17]. The large difference in the number of cores between CPU and GPU can

be seen from figure 1.4. A GPU can consist of thousands of smaller cores. GPUs are

designed for SIMD (Single instruction stream multiple data stream) processing and

the work flow acts as a pipeline program. More about SIMD and other architectures

are discussed in chapter two.
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Figure 1.4: GPUs have thousands of cores to process parallel workload efficiently [23]

A programming model used on GPU is called CUDA, Compute Unified Device

Architecture, which provides a parallel computing platform for programmers gaining

benefits from both CPU and GPU. Programmers can code in C,C++, and FORTRAN

combining with CUDA. After the appearance of CUDA, programmers can programme

conveniently using GPU. More benefits are shown by using CUDA and GPUs to solve

large, complex and massive data, especially simulations.

1.4 Purpose and Organization

We studied the relative performance of three architectures and three algorithms for

solving problems similar to the ice floe simulation problem. We implement the particle

simulation using different approaches, analyze and compare the performance, discuss

how the different approaches effect the results, propose some better methods to im-

prove the performance of ice floe simulation and possible extensions to the methods.
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The organization of this thesis is the following five chapters:

Chapter 1 presents the general background, objective, and scope of the research

work.

Chapter 2 provides a detailed review and applications of different ways and algo-

rithms to do simulation, GPU structure and the CUDAmodel, parallel and distributed

computing, and the MPI communication model.

Chapter 3 describes the theories and simulation environment used in the particle

simulation. The designs of GPU program and cluster program are also explained.

Chapter 4 presents the implementation of the particle simulation on a cluster using

the master-slave method and the distributed memory method.

Also implementations of the particle simulation on GPU using the particle method

and the grid method are described. One is using threads to control the particles, the

other is using grid to control the particles. The two methods were tried using the

CPU and their performance is compared.

Chapter 5 shows the discussion of the different results using three different ap-

proaches, how different methods affect the results, and the possibility of combining

the advantages. As well, the summarization and conclusions of the present work are

stated, and future work is described.



Chapter 2

Literature Review

This chapter contains background information for particle simulation, different par-

allel designs of particle simulation, two approaches used, which are most relevant to

our particle problem, and some related work.

2.1 Particle Simulation

A particle simulation is the simulation of a dynamic system, predicting the motion of a

group of particles. The particles can move by given velocities or under the influence of

certain kinds of driving forces, like gravity, heat, and pressure. The problem of particle

simulation covers a vast area, ranging from celestial body simulation to kinetic theory

of gases and chemical reactions. Particle simulations can be classified to two types by

the simulation methodology: event-driven simulation and time-driven simulation [8].

2.1.1 Event-Driven Simulation

This kind of simulation was first introduced by Alder and Wainwright [5]. The parti-

cles in the system collide with each other, which needs to be taken into consideration.

9
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They tried the simulation of hard spheres moving and colliding. The first algorithm

used was simple and computed in three steps.

1. After the start, the simulator computes all the time of next collisions in the

system for all particle pairs. Choose the smallest time Tmin.

2. Compute all the particles’ properties to Tmin.

3. Update the properties of the two colliding particles.

The simulation repeats the above three steps, which is known as the event-driven

algorithm. The simulation is controlled by the collisions and the whole properties are

changed after collisions one by one.

For this original algorithm, the amount of computation is very large. The simulator

first calculates all the collision pairs for all the particles, then chooses the earliest one.

This amount of computation will be repeated for every collision. After further study,

Alder and Wainwright concluded that some of this calculation is redundant [5].

Figure 2.1: The distances between particles are different.

In a particle system, distances between particles can be short or long. As illus-

trated in figure 2.1, some particles in area A are far from particles in area B. A

collision, which happens far away in area A, can not affect the particles in area B.
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Therefore, the collision times for particles in area B do not need to be recalculated

in the next collision cycle, because the collision times will stay the same. In order to

solve this problem, the event queue is introduced [2]. This queue is used to save all

the collision times and save a lot of computation time. After every collision, only the

particles involved in the collision need to be recalculated and their old collision times

will be discarded, but others’ will remain. This way, a lot of computation is done

away with.

Perumalla et al. [25] worked on reversible simulations of elastic collisions which

make full use of the event queue. They developed a new algorithm to recover the pre-

collision state from the post-collision state of the system, with essentially no memory

overhead. They did the experiment and compared the results with CPU and GPU. It

turns out that when the ratio of computation to memory operations becomes higher

and architectures compare to themselves, GPU shows much more efficiency than CPU

facing large scale of data.

After using the event queue, Alder and Wainwright suggested another method [5].

In the first step, the collision times are calculated for all particle pairs. But for a

particle pair, if the two particles are very far from each other, they may not collide

until the end of the simulation, so there is no need to calculate the collision time for

this pair. The cell method is applied to help. Using this method, a cube containing

all the particles is divided to a matrix of small cubes, called cells. Each particle is

located in a cell. Then the computation scope of collisions can be reduced by the area.

The simulator only computes the collisions for particles in neighbouring cells. This

technique imposes additional memory use in that the particles’ cell must be tracked.

The figure 2.2 shows the structure of the cell method. The black particle needs to

calculate the collision times with the particles located in the gray neighbouring cell.
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Figure 2.2: The black particle only computes collision times with particles in the 9

shaded cells [30].

The idea of the cell method can not only apply to event-driven simulation, but

also to time-driven simulation. For our work, the grid-method applied to CPU and

GPU holds the same idea with the cell method, which is dividing the space. Event-

driven simulation is useful when there are collisions. On the other hand, if there is

no collision, time-driven simulation is another choice.

2.1.2 Time-Driven Simulation

Unlike event-driven simulation, in time-driven simulation the predicted time of colli-

sion is not used to determine when calculations are done. Both kinds of simulations

can have driving forces, like gravitational force, heating and so on. But the main con-

trol factor for time-driven simulation is the time step, which is a duration of time given

by the system. The whole system is updated every time step. The basic algorithm is

computed in two steps.

1. After the start, the simulator computes all the driving forces for all particles in
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the system.

2. The simulator uses the new forces and the time step to calculate the data and

update the properties.

For this original algorithm, the amount of computation is large, but the accuracy

is high compared to Barnes-Hut algorithm, which is discussed next. For every time

step, the simulator calculates the forces of each particle with all the other particles.

This part of computation is necessary to provide the right track of particles. When

the number of particles is very large, the computation time is also relatively long.

The original algorithm will be changed when it is applied in different simulations.

In the time-driven simulation, the system updates after discrete time-steps. There-

fore, choosing an appropriate time step is important. In some simulations like ice floe,

stars, fog, heat, protein and so on, these objects are moving under certain equations

of motion and their shape are like round or spherical particles, each equation will have

an appropriate time step by calculation. Some application with similar framework are

discussed next and time-driven simulation has been chosen for our research.

Here two kinds of algorithms are introduced, in which their main ideas are similar

to those in our work.

2.1.2.1 Barnes-Hut algorithm

As mentioned before, the original algorithm for time-driven simulation is not efficient

and improvements are necessary. The first idea is to compress the space and reduce

the original amount of calculation.

The most widely used algorithm for compressing the space is the Barnes-Hut algo-

rithm, which was introduced by Josh Barnes and Piet Hut. For the original algorithm,

if a system has n particles, the computation should be done for every n particle with
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all n-1 particles for each time step and the complexity of this problem is O(n2).

The Barnes-Hut algorithm reduces the complexity to O(nlog n). The algorithm is

described by Ravindra M and V Chaithanya [20].

The Barnes-Hut algorithm uses hierarchical approximations to do the simulation.

If a group of particles have enough distance from particle i, then the force between

the group and particle i can be seen as the force between one particle j and particle

i. The quality of particle j is the total quality of the group and the position is the

center of the group. Figure 2.3 shows the idea for approximation.

Figure 2.3: The idea of Barnes-Hut algorithm [20]

The algorithm needs to divide the space using quad-tree on 2D or octree on 3D.

A quad-tree and octree are both tree data structures. In the quad-tree, each internal

node has exactly four children and octree has eight children. They are most often used

to partition a two-dimensional or three-dimensional space by recursively subdividing

it into four quadrants or eight octants. If the space has more than one particle, the

space will be divided again until there is only one body in each space. The Barnes-

Hut algorithm reduces complexity and compute time, but also reduces the accuracy

of results.

This algorithm is widely used in N body simulation, which mainly describes the

movement of celestial bodies like stars and planets. One limitation of this algorithm

is that the main force should be due to attractive forces between the particles, like
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gravity or magnetism. This algorithm is not fit for our work because the particles

in our simulation have no attractive forces and move under fixed velocities in the

absence of collisions. Winkel et al. [35] used this algorithm to do N body simula-

tion under an efficient parallelization strategy using MPI-Pthreads, and applied it to

laser–plasma interaction and vortex particle methods. The approach proved to have

excellent scalability on different data sets and an advanced load balancing strategy

on a cluster. Several other researchers have investigated applying these algorithms to

other problems. Grama et al. [13] also tried different parallel formulations of particle

simulation based on the Barnes-Hut tree algorithm. Spurzem [31] described the direct

force N-body simulation and the methods for gravitating systems of star clusters and

astrophysics. He focused on the astrophysical application using Fokker-Planck equa-

tion and parallel implementation. Ananth Grama [13] introduced a new scheme to

do N body simulation using this algorithm. Rather than shipping data to processors

needing them, they tried to ship computation to processors where data reside. Their

formulation proved to have less communication than the original scheme.

2.1.2.2 Cell-List Method and Neighbor-List Method

Apart from compressing the space, another idea to reduce the complexity of the

problem is to reduce the amount of calculation for each particle. There are two

algorithms that do this: the cell-list method and the neighbor-list method. These two

methods can either be used individually or together in molecular dynamics simulation.

Particle simulations play an important part in molecular dynamics (MD) simula-

tions which have become a standard tool for the investigation of biomolecules [15].

MD simulation is based on the principle of molecular movements, which are modeled

by calculating the change over some time of position, velocity and acceleration, then

calculating the thermodynamic quantities from the results, and analyzing to compute
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quantities for the next time step. It is widely applied in physics, chemistry, biology,

material and medicine areas.

Hansson [15] reports that today, MD simulation is performed for three main rea-

sons. First, it shows the insight of bio-molecular structures on different timescales.

Second, MD simulations calculate thermal averages of molecular properties. Based

on the ergodic hypothesis, a single molecule and its surroundings can be simulated

for some time to get time-averaged molecular properties, which can experimentally

measure ensemble averages. Third, MD can be used to find which conformations of

a molecule or a complex are thermally accessible. This method can be used for ex-

ploring conformational space. MD simulations always depend on their own equations

of motion and potential-energy functions which lead to different movement tracks,

therefore most of them are time-drive simulations.

Using these two methods on MD simulation, the cell-list method divides space into

smaller space. The molecule in local space has zero force with far space(this distance

can be set appropriately). The neighbor-list method will set a neighbor list for each

molecule which stores the information of its neighbor molecule. The neighbor-list

method’s algorithm complexity is high, for the simulation needs to calculate the force

between all molecules. By combining the two algorithms together, the simulator first

divides space, then sets neighbors, each cell only takes its own cell and nearer cells

into consideration. In figure 2.4, the left picture indicates the combination of the two

algorithms and the right one shows the neighbor-list method. The r is the distance

for the deciding neighbors.
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Figure 2.4: The cell-list method and the combination of the two algorithms

2.1.3 Collision Detection Technology

In a particle simulation with spherical particles, one key point is how to find the

collision between particles. The general idea is checking the positions of particles, to

see if a collision occurs. Either in two dimension or three dimension, if the length

of the line segment joining the center points of two particles are longer than double

the radius, there is no collision, otherwise a collision happens. In a discrete time-step

simulation, a collision is also depends on the choice of time-step.

The cell method is another efficient way to solve particle simulation. Within this

method, the simulation space is divided into smaller cells. The system will search

and sort the particle positions in order to find the right cell. This procedure is called

grouping of particles into cell structures. Checking collisions between particles changes

to checking cell positions. This method is similar to the grid-based method [14] and

the cell-list method. But when using the cell-list method in MD simulation, the length

of a cell should be equal or bigger than truncation radius(if the distance between two

molecules is longer than truncation radius, there is no acting force between them).

The cell method used in our research can set the length of a cell freely, as long as

the length is longer than particles’ radius. The implementation of cell structures is
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discussed in detail in [33].

Another effective method is mentioned in [19]. As illustrated in figure 2.5, the

system needs to calculate the distance li between the beginning of system coordinates

X0 and the point of a particle which lies on the sphere at the particle [19]. The overlap

of particles is needed to check the collision, which has proven effective in both two

dimension and three dimension simulation.

Figure 2.5: Scheme illustrates algorithm with notations [19].

Researchers also found methods for detecting collisions with non-spherical parti-

cles. FAN et al. [12] applied an octree-based method to solve this problem in large-

scale particles system using GPU. Their result shows an optimization on particles

colliding with both sides of the geometry surface, while the accuracy of the method

is limited by the maximum subdivision level of the octree structure.

Some research of the collision of other geometry also introduced useful methods. In

Sul’s research [32], they solve the 3D triangle-to-triangle collision problem by changing

it to a simple 2D point-in-triangle problem using matrices. By partitioning the space
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using voxels, it is easy to find collision pair triangles. The results prove the advantage

of using matrices to solve collisions. Choi et al. [11] also use matrices to solve the

collision problems of ellipsoids.

2.2 Parellel Programming

2.2.1 Parallel Programming Design

Parallel programming is a form of computation in which calculations can be carried

out simultaneously [34]. A large problem can be divided into smaller ones, which can

be solved concurrently. The main aim of parallel programming is distributing the

workload. Flynn created a taxonomy to classify the parallel computers, depending

on the instruction stream and data stream [27]. Figure 2.6 shows different computer

architectures.

Figure 2.6: Flynn’s taxonomy of computer architectures [27].

A computer with one processor that executes a single stream of instructions is

called a single instruction stream-single data stream(SISD) computer. A multipro-

cessor system in which each processor executes the same instruction using differ-

ent data simultaneously, can be classified as single instruction stream-multiple data
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stream(SIMD) type. Processors arrays and pipelined vector processors are examples

of this type.

The MISD type refers to computers with multiple instruction streams, but only a

single data stream. Flynn’s description of MISD computer is "a pipeline of multiple

independently executing functional units operating on a single stream of data, forward

results from one functional unit to the next" [27].

A system in which each processor executes different instructions using different

data, is called multiple instruction stream-multiple data stream(MIMD) type. The

shared memory and message-passing multiprocessors and multicomputers are all ex-

amples of this type. In MIMD computers, there are two programming structures:

one is multiple program multiple data(MPMD) structure and the other one is single

program multiple data(SPMD) structure. The former has different programs run on

each processor, while the latter one has only one program copied by all processors.

For our particle simulation, a MIMD programming environment is chosen as CPU

cluster, and SPMD programming structure is applied. Each processor holds a different

data memory copying from the source data and the source program can be executed

by certain processors depending on the identity of processor.

The general procedure of designing a parallel program has the following steps [34].

1. Divide Divide the task into smaller ones.

2. Communication Consider the communication between each small task.

3. Combine According to the small task’s locality, some small tasks can be com-

bined.

4. Mapping Allocate all the small tasks to processors
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2.2.2 Parallel Design for Particle Simulation

For our particle simulations, the main computation time costs are collision detection

and update, which are similar to the molecular dynamics simulation. The parallel

algorithms can be classified into the following three types [26].

1. Task parallelism Task parallelism, also known as function parallelism or con-

trol parallelism [34]. For a particle system of N particles, the simulator evenly

distributes the particles among P processors. Every processor will deal with

N/P particles. Particles are allocated randomly, so every processor should keep

the record information of all the particles. When every processor finishes an

iteration, the new information should be communicated to all processors to

make sure that every processor has the latest information of all the particles.

This design is easy to program and the load is perfectly balanced on each node.

The drawback is that the communication time for the processors is more for

the global information updating. This design is suitable for shared memory

structure.

2. Force parallelism Consider the particle system without collisions: the main

computation will be the force computation like potential energy. For every

particle, the force is the sum of the force computed with all the other particles.

F (i) =
n∑

j=1
f(i, j)

Variables i,j stand for particle i,j. Expression f(i, j) indicates driving force

between particle i and j. Expression F (i) is the sum of f(i, j) with j from one

to n and n stands for the number of particles. Since the force of one particle

is a summation, rather than distributing the particles, the simulator can evenly
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distributes the summation computing and gather the results, which fits for some

specific occasions.

3. Space parallelism This method divides the whole simulation space into several

subspaces and the size of the subspaces can be either all the same or variable.

Each process can control one or more subspace. Consider the particle system

with collisions: the main computations will be collision detection, updating

velocities and positions, and sometimes force computation is also needed. Using

this method, every processor deals with one subspace and the particles inside

this area. For this design, every processor should only hold the data of particles

belonging to its area. The program needs a topology to support the mapping

of areas to processors. One additional computation is the tracking of particles

passing the boundary, receiving information from and sending information to

neighbor processors. The global communication is local, which will offer better

performance and will be suitable for large particle simulation, especially on the

cluster.

For our work, methods of task parallelism and space parallelism are both applied

and tested.

2.3 Parallel Architectures

As mentioned in 2.2.1, a MIMD programming environment can be either a single

computer with multiple processors or multiple computers linked by a network. So

there are two basic types:

1. Shared memory multiprocessor.

2. Distributed-memory multicomputer.
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2.3.1 Shared Memory Multiprocessor

The shared memory multiprocessors can not only provide a general parallel envi-

ronment, but also a shared memory structure. In a shared memory multiprocessor

system, there is a single address space which stores all the data and can be accessed by

all processors. Wilkinson and Allen describe programming: "Programmers can make

processors execute its own program or code sequence from the shared data(Typically,

all processors execute the same program)" [34]. There are many platforms which can

provide shared memory structure, like a multi-core computer. Programmers can use

specific programming languages to declare shared variables and parallel code sections.

The key to programming shared memory is controlling the access of shared data. Each

time, the shared data can only be modified by one instruction.

Using shared memory is a convenient way to program, but there are shortcomings.

Small shared memory multiprocessors can achieve good performance, but when there

is a large amount of processors, it is difficult to implement the hardware to achieve

fast access to all the shared memory by all the processors [34]. Some programming

issues are also important, like the control in accessing the shared memory and avoiding

deadlock.

2.3.2 Distributed Memory Multicomputer

Using a distributed memory architecture, distributed computing and distributed shared

memory approaches can both be applied. In distributed computing, each process sees

its own memory space, but can only access information held by other processes via

message passing. In distributed shared memory approach, all processes see a global

shared memory, even though the actual memory is distributed. For our work, dis-

tributed computing on a CPU cluster is chosen. By using this approach, each comput-
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ing node has its own memory with different addresses, and appears in the physically

distributed memory as a single memory, as illustrated in figure 2.7.

Figure 2.7: Distributed memory system

When a processor needs to access the data located in other processors, message

passing must be used. However, the distributed memory system has some disadvan-

tages because the interconnection between stand-alone computers is much slower than

the interconnection within a shared memory multiprocessor system [18].

Bagrodia [8] presented a unifying framework for distributed simulation, including

discrete-event and continuous simulation. He presented a new algorithm and exper-

imental results on a cluster, which provide a efficient parallel design for distributed

simulation. Chidester and George [10] explained a distributed simulator targeting

the multiprocessor architectures using Message Passing Interface(MPI). The paper

analyzed the performance on a CPU cluster of different parallelization designs, such

as distributed, centralized, blocking and found that speedups were largely affected by

cache accessing. Gregory [6] analyzed paradigms for process interaction in distributed

programs and provided possible solutions to most common distributed programs.

There are many distributed algorithms discussed in [6], each of them fits for dif-
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ferent kinds of problems. For our particle simulation, the heartbeat algorithm is

chosen. This algorithm is useful for many data parallel iterative applications [7].

The following pseudo-code shows the outline of the heartbeat algorithm. Suppose

there is an array and several workers. Each worker deals with a part of the data.

for process worker[i=1 to numworkers] do

declarations of local variables;

initialize local variales;

while computation is not done do

send values to neighbours;

receive values from neighbours;

update local values;

end while

end for

When the data is divided among processors and the updating of each processor

depends on its own data and neighbors’ data, then a heartbeat algorithm shows

advantage. It applies to applications like image processing, solving partial differential

equations, and simulations of phenomena. The send and receive actions will perform

communication between processors and create barriers to control the algorithm. For

ice simulation, the simulation space can be divided into smaller parts, which are almost

independent of the other parts, and each part deals with movements in its own area

including its edges. A heartbeat algorithm will work well because ice simulation can

be done efficiently by cross-cell communication, which decreases overhead.

The heartbeat algorithm is also widely used in networks, especially in manag-

ing network access and interaction. From the property of the heartbeat algorithm,

if all processors keep on communicating with their neighbors, every processor can
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eventually receive information from all other processors.

2.4 Message Passing Interface

Message passing interface (MPI) is used for communication between processes in par-

allel programming. The basic communication model is sending and receiving messages

between processes, which is also called point to point communications. There are two

types of point to point communication, blocking and non blocking.

Using the blocking function, the system won’t return until the specific operation

is completed or the data is buffered safely. Blocking functions need the recipient

process to confirm that transmitting is complete. The MPI_Send and MPI_Recv are

two basic blocking functions, which are a pair and used together. When MPI_Send

returns, the stored data has been fully transmitted to, and received by the recipient

process and any change done to the stored data at the sender cannot effect the data

existing at the receiver. When MPI_Recv returns, the data is fully received and can

be used directly. While the non-blocking functions always return immediately, other

operations are done by system in the background. The non-blocking function use

’I’ to distinguish with others. MPI_Isend and MPI_Irecv are the non-blocking pair

functions for send and receive.

After calling non-blocking functions, a program must call MPI_Wait or MPI_Test

to check the status of the operation. Unlike with blocking functions, before the com-

pletion of the operation, the stored data is unsafe because of the possibility of conflict

with other communication. The non-blocking functions do not need the recipient pro-

cess to confirm, so they can be used together in parallel programming to overlap the

computation and communication. Both types are applied in this work. MPI provides

four communication modes: standard communication mode, buffered communication
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mode, synchronous communication mode, and ready communication mode. They are

different in managing buffer and ways of synchronization between sender and receiver.

Together with blocking and non-blocking functions, MPI produces eight kinds of send

operations and only two kinds of receive operations. A programmer can choose the

best mode to solve the problem. In our work, only the standard communication mode

is needed.

2.4.1 Communication Time

MPI is the most widely used communication interface for cluster-type parallel/dis-

tributed computers [21]. Of course, the performance is a key topic of MPI program.

As for a MPI program, some factors should be taken into consideration, the commu-

nication time between processes and the communication mode used. MPI Messages

not only contain data information, but also consist of "envelope" information, such as

tag, communicator, source, destination, the message length and other implementation

specific information [36]. Considering the scheme of transferring data, there are four

types of data [18] [36].

• Short: Data is transmitted within the message envelope.

• Eager: Data is transmitted without the message envelope and does not need

acknowledgement from the receive process.

• Rendezvous: Data is transmitted without the message envelope for specific re-

ceiver’s request.

• Get: Data and envelope are read directly by the receiver with special methods,

such as shared memory.
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The selection of data transfer scheme can contribute a lot in choosing blocking

mode or non-blocking mode. For our research, two parallel methods are used on CPU

cluster. The master-slave method can either copies the whole data array or data seg-

ment, which depends on what the slave process requires. For our implementation, the

slave processes copy the whole data and return contiguous data segments which can

be integrated by the master process. However, when using the heartbeat algorithm,

each processor holds different data and sends the specific and non-contiguous data

to the others. For contiguous data, the standard communication mode is enough,

while for non-contiguous data, a temporary data buffer is required. The system will

copy the specific data into buffer memory and all send and receive operations are

done between buffers. The operation of creating buffer memory, handling the order

of operations, processing the operations, and releasing buffer memory are completed

by communication middle ware. In order to improve the efficiency, the computation

time on each computing node and the communication time for middle ware can both

be reduced.

Data consolidation Sending an array of one hundred items once is certainly

much faster than sending one item one hundred times [36]. To reduce the number of

messages sent, data consolidation is important. MPI provides three basic methods for

data consolidation: the count argument, derived data types, and pack function pairs.

MPI provides derived data types, which can be used to represent any collection of

data items and are convenient for transmitting different data together. For example,

assume there are three numbers to be sent: a double value, an integer value, and a

float value. MPI can derive a new data struct that contains three values with count

equaling three. MPI_Pack and MPI_Unpack functions are useful in sending and

receiving non-contiguous data. The system uses a pack function to pack the non-

contiguous into contiguous memory and store the packed data in a declared buffer
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memory.

In addition to the communication pattern, the system topology will also contribute

to the performance. The topology of processors can be mapped to the divided simula-

tion area. Derived data types and pack function are both applied in our work. A new

particle data types is used to represent the collection of different properties, like ve-

locities, positions, and weights. When processors update, all information are updated

by copying the memory once. As mentioned above, When the heartbeat algorithm is

applied, non-contiguous data occurs. A processor collects all non-contiguous data in

the buffer and calls pack functions to send and receive from the other processors.

Le and Rejeb [18] introduced a model to address the cost of middle-ware commu-

nication inside the memory, and the cost of interconnecting within the network. Their

results shows its great ability of evaluating performance. Brandfass et al. [9] described

a procedure for optimizing MPI communication by reordering the MPI ranks. They

created a mapping of MPI processes to CPU cores and used distance matrices to

distinguish the processes in each same computing node or not. Their results showed

that the communication between processes on the same computing node is usually

much faster than that on different nodes.

2.5 Graphics Processing Units (GPU)

2.5.1 The Development of GPU

Graphics Processing Units are designed for highly parallel and data intensive comput-

ing. Before the appearance of GPUs, all the work load were taken over by CPUs. The

early GPUs were simple, leaving most work to the CPUs. TMS34010, the first mi-

croprocessor with on-chip graphics capabilities, was released in 1986, which could run

general-purpose code [2]. In 1987, X68000 created by Sharp, was powerful for home
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use, with a 65536 color palette [2]. By 1995, all major PC graphics chips had 2D accel-

eration support [2]. Beginning with the appearance of Nvidia’s GeForce256 in 1999,

the computation of 3D display is fully managed by GPUs and the efficiency is largely

improved. These improvements free CPUs from much of the complex computation

and work load.

Now GPUs are most widely used for two aspects, one is entertainment and the

other is computing. The Nvidia company contributes a lot in GPU programming

and produces several series of GPUs for specific purpose. The Nvidia Tesla series

are designed for GPU computing. They are used to accelerate the computation of

scientific applications due to their computing power. The Tesla K80 GPU Accelerator,

for example, has thousands of compute cores and can perform up to 2.91 Teraflops of

double-precision floating point computation [23]. The Nvidia Quadro series provides

a highly compatible platform to conduct work in many subject areas. They show

excellent performance in designing digital products, dealing with image and energy,

managing media and so on [1]. They also support the GPU programming with CUDA

programming language.

2.5.2 GPU Structure and CUDA Technology

As previously mentioned, because of the large number of computing cores, GPUs

show great capability in computing. The reason is the different design in structure.

As illustrated in figure 2.8, there are more transistors in GPUs than CPUs to deal

with data processing rather than cache and control. So GPUs are less well suited to

algorithms with complex data structures or logic. GPUs show an advantage of solving

problems with large amounts of parallel data to be processed with similar steps and

high density computing.
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Figure 2.8: Different structures of GPU and CPU [24]

One parallel programming model used on GPUs, called CUDA (computing uni-

fied device architecture), reduces the difficulty of general purpose computation and

improves the efficiency of the GPUs [23]. The role of CUDA is to treat the CPU as a

terminal, and the GPU as a device to run the task; which can be highly threaded. So

CUDA is a combination programming model of CPU and GPU. CUDA is the exten-

sion of C language. Programmers can use C, C++, FORTRAN and other high level

programming language to program on the GPU. The CUDA code has two parts: the

serial part running on the CPU and the parallel part running on the GPU, which is

called kernel functions.
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Figure 2.9: The grid block and thread block [23]

As illustrated in figure 2.9, each kernel has a grid and a grid has many thread

blocks, each containing several threads. In each block, the threads work at the same

time though barrier synchronization and shared memory, which are visible to the

block. Thread blocks can be one, two or three dimensional.

2.5.3 Compute Capability

The compute capability is a standard to measure the performance of each GPU card,

which consists of a major revision number and a minor revision number. The major

revision number indicates the core architecture and minor revision number indicates

minor improvement. Figure 2.10 shows all the compute capabilities of GPU cards and

some of their attributes.

For our work, the GPU card used is Quadro FX 1800 card, which was provided

by the project and its compute capability is 1.1. This card does not support double-
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precision floating-point numbers, so the experiments used single-precision floating-

point numbers. The single-precision does not influence our research much. In order

to give a relevant comparison with CPU, both data types were tested on the CPU,

which are discussed in chapter 4.

Figure 2.10: Different compute capabilities [24]

2.5.4 GPU Application on Particle Simulation

Due to the great computing power of GPUs, different kinds of simulation are applied

on the GPUs. Because of the stream processing paradigm, most simulations can

share the same parallel scheme with multi-core computing. Rather than develop

better algorithms, how to do the parallel design is the main question.

Despite the general particle method used for particle simulation, Green [14] intro-

duced the grid-based method using a fast radix sort, which is applied in our simulation.

This method is similar to the cell-list method mentioned above, which also divides

the space. The grid-based method needs to build the grid for particles. The system
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can quickly access to the certain particle with the help of the fast radix sort. The

radix sort is provided by the CUDPP library, which is described in [24]. Firstly, the

system calculates the hash value for each particle based on its cell id and an unsorted

list of particles is shown in figure 2.11. Secondly, the system uses the radix sort based

on particles’ hash values to produce a sorted list by cell id. Thirdly, the system uses

a thread per particle and compares its index of located cell with that of the previous

particle, whether two particles are in the same cell is shown. As a result, the first par-

ticle in a given cell compares with other particles along the list until the last particle.

The computation is computing the particles in same cell and neighbor cells.

Figure 2.11: The grid using sorting and particles’ list in cells [14]

2.5.5 GPU Cluster

Our work is done on a CPU cluster and a single GPU. Rather than implementing on

a single GPU, distributed parallel programs running on a set of GPUs will be a great

improvement. In a way, GPUs are the most powerful hardware on computing, and a

cluster consisting of GPUs will combine computation power effectively. So the idea of

applying GPU clusters is more and more popular, which combines both advantages

of GPUs and cluster. A GPU cluster is a powerful computing platform which consists

of a number of CPUs and a number of GPUs working together. All devices link each
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other by interconnecting with different topology architectures.

A GPU cluster can be either one of the following two types: heterogeneous or

homogeneous. The former one consists of different GPUs(model, make) and the latter

one consists of same GPUs. A cluster has a great advantage over a multiprocessor

system, the clusters can incorporate new processors at low cost and expand its scale

easily by adding computers, disks and other resources. Almost all parallel algorithms

can be applied on the cluster. In a GPU cluster, the work flow on a computing node

follows the same programming model on a single GPU. The CPUs will still act as the

host and the GPUs act as the device. Except for the original duties of allocating work

from the host to the device, CPUs need to control communicating and transferring

data between CPUs. A CPU server can be linked with more than one GPU. The

programming idea of a GPU cluster is fully loading the GPU with computation and

freeing the CPU to handle communications and workload management [22].

Kindratenko [16] and his partners presented a technique for building and running

GPU cluster in HPC environment. With the increasing number of cores, efficient

mechanisms for sharing GPUs among multiple cores is a significant need. Shower-

man [29] introduced a GPU cluster structure which also proved to be power efficient.

Yang [37] tried a general parallel model using CUDA, MPI and OpenMPI on a GPU

cluster, which partition loop iterations according to the number of compute nodes of

the cluster. The results shows that the combination of computing power is a better

choice facing some parallel problems. Zhang and Mueller [38] introduced a General-

Purpose Data Streaming Framework on the GPU cluster.



Chapter 3

Methods and Approaches

In this chapter, different methods and approaches applied in the particle simulation

and designs of the experiments are described.

3.1 Simulation Environment

The general particle simulation problem is to simulate the behaviour of interacting

particles in a constrained space, colliding with each other and the walls. All the par-

ticles move under the influence of physical properties and the total momentum and

total kinetic energy are unchangeable when collision happens. So the laws of conser-

vation of momentum and conservation of kinetic energy can be applied to update the

properties.

The conservation law of kinetic energy applied for two particles’ collision:

miv
2
i + mjv

2
j = miv

′2
i + mjv

′2
j (3.1)

36
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The conservation law of momentum applied for two particles’ collision:

mivi + mjvj = miv
′
i + mjv

′
j (3.2)

In a two-dimensional model, the particles are considered as balls with a certain

radius. The goal of the simulation is to show the performance of different algorithms.

A simple X11 user interface is used to display the interactions of the particles. Figure

3.1 shows a screen shot of one moment during the particle simulation. Each line of

dots represents a history of a single particle.

Figure 3.1: A screen shot of one moment during the particle simulation

3.1.1 Collision Configurations and Constraints

Consider a system that consists of N identical hard spheres of radius R in a two-

dimensional area undergoing elastic collisions in two types: (1) single particle-wall
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collisions, (2) particle-particle collisions. Each particle’s velocities are along the two

coordinate axis, Vx and Vy. The first type is straightforward to reverse, modelled

by changing the sign of the velocity component that is orthogonal to the wall. If a

particle faces a corner which has two walls simultaneously, all the appropriate velocity

components change their sign. The second type follows the dynamic principle.

When collision happens without friction, the collision’s line of action is perpendic-

ular to the tangential line of two particles. When velocities are along the line of action,

it is called a "direct impact". When the line of action passes the center of collision

body, it is called a "central impact". Collisions of particles whose mass is uniformly

distributed are all central impact. When velocities are along the line of action, it

is calculated as the one dimensional collision and when velocities are not along the

line of action, the collision is called a "oblique impact". On this occasion, we need to

decompose the velocities. If components of velocity has the same direction with that

of the line of action, they are only involved in the collision and other components of

velocity which are perpendicular to the line of action are not. Figure 3.2 shows an

example of oblique impact.

Figure 3.2: A collision of two particles
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Let vi and v′i be the pre-collision velocity and post-collision velocity of particle i

. For every pair of particles i and j that are in collision, their kinetic energy E and

momentum P stay the same. Based on the unchangeable energy and momentum, we

can compute the new velocity according to formulas 3.1 and 3.2.

For the simulation that is a time-driven simulation, the system will check the

collision pair every time step. First, the distance between each particle and every other

particles is calculated. If the distance is bigger than 2*radius, there is no collision;

otherwise, a collision happens. When collisions are found, new velocities are computed

by the collision function. If two particles are moving along the same line, formulas

3.1 and 3.2 can be applied directly, but particles’ collisions are happening in every

direction, like the figure 3.2. Because of this, the decomposition of velocities should

be done first. As mentioned before, if the velocity is perpendicular to the line linking

two particles, it will not change at all. The following shows the procedure to deal with

the collision between particles.

if distance < radius*2 then

/* Collision exists */

double ve l oc i ty_ i , v e l o c i t y_ j ;

double coordinate_i , coord inate_j ;

double angle , s ina , cosa ;

/* Get velocities and positions for particle i and particle j; */

/* Calculate the degree of the line linking two centres of particle i,j;*/

/* Calculate the components of velocities of both particles which are along linking

line; Calculate the components of velocities of both particles which are perpen-

dicular to the linking line;*/

double newv_i=((m_i−m_j)∗ v_i+2∗m_j∗v_j ) ) / (m_i+m_j ) ;



40

double newv_j=newv_i+v_i−v_j ;

/* Update local values;*/

/* Calculate the components of new velocities of both particles which are along

linking line;*/

/* Calculate and update new velocities for both particles;*/

double newpos i t ion_i=o ldpo s i t i on_ i+ newve loc i ty_i ∗ time_step ;

double newpos it ion_j=o ldpo s i t i on_ j+ newveloc i ty_j ∗ time_step ;

/* Update new positions for both particles.*/

end if

3.2 Simulation Approaches and Architectures

There are five approaches applied for particle simulation: CPU, GPU, and CPU

cluster (three architectures).

3.2.1 CPU

The particle simulation running on CPU is a basic serial program that used double

data type and float data type to provide a comparison with other approaches.

3.2.2 General Purpose Graphics Processing Units and CUDA

As mentioned in chapter 2, streaming processing is the model of how GPGPU pro-

gramming works and CUDA, is designed to help. CUDA, the computing unified device

architecture, was developed by NVIDIA in 2007. This model reduces the difficulty

of general purpose computation and improves the efficiency of GPU [23]. The role

of CUDA is to provide a path from CPU to GPU, and to help GPU managing and
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computing data. CUDA makes CPU work as a terminal, while it makes GPU work

as a device to run the task. Figure 3.3 shows a general overview of CUDA. Differ-

ent applications using DirectX, OpenCL, or other computing functions access GPU

through the CUDA drive to finish their tasks effectively.

Figure 3.3: Overview of CUDA [24]

CUDA is a combination programming model of CPU and GPU, so the code has

two parts: the serial part running on the CPU and the parallel part running on the

GPU, which is called the kernel. When a program starts, the execution first takes

place on the CPU(host). When a kernel function is invoked, the execution is moved

to the GPU(device).

3.2.2.1 Framework

Figure 3.4 shows the high-level flow of particle simulation. At the beginning, CPU

initializes the particle data(position, velocity, weight,radius) and the simulation pa-

rameters; then the initial data is copied from CPU to GPU. GPU will take control

of the whole simulation and launch the kernel function to update the properties of
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particles. After the simulation is done, GPU will return the particle data back to

CPU.

Figure 3.4: Simulation flow

3.2.3 CPU Cluster

A CPU cluster is a parallel computing platform consisting of many computing nodes

and each node can perform the same or different tasks at the same time. The whole

task can be split up into smaller ones using a master node and send them to different

slave nodes. After the work is done, all slave nodes will return results to the master

node, which is the basic processing model of the cluster. The communication is

transmitted between a master node and slave nodes. Also the communication can be

transmitted between slave nodes. Computing nodes find each other by the node ID.

In the cluster, each computing node holds different memory.
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Figure 3.5: Communication between cluster computing nodes

Message passing interface(MPI) is a standardized and portable interface that is

widely used to write message passing programs [21]. It is therefore an obvious choice

for CPU-cluster computing using a distributed parallel model. As mentioned in chap-

ter two, MPI can be applied to reconstruct the nodes to a certain topology in two

dimensions and each node controls its area according to its position in the topology.

Figure 3.6 shows the communication between neighbour nodes for a two-dimension

topology.
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Figure 3.6: Communication for a two-dimension topology of four nodes

In order to make full use of this architecture, we try to distribute the particle data

by dividing the simulation space and transmit the data of each subspace to particular

nodes.

Figure 3.7: The mapping of space to virtual processors

Figure 3.7 shows the example of dividing the simulation space to four parts and

their mapping to virtual processors.
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3.3 Methods and Algorithms

There are three methods applied for different approaches in the particle simulation:

the particle method, the grid method and the heartbeat algorithm.

3.3.1 Particle Method

Particle method is one of the basic types of particle simulation, which calculate the

properties of a set of particles as they move [14]. This method has several advantages.

• The particles only perform computation(collision) when necessary.

• The particles’ data structure is simply the position and velocity of each particle,

which is an efficient way of representing the simulation state. The system can access

all the particles though their index.

This method is applied on CPU, GPU and cluster. It is relatively easy to parallelize

particle system for GPU which makes it possible to use one thread per particle. The

kernel links the thread ID with particle ID. If there are n particles, GPU will call

n threads. Each thread will search all the possible collision for its particle. On

the cluster, a master-slave method and the heartbeat algorithm were applied to do

parallel designs for the particle method. Rather than using one thread per particle,

the master-slave method make one process control a group of particles. Therefore, the

number of particles can be distributed evenly by the number of processes used. The

heartbeat algorithm focus on parallelizing the simulation space and will be discussed

later.
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3.3.1.1 Particle Method on GPU

Using this method, one kernel is designed to call the collision function. This kernel

focuses on the computing part of the serial code, that uses one thread per particle,

finds the possible collisions with other particles, then computes new velocities, posi-

tions for the particle, and updates the new results. Figure 3.8 shows the procedure of

the simulation.

Figure 3.8: The procedure of the simulation using particle method

3.3.1.2 Particle Method on the Cluster

On the cluster, the particle data is stored in arrays. Each process can access the

particle data according its index. Using the master-slave method, each process knows

its segment of particles. When the updating of each segment is finished, the master

process will gather the results from all slave processes. After one iteration is over, the
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master process will send the latest information to all the slave processes again.

3.3.1.3 Heartbeat Algorithm

To fit the distributed memory system, a heartbeat algorithm [34] is applied to do

a distributed design on the CPU cluster. Since there is a large amount of particle

data, a distributed architecture may be a good way to speed up the performance.

As mentioned in chapter two, the heartbeat algorithm is described as a network of

many nodes. The actions of each node are like the beating of a heart: first expand,

sending the information out; then contract, gathering new information in. This kind of

interaction has also been called the wave algorithm[34] which spreads the information

out like wave. This type of algorithm can be used especially to solve parallel iterative

computational problems.

Using this algorithm and distributed computing, the original constrained area is

divided into several physical subsections. Each node controls one subsection, and

communicates only with its neighbor nodes, which reduces the communication. For

each node, it only computes particles in its space, updating the velocity and position

at each time step. For particles that cross the boundaries of the space, information

about position, velocity, and weight will be sent to the appropriate neighbor. Each

node will also receive the information about the particles passing into its space from

neighbor nodes. Fig 3.9 presents the dividing space and the moving particles in a

two-dimensional topology of 16 nodes. Particle ’a’ will be sent up to neighbor node 4

from node 5 and particle ’b’ will be sent to left neighbor node 9 by node 13. Particles

"c" and "d" will both be sent to node 7 from node 3 and node 10 at the same time.

Particle ’c’, because it covers four nodes’ spaces, will also be sent to node "6" and

"11".
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Figure 3.9: The example of dividing space with 16 nodes

The procedure of this approach has the following steps:

1. When the program starts, the master node will initialize all the particle data and

make a topology according to the number of nodes, then send the appropriate

data to other nodes.

2. Every node will check its neighbors and controlled area , then receive the particle

data. They will produce their own list to store the particles that exist in their

spaces.

3. When the preparation work is done, the heartbeat algorithm starts. Each of the

nodes compute the particles only in its area. When a particle comes in the area

or goes out of the area, that node will produce a list to store them and send

them to the right neighbor according to its position.

4. Each node will wait for the others until one iteration is done. After all iterations

are finished, every node will end their process.
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3.3.2 Grid-based Method

In contrast to the particle method, the grid-based method calculates the properties of

the simulation at a set of fixed points in space [14]. Using this method, a uniform grid

subdivides the simulation space into a grid of uniformly sized cells, and the cell size is

the same as the size of particle(double its radius). So a particle can cover maximum

four grid cells in a two-dimension space. As each particle is located in only one grid

cell based on its center point, in order to process collisions, we need to examine the

particles in the neighbouring cells and the cell where it is located(3*3=9 in total)to

check if there exists collisions. This method allow us to sort them by their grid index.

Compared with the particle method, the grid-based method requires less work dealing

with collisions, but more work when building the grid. This method is only applied

on CPU and GPU.

3.3.2.1 Grid Method on GPU

Using the grid-based method, three kernels are designed. The first kernel calculates

the hash value for each particle based on its index of the stored array. The second

kernel rearranges all the particle data into sorted order using radix sort, and finds

the start particle and the end particle of each cell. The third kernel does the colli-

sion computation of particles in each cell and neighbor cell. Figure 3.10 shows the

procedure of the simulation.
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Figure 3.10: The procedure of the simulation using grid method

3.4 Experimental Design

The following experiments were completed. The results are provided in chapter four.

On the CPU, in order to get a relevant comparison, the particle method and the

grid method were used on both float data type and double data type.

On the GPU, the two methods were tested. Also, by gradually changing the grid

size of the original grid method, this changing grid size method was tried after.

On the cluster, all the experiments could be classified as two kinds: simulations

on a fixed space and simulations on a fixed number per computing node. The former

one was tried to compare the results with that on the CPU. The latter one was de-

signed to analyze the performance of the heartbeat algorithm and the communication

time used among the cluster. For the first kind, the master-slave method was tried.

Then, the distributed approach using the heartbeat algorithm was performed. For
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the second kind, based on the heartbeat algorithm, we gave each computing node a

fixed number of particles and did the experiments on both one dimension topology

and two dimension topology. The following figure shows the collaboration using the

heartbeat algorithm.

Figure 3.11: Concurrent collaboration diagram for the heartbeat algorithm

In the collaboration diagram, there are two computing nodes to be as an example.

Executions A and B show two command flows on two different computing nodes.

Command A1 and B1 are actually the same with each other. The simulator builds the

topology according to the number of nodes used. Each node will know its area covered,

neighbors and their reference ID. After computing the particles in its area(command

A2,B2), each node will check if any particle across the edge(command A3,B3). If yes,

the simulator will provide buffer memory to control the communication(command

A4,B4). Nodes can pack necessary particle properties in the buffer memory, like

positions and velocities, then send or receive the package which is hold by the buffer.

When all the nodes finish, the simulator will update the time step(command A5,B5)
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until the simulation ends(command A6,B6). All the nodes follow the same command

from one to six.

The following table shows the outline of all the experiments.

Table 3.1: The outline of experiments
Experiment Architecture Method Data type
CPU general CPU Particle method Float data type

CPU Particle method Double data type
CPU Grid method Float data type
CPU Grid method Double data type

GPU general GPU Particle method Float data type
GPU Grid method Float data type

GPU specific GPU Changed grid method Float data type
Cluster
general

CPU cluster The master-slave method Double data type

Cluster
specific A

CPU cluster The heartbeat algorithm
with a fixed number of
particles

Double data type

Cluster
specific B

CPU cluster The heartbeat algorithm
with a fixed number of
particles per node

Double data type

Experiments "CPU general" and "GPU general" stand for the particle method and

the grid method used on two architectures. "GPU specific" uses the grid method with

changed sizes of grid. "cluster general" means applying the master slave method on

the cluster and "cluster specific" uses the heartbeat algorithm. In the chapter 4, there

are comparisons between CPU and CPU cluster, CPU and GPU, and themselves.

To keep the consistency, CPU cluster uses double type data. Results can not be

compared directly between CPU cluster and GPU. While there may be little difference

in execution speed on a single CPU between data types "double" and "float", on

a multi-computer cluster, data has to be moved in and out of memory and shared

between different computers over a network connection. As double data type variables

occupy more memory, they take longer to transfer between networked computers.
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While the double data type holds higher precision than the float data type. Therefore,

the performance of CPU cluster is automatically at a disadvantage.



Chapter 4

Experiment Results

This chapter describes the results of all the experiments.

4.1 CPU General versus GPU General

For the program running on CPU, we set the numbers of particles as 2500, 5000,

6500, 7500, 8500, and 10000. This range of numbers are related to the area size(X*Y)

as 300*300, 300*600, 400*585, 400*675, 600*600 to keep the same density as 78.5%.

If the density is low, the frequency of collision is low and if the density is too high,

particles will be too crowded to move. These area sizes are easy to divide between

different numbers of computing nodes when the distributed algorithm is applied on the

cluster. The whole simulation is running for 1000 iterations. The radius of particles

is set as 3, and the simulation area changes with the number of particles to keep the

same density.

The type of GPU card used for the GPU experiments is Quadro FX 1800, which

has 64 processor cores, and compute capability 1.1. This card only supports the single-

precision float type and does not support the double-precision double type. In order

to compare the performance of GPU version and CPU version, we do the simulation

54
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in both data types.

Figure 4.1 shows the computation time of the particle simulation on CPU and

GPU. The dark blue line and the red line in the picture indicate the different data

types used in the serial particle version: double type and float type. The green line

and purple line indicate two data types used in the serial grid version and these

two lines almost overlap with each other. The light blue line and the orange line

shows the results of the two different methods used on GPU. As is shown, with the

increasing number of particles, GPU is much faster than CPU. For the two different

data types running on CPU, double type is more than four times quicker than float

type with particle method, while using grid method, speeds are nearly equal. The

differences are frequency of math calculation. As is known, the double type is usually

faster running than the float type especially facing complex math calculation. In the

particle method, the simulator needs to get the square root of the distance for every

particle pair. While, using the grid method, the frequency of this calculation is largely

reduced. As a result, the computation time costs similar using grid method on two

data types. In order to prove this, the square root function was removed from the

particle method and the computation time for two data types are almost the same.

Table 4.1 shows more detailed data.
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Figure 4.1: Computation time for CPU and GPU

Table 4.1: Computation time for CPU and GPU (seconds)
Number of
particles

Serial
particle
using
double

Serial
particle
using
float

Serial
grid
using
double

Serial
grid
using
float

GPU
particle
method

GPU
grid
method

2500 126.50 523.51 97.02 95.04 21.19 13.56
5000 483.33 2035.43 380.39 375.95 66.87 23.39
6500 808.29 3574.80 644.09 636.99 110.51 30.98
7500 1088.20 4684.29 845.00 861.15 140.40 33.17
8500 1477.33 6310.81 1100.61 1102.89 187.58 36.55
10000 1939.58 8436.60 1520.05 1505.29 239.06 41.42

4.1.1 Speedups for CPU and GPU

Figure 4.2 shows speedups of two GPU methods compared to the serial particle ver-

sion(float type) and the serial grid version(float type). The particle method used

on GPU shows speedups from 24.6 to 35.2 on six cases, while the grid method’s

speedups range from 7.0 to 36.3. Speedups between the serial particle method and

the grid method ranges from 5.5 to 5.6. It is easy to see that facing a large amount of

data, the grid-based method will achieve better performance than the particle method.

This is due to the number of processor cores (64) on the GPU card that has been
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used in my work. Each particle is handled by one core, but in cases where there are

more than 64 particles, one core must handle more than one particle. Therefore, the

performance is limited by the number of processor cores and the grid method does

not have this limit.

Figure 4.2: Speedups compared with GPU version and serial version

Table 4.2: Speedups compared with GPU version and serial version
Number of
particles

Serial
particle
vs grid

Thread
version
vs serial
particle

Grid
version
vs serial
grid

2500 5.5 24.6 7.0
5000 5.4 30.4 16.0
6500 5.6 32.3 20.5
7500 5.4 33.3 25.9
8500 5.7 33.6 30.1
10000 5.6 35.2 36.3

4.2 GPU Specific

One problem is that the performance of the grid-based method is often, but not

always, better than that of the particle method. So, as opposed to the original grid-
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based method, the cell size is changed from particle size to half of the space size. With

the change of the cell size, the number of grids change too. As is shown in figure 4.3,

dash lines indicate dividing the grids.

Figure 4.3: Cell size changes from small to large

Figure 4.4 shows the computation time of the grid method with different numbers

of grids.

Figure 4.4: Computation time using particle method and grid-based method

Six lines indicate six cases and numbers. The starting black dot at one grid
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is the computation time of the particle method and the end dot of each line is the

computation time of the grid-based method, which is the cell size equal to the particle

size. Middle dots represent the trend of increasing grid cells. When the number of

cells are smaller than 6 to 9, the computation time is longer than for the particle

method since, with a small number of cells, a grid cell and its neighbors can cover all

the space, then a particle still needs to check the collision with all the other particles.

When a grid cell and its neighbors cannot cover all the space, the performance is

increasing obviously, because of the rapid reduction of computation. However, the

performance began to flatten when the number of cells coming near maximum cells.

Table 4.3: Computation time using particle method and grid-based method (seconds)
Number
of grids

2500
particles

5000
particles

6500
particles

7500
particles

8500
particles

10000
particles

2 35.53 89.88 142.68 176.92 236.41 283.17
4 31.45 80.18 137.20 167.27 228.86 269.89
6 29.79 73.96 117.16 140.67 171.72 228.37
9 27.07 72.84 102.58 122.34 145.64 189.27
15 21.61 57.22 74.33 88.98 109.18 141.75
25 20.19 46.94 67.28 75.74 99.11 126.63
50 17.85 39.82 59.39 62.20 74.22 116.54
100 16.38 32.04 41.86 44.65 49.59 60.04
400 16.13 29.75 35.95 42.79 42.70 53.58
900 15.65 28.87 35.74 41.84 41.92 48.05
1000 15.55 28.01 35.61 41.04 41.55 46.55
1600 15.43 27.60 33.81 40.24 41.17 45.42
2000 14.49 26.27 32.05 39.91 40.09 45.38
2500 13.56 25.91 31.88 39.02 39.42 45.13
3200 25.76 31.57 38.41 38.94 44.83
3600 24.00 31.52 35.83 38.72 44.62
4000 23.89 31.43 34.52 38.64 44.14
5000 23.39 31.02 34.31 38.51 44.01
6400 31.00 33.79 37.46 43.22
6500 30.98 33.68 37.40 43.02
7500 33.17 37.06 42.78
8500 36.55 42.11
10000 41.42
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4.3 Cluster General

For the parallel design on the cluster, the master-slave method was used at first. The

master node will send all the data to all the slave nodes. For each slave node will

divide the data evenly and take over its particular segment of the data, but each

node still need to compare its segment to all the other particles. As a result, each

node should hold the information of all the particles. Then all nodes will do the

computation to update their own segment and return the new information of their

segment to the master node. For the next iteration, the master node will send the

new data to all nodes again and every node will hold the latest information of all

the data. The test is done in two cases, 5000 and 10000 particles. The number of

computing nodes changes from four to fifty-six to provide comprehensive results.

The CPU cluster used is the STePS2 HPC cluster [28], which consists of a head

node and sixteen compute nodes. The processor used on each compute node is In-

tel(R) Xeon(R) E5520, and all nodes operate using Intel_ x86_ 64 Linux with toolkit

provided by ROCKS 5.4. This cluster uses a job scheduler (Torque) so that each

job has dedicated resources and load on the cluster head is irrelevant. There are two

forms of nodal interconnects: Ethernet(1 GBit/s) and Fabric(40 GBits/s Infiniband).

The former is used for all non-MPI internodal communication, like transfer, ssh and

so on. The latter is used only for message passing via the MPI software. Infiniband

switch served all cluster nodes.

From figure 4.5, the algorithm gets the best performance at the lowest point of

each line. After that point, the performance drops gradually because of the increase

cost of communication time between computing nodes.
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Figure 4.5: Computation time for master-slave method

Table 4.4: Computation time for master-slave method (seconds)
Number of nodes 5000 particles 10000 particles

4 56.98 197.21
8 26.86 74.50
12 20.70 48.08
16 18.16 41.80
20 18.42 39.79
21 17.73 39.16
24 17.56 38.44
30 19.09 39.70
32 20.23 40.50
40 22.07 45.09
48 26.34 52.21
56 29.46 58.22

4.4 Cluster Specific A

We set the numbers of particles as 2500, 5000, 6500, 7500, 8500, and 10000, which

are the same as the number used in the former experiments. The whole simulation
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is also running for 1000 iterations. Figure 4.6 represents the computation time using

the heartbeat algorithm.

Figure 4.6: Computation time for heartbeat algorithm

The computing nodes vary from 2 to 64. It is obvious that the more computing

nodes, the better the performance. Here a log scale made the figure easier to under-

stand than a linear scale. There is no log scale on time because it would emphasize

differences in time that are insignificant. When the number of nodes is bigger than

2, the computation time decreases rapidly. When the number of nodes is bigger than

20, the computation time decreases slowly.

4.4.1 Speedups for CPU and CPU cluster

Figure 4.7 shows speedups comparing the distributed version and the serial particle

version. With the growing number of particles, the increase of the slope begins to

slow down. Note that in Figure 4.7 the trend of the blue line doesn’t follows similar

directions as the others. From the experiment data, it is found that when using the

heartbeat algorithm, the computation time changes a lot under the same condition.

Because the number of particles controlled by each node changes a lot using the

heartbeat algorithm, and a new iteration will not start until all the nodes finish their
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Table 4.5: Computation time for heartbeat algorithm (seconds)
Number
of nodes

2500
particles

5000
particles

6500
particles

7500
particles

8500
particles

10000
particles

2 60.38 240.57 400.61 530.84 681.63 1057.68
3 26.85 106.32 180.92 237.99 469.00 898.87
4 18.24 65.76 151.34 191.73 423.84 767.99
5 10.36 42.71 88.52 142.78 280.31 559.90
6 8.25 31.08 67.58 124.15 164.14 454.67
7 5.70 23.06 63.68 104.33 138.14 310.98
9 4.20 14.90 43.86 96.65 125.77 196.68
10 3.44 13.33 37.59 69.48 95.03 118.60
15 3.06 8.99 17.60 28.83 43.20 47.20
21 2.35 4.17 13.17 16.03 31.05 24.59
35 1.12 2.52 4.66 5.91 7.60 10.42
45 0.84 2.10 3.20 4.54 5.29 7.62
64 0.73 1.23 1.94 2.22 3.38 4.76

work. Then, the faster nodes will wait for the slower ones. The performance is better

when the number of particles controlled by each node are almost the same. This

conclusion is also proved more detailed in the next experiment, cluster specific B. The

computation times showed in the figure 4.6 are average times after calculating. For

the blue line, long computation times occupy more than short ones and the increase

of performance slows down.
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Figure 4.7: Speedups compared distributed version and serial particle version

Table 4.6: Speedups compared distributed version and serial particle version
Number
of nodes

2500
particles

5000
particles

6500
particles

7500
particles

8500
particles

10000
particles

2 2.0 2.0 2.0 2.0 2.1 1.8
3 4.7 4.5 4.4 4.5 3.1 2.1
4 6.9 7.4 5.3 5.6 3.4 2.5
5 12.2 11.5 9.1 7.6 5.2 3.4
6 15.2 15.5 11.9 10.4 8.9 4.2
7 22.1 21.0 12.6 11.2 10.6 6.2
9 30.0 32.3 18.4 15.6 11.7 9.8
10 36.6 36.2 21.4 37.7 15.5 16.3
15 41.1 53.7 45.9 37.7 34.1 41.2
21 53.7 115.8 61.6 67.8 47.5 78.8
35 111.9 190.9 173.3 184.0 194.3 186.0
45 149.8 228.9 252.5 239.6 279.2 254.4
64 173.1 389.5 416.4 490.0 436.9 406.5

4.5 Cluster Specific B

Experiment nine is done with a fixed number of particles in a fixed space. It is found

that with a fixed number of particles and a fixed number of nodes, the computation
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time changes significantly as the number of nodes does not change. The reason is

that the number of particles existing in one node changes a lot due to the random

distribution of particles and the computation time for each node also changes, nodes

that finishing earlier will wait for the slower ones. Load balancing isn’t appropriate

here because "moving" particles between nodes will introduce more overhead. In

order to observe the influence of communication time between computing nodes, I

tried a fixed number of particles per node. I make every computing node control 1000

particles and change the number of computing nodes, so the whole number of particles

is equal to the number of nodes times 1000. You need to address why load balancing

isn’t appropriate here (because "moving" particles between nodes will introduce more

overhead).

Also considering the number of neighbors, we tried two kinds of topology: one-

dimensional and two-dimensional. Experiment ten was carried out by varying the

number of nodes to compare the performance. Depending on the number of nodes,

we make a one-dimensional (linear) or two-dimensional (grid) topology.

Figure 4.8: Computation time in one dimensional topology
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Figure 4.8 shows the range of computation time for 1000 particles per computing

node in a one dimension topology. The blue line indicates the minimum computation

time for the whole experiment of 1000 iterations and the the red line indicates the

maximum computation time for the whole experiment of same iterations. From the

picture, we can see that the computation time ranges from 40 to 100 seconds. Each

result is produced by more than 10 experiment runs. The reason is that after the

heartbeat algorithm starts, the number of particles that exist in one node changes,

maybe more or less than 1000. If one node finishes computing earlier than the oth-

ers, it needs to wait until the last node finishes. So that the time is changeable.

Given 1000 particles, the computing time is 38 seconds using only one node with no

communication and the computing time for 2000 particles in the same condition, 152

seconds.

Table 4.7: Computation time in one dimensional topology (seconds)
Number
of
nodes

MIN
time

MAX time

1 38
2 38.2911 65.2715
3 43.2357 99.7295
4 45.7749 92.6292
5 46.9007 102.4702
6 45.4013 105.6367
7 44.7699 106.5086
8 46.6809 101.2028
9 42.7735 105.531
10 46.2103 106.8025
15 47.7044 103.6966
20 47.2502 103.5919
30 48.5195 107.0664
40 52.0298 106.3271
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Figure 4.9: Computation time in two dimensional topology

Figure 4.9 shows the range of computation time for 1000 particles per computing

node in a two dimension topology. It is shown that the lowest point and the highest

point of each line are both higher than the last picture in the one dimension topology.

For a two dimension topology, each node may have three to eight neighbors rather

than only left and right neighbors in the one dimension topology, the communication

time is increasing.

From the above two pictures, the computation time changes a lot for the number

of particle changes in a specific space. Since the number of particles per node is fixed,

adding nodes increases the total number of particles. The fact that the computation

time does not increase significantly suggest that a distributed heartbeat approach

will scale very well except for the problem. If we reduce 1000 iteration times to 100

iteration times, the particles per node will not change significantly.
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Table 4.8: Computation time in two dimensional topology (seconds)
Number
of
nodes

MIN
time

MAX time

1 38
4 53.7612 144.1483
6 53.1705 128.8348
8 52.6811 126.9911
10 53.2773 138.1135
12 56.3989 126.8814
14 55.0163 124.7148
15 55.4917 114.4466
16 58.5433 133.7274
18 56.6631 132.3635
20 58.6632 131.9641
21 57.3664 132.7649
24 59.6642 133.043
25 59.2021 135.8864
28 57.5963 136.5483
30 59.6601 138.5521
32 60.8828 138.5523
35 63.1712 141.0312
40 59.7905 139.0524
45 60.3779 140.9597

Figure 4.10: Example results running with 24 nodes
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Figure 4.10 shows an example of results running with 24 nodes. It is shown that

when the simulation finished, the local number of particles ranged from 583 to 1222.

Figure 4.11 represents the computation time for 100 iterations in two different

topologies. The blue line shows the heartbeat running time for 1000 particles each

node in one dimension and the red line shows the results in two dimension.

Figure 4.11: Computation time in two dimensional topologies

Two flat lines in figure 4.11 shows that the communication time between nodes is

almost the same though the number of nodes vary. Also, if a node has more neighbors,

the communication time is longer. In the same topology, no matter how the number

of nodes change, the communication time will be almost the same. This is because the

network topology is such that the number of neighbors for each node does not increase

as the number of nodes increases. But the communication time also depends on how

many particles move between a node and its neighbor. For our particle simulation,

the data transmitted between nodes is relatively small. There are some factors that

have influence on the communication time. First, particle’s properties such as small

radius and velocities. Second, simulation settings such as short time step. Short time

step make particles move short distance slowly every time step. After tracking the

communication between nodes, it is found that there was at most a dozen of particles
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moving across the boundary every time step and most time, there was only several

particles or even zero particle across the boundary. As a result, the nodes will not

keep communicating with all the neighbors all the time. If a lot of particles keep

across the boundary all the time, the communication time may be different.

As for applying the ice simulation, ice floes almost cover all the simulation space

and an ice floe is big enough to cover more than one node. Every time step ice floes

move a lot and the simulator should make all nodes communicate to keep update.

The amount of communication will be very large, such as updating all ice floes, and

transmitting information of ice floe that crosses borders to several neighbors. This is

another problem of workload balancing, which will be studied further in the future

work.



Chapter 5

Conclusion

Powerful programming techniques are playing an important role in solving scientific

problems, especially scientific simulations. When programmers choose different plat-

forms, like CPU, GPU, cluster and so on, different algorithms and programming lan-

guages are chosen to fit the hardware. In order to consider appropriate architectures

and algorithms for the GEM Ice Simulation, which is supported by the Sustainable

Technology for Polar Ships and Structures project(referred to as STePS2), perfor-

mance of a similar two dimensional simulation of simple particles was evaluated using

a variety of hardware architectures and algorithms

This thesis deals mainly with a two dimensional particle simulation to understand

a planar motion system under the influence of given velocities in a constrained area.

This particle simulation was executed using three different approaches: CPU, GPU,

and CPU cluster. Programs were written in C with CUDA and MPI. Some program-

ming paradigms can be applied on both ice-flow simulation and similar planar motion

systems, some algorithms can be applied on almost all the hardware. The first goal in

the thesis is studying the performances of the different architectures and algorithms

for a group of two dimensional moving objects across a wide area. The second goal is

71
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to study the advantages and disadvantages of the techniques developed to solve this

kind of problems along with how different approaches affect the results.

5.1 Contributions

The two dimensional particle simulation was executed using three different approaches:

CPU, GPU, and CPU cluster. The scale of the simulation was relatively small and

the iteration time was up to 1000 times. For parts of the experiments, there were

up to 10000 particles and the density of particles was set as 78.5% of the area. For

the other experiments, the number of particles were decided by the computing nodes

used on the CPU cluster.

On the CPU, the particle simulation used the serial program with two methods:

the particle method and the grid method. To provide a relevant comparison, the code

also ran with two data types: the float data type and the double data type. From

the results, it is shown that the time required for the particle method using two data

types changed a lot. But the time required for the grid methods were almost the same.

In the particle method, the main math calculation is to get the square root as the

distance for every particle pair. While, using the grid method, the frequency of this

calculation is largely reduced. So the proportion of math calculation in a simulation

is proved as one important factor to affect the simulation time.

On the GPU, two different parallel designs were built to fit two methods. The

computation time of the particle method changed a lot with the change of the number

of particles. While for the grid method, the computation time changed little. Because

the former one used one thread control one particle to find the collision. The latter

one costed time most in building grids and finding collision in a grid and its neighbour

grids. So the number of particles do not have much influence on the simulation time
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using the grid method. Due to the different programming architectures, the grid

method is shown to fit better for this simulation, especially with a large number

of objects in a constrained area. On the other hand, the particle method is fit for

simulating small number of objects. Based on the grid method, the grid size also

needed to be set appropriately. If one grid and its neighbors can cover most of the

simulation area, the computation will have overlap and results were worse than the

particle method.

Using the CPU cluster, a master-slave design was built first. This design is shown

to have a bottleneck on the performance of the CPU clusters with large number of

computing nodes, which meant for this master-slave paradigm, there was a best effi-

ciency due to the communication time and computation time on each computing node.

Given different amounts of the data, the bottleneck was different. This paradigm is

fit for the simulation with a high proportion of the computation and the bottleneck is

far away to reach. The distributed algorithm showed much better performance than

the master-slave design for it reduced the memory held by each processor directly.

Using the distributed design, the workloads on each computing node are different

and change all the time during the simulation, so the simulation time is not stable.

To prove different workloads affect the distributed design, a fixed number of parti-

cles per computing node and smaller iteration times was applied after rather than a

fixed number of particles in a fixed area. As a result, this paradigm is thought to be

more suitable for the simulation with same workload on each computing node. The

results were produced by this small scale of particle simulation, if the simulation are

large enough, the results are expected to be almost the same for the basic simulation

framework stays the same. For this distributed design, the main idea is distributing

the memory. The performance will not change much when the simulator increase the

number of computing nodes and the number of particles together as long as keeping
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the same workload on each computing node. It is also shown that the communication

time between nodes is almost the same though the number of nodes vary.

5.2 Discussion and Limitations

Using different methods on the GPU, the computing performance was different. The

grid-method was always better than the particle method when the number of particles

and grids were large. For our experiments, when the number of grids built was so

small that the performance of the grid method was worse than the particle method.

The GPU card used did not support the double data type, so all the experiments used

the float data type.

To compare the performance with the CPU cluster and the GPU, their results are

both compared to the results of CPU. The particle method used on the GPU shows

the speedups of 24.6, 30.4, 32.3, 33.4, 33.6, and 35.2 compared to particle method

used on the CPU. The grid method shows the speedups of 7.0, 16.0, 20.5, 25.9, 30.1,

and 36.3. The speedups of the distributed design used on the CPU cluster changes

with the number of computing nodes. Start with two computing nodes, the speedups

are 2.0, 2.0, 2.0, 2.0, 2.1, and 1.8. When the number of computing nodes is more than

fifteen, the average speedup is more than 40. The distributed design shows the best

performance in a way for this particle simulation and the main factor is the number

of computing nodes used.

This two dimensional particle simulation model is suitable for other two dimen-

sional planar motion systems’ simulations. In a way, the figure of moving objects

can be different, the framework can be reused. While there is no mutual attraction

or repulsion force considered in our simulation, like gravity or electromagnetic. If

there are more driving forces, the parallel part should be redesigned due to different
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computations. As in the ice-flow simulation, all ice-flows are resting and will gain

velocities after the ship goes through. Particles are given fixed velocities at the start

and move with elastic collisions. No gravity, acceleration are taken into consideration,

so the computation of dealing with collisions is not complex. Since the moving parti-

cles are spheres, the method for detecting collisions is simple. If the moving object is

polyhedral, the function will be more complex and can also be added to the parallel

part.

5.3 Future Work

For this work was done in a small scale of the data, in order to solidify the conclusion,

experiments with greater computation power should be taken out, such as bigger

cluster or advanced GPU cards.

Compared with the event-driven simulation, the accuracy of the time-driven sim-

ulation is relatively low. In this particle simulation, the time step was set to let the

particle move about one diameter. During simulation, particles may overlap each

other or collide with others without calculating the collision. This problem can be

solved using a event-driven simulation or shorter time step. As mentioned in chap-

ter two, the event-driven simulation will store all the collision times and none will

be missed. A comparision of event-driven simulation with time-driven simulation for

this problem will be of interest.

To improve the interconnects and software, the application of the new technology

and greater computation power should be considered, like GPU cluster. According to

the conclusions, the framework and distributed algorithms used on the CPU cluster

can also be applied on a GPU cluster. A GPU cluster combines both the advantages

of the GPU and the cluster, which are expected to show greater efficiency.
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The methods used have many ways to be implemented, like using grid method on

the GPU. There are different ways to build up the grid, like constructing matrices

and trees. In our work, radix sort is used to build the grid. Different ways produce

different parallel designs, which also have influence on the efficiency of the whole

simulation.

Rather than using a simple particle system, the ice-flow model or other irregular

objects can be applied. The equations of their motion will be more complex and

there are also many driving forces which have influences on the system, such as heat,

gravity, and pressure.
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