
Test-Driven Development with
Oracles and Formal

Specifications

By

Shadi G. Alawneh, B. Eng.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree of

Master of Engineering

Memorial University of Newfoundland

c© Copyright by Shadi G. Alawneh, June 2010

ii

Master of Engineering (2010) Memorial University of Newfoundland
(Electrical and Computer Engineering) St. John’s, NewFoundland

Title: Test-Driven Development with Oracles and Formal Specifications

Author: Shadi G. Alawneh, B. Eng. (Jordan University of Science and Tech-
nology)

Supervisor: Dr. Dennis K. Peters

Number of pages: xii, 104

Abstract

The current industry trend to using Test Driven Development (TDD) is a recognition

of the high value of creating executable tests as part of the development process. In

TDD, the test code is a formal documentation of the required behaviour of the com-

ponent or system being developed, but this documentation is necessarily incomplete

and often over-specific. An alternative approach to TDD is to develop the specifi-

cation of the required behaviour in a formal notation as a part of the TDD process

and to generate test oracles from that specification. In this thesis we present tools in

support of this approach that allow formal specifications to be written in a readable

manner that is tightly integrated with the code through an integrated development

environment, and test oracles to be generated automatically. The generated test code

integrates smoothly with test frameworks (e.g., JUnit) and so can be directly used in

TDD. This approach has the advantage that the specifications can be complete and

appropriately abstract but still support TDD.

i

Acknowledgements

I would like to express my sincere appreciation for the assistance and guidance of Dr.

Dennis K. Peters in the preparation of this thesis.

Also, I gratefully acknowledge the financial assistance received from the Faculty

of Engineering and Applied Science, Memorial University and the Natural Sciences

and Engineering Research Council (NSERC).

I would specially like to thank the people in the CERL lab (Ala’a S. Al-habashna,

Al-Abbass Al-Habashneh and Rabie Almatarneh). It has been a lot of coffee with

them.

Last but not least my father (Ghazi) and mother (Moyasser), just for being you.

ii

Contents

Abstract i

Acknowledgements ii

List of Acronyms xii

1 Introduction 1

1.1 Purpose . 3

1.2 Scope . 4

1.3 Types of Documents . 5

1.4 Fillmore Software Project . 5

1.5 Outline of This Thesis . 6

2 Related Work 7

2.1 Test Driven Development . 7

2.2 Oracle Generation . 11

3 Methodology 15

iii

CONTENTS iv

3.1 Formal Software Specifications . 15

3.2 Program Specifications . 16

3.2.1 Constants . 17

3.2.2 Variables . 17

3.2.3 Auxiliary Function And Predicate Definitions 17

3.2.4 Predicate Expressions . 18

3.2.5 Quantified Expressions . 18

3.2.6 Tabular Expressions . 18

3.2.7 Sample Program Specification 20

3.3 Tool Support . 20

3.3.1 OMDoc Document Model . 21

3.3.2 The Eclipse Framework . 25

3.3.3 Specification Editor . 26

4 Oracle Generation 28

4.1 Oracle Design . 29

4.1.1 Programming Language . 29

4.1.2 Internal Design Overview . 29

4.1.2.1 Expression Implementation 30

4.1.3 Scalar Expressions . 31

4.1.3.1 Logical Operators 31

4.1.3.2 Quantification . 32

4.1.4 Tabular Expressions . 33

CONTENTS v

4.1.5 Auxiliary Functions . 35

4.1.6 Compilation and Execution 37

4.2 Test Oracle Generator Design . 41

4.2.1 Requirements . 41

4.2.1.1 Assumptions . 41

4.2.1.2 User Interface . 42

4.2.1.3 Input Format . 42

4.2.1.4 Anticipated Changes 43

4.2.2 Package Design . 43

4.2.3 New Packages Added To Fillmore 44

4.2.3.1 Oracle Generator Actions

(ca.Fillmoresoftware.plugin.actions) 44

4.2.3.2 Oracle Generation (ca.Fillmoresoftware.plugin.OracleGen) 45

4.2.3.3 Oracle Utilities (ca.Fillmoresoftware.plugin.OracleUtilities) 46

4.2.4 Old Packages In Fillmore . 46

4.2.4.1 Specification Model (ca.Fillmoresoftware.plugin.specmodel) 47

4.2.4.2 Kernel (ca.Fillmoresoftware.kernel) 48

4.2.4.3 Editors (ca.Fillmoresoftware.plugin.editors) 48

4.2.4.4 Preferences (ca.Fillmoresoftware.plugin.preferences) . 49

4.2.5 Symbols Representation . 50

4.2.5.1 Catagories of Symbols 51

4.2.6 Algorithem Overview . 56

CONTENTS vi

4.2.6.1 Expression Coding 56

5 Test Driven Development With Oracles 58

5.1 Test Driven Development with Oracles 58

5.1.1 Test Driven Development For Methods 59

5.1.2 Test Driven Development For Classes 66

6 Future Work and Conclusion 72

6.1 Future Work . 72

6.2 Conclusions . 73

A Class Responsibility Collaborator (CRC) 74

A.1 Class Responsibility Collaborator (CRC) Tables 74

B The Generated Oracle Code 87

B.1 The Generated Oracle Code From The Sample Example 87

List of Figures

1.1 The Steps of Test-Driven Development (TDD)[2] 2

3.1 Ggcd Program Specification . 21

3.2 Screenshot of Editor . 27

4.1 Oracle Design of ggcd Tabular Expression 35

4.2 TestResult . 41

4.3 Packages Diagram . 44

4.4 Actions Package Class Diagram . 45

4.5 OracleGen Package Class Diagram 46

4.6 OracleUtilities Package Class Diagram 47

5.1 The Steps of TDD Approach . 60

5.2 NoSuchElementException . 62

vii

List of Tables

4.1 Logical Operator Conversions . 32

4.2 Infix Symbols “Use” Values . 53

4.3 Unary Symbols “Use” Values . 54

A.1 GenerateAuxFunAction Class Responsibility Collaborator (CRC) . . 74

A.2 GenerateOracleAction Class Responsibility Collaborator (CRC) . . . 75

A.3 OracleAction Class Responsibility Collaborator (CRC) 75

A.4 CodeFromOMobject Class Responsibility Collaborator (CRC) 75

A.5 CodeFromOMS Class Responsibility Collaborator (CRC) 75

A.6 CodeFromOMA Class Responsibility Collaborator (CRC) 75

A.7 CodeFromOMI Class Responsibility Collaborator (CRC) 76

A.8 CodeFromOMV Class Responsibility Collaborator (CRC) 76

A.9 CodeFromTabularExp Class Responsibility Collaborator (CRC) . . . 76

A.10 CodeFromTheory Class Responsibility Collaborator (CRC) 76

A.11 OracleModel Class Responsibility Collaborator (CRC) 76

A.12 CellBase Class Responsibility Collaborator (CRC) 76

viii

LIST OF TABLES ix

A.13 CellIndex Class Responsibility Collaborator (CRC) 77

A.14 Integer Interval Class Responsibility Collaborator (CRC) 77

A.15 InvertedTable Class Responsibility Collaborator (CRC) 77

A.16 NormalTable Class Responsibility Collaborator (CRC) 77

A.17 VectorTable Class Responsibility Collaborator (CRC) 77

A.18 TableGrid Class Responsibility Collaborator (CRC) 77

A.19 VarMap Class Responsibility Collaborator (CRC) 78

A.20 SpecModel Class Responsibility Collaborator (CRC) 78

A.21 SpecModelElement Class Responsibility Collaborator (CRC) 78

A.22 SpecModelErrorHandler Class Responsibility Collaborator (CRC) . . 78

A.23 SpecModelParser Class Responsibility Collaborator (CRC) 78

A.24 ISpecModelListener Class Responsibility Collaborator (CRC) 79

A.25 ChangeNotifier Class Responsibility Collaborator (CRC) 79

A.26 DOMXMLWriter Class Responsibility Collaborator (CRC) 79

A.27 OMDOMReader Class Responsibility Collaborator (CRC) 79

A.28 ElementTag Class Responsibility Collaborator (CRC) 79

A.29 Theory Class Responsibility Collaborator (CRC) 79

A.30 Symbol Class Responsibility Collaborator (CRC) 80

A.31 TTSRole Class Responsibility Collaborator (CRC) 80

A.32 Type Class Responsibility Collaborator (CRC) 80

A.33 Definition Class Responsibility Collaborator (CRC) 80

A.34 Presentation Class Responsibility Collaborator (CRC) 80

LIST OF TABLES x

A.35 Use Class Responsibility Collaborator (CRC) 80

A.36 MObject Class Responsibility Collaborator (CRC) 81

A.37 Table Class Responsibility Collaborator (CRC) 81

A.38 TableFactory Class Responsibility Collaborator (CRC) 81

A.39 EvalTerm Class Responsibility Collaborator (CRC) 81

A.40 EvalTermFactory Class Responsibility Collaborator (CRC) 81

A.41 GenRest Class Responsibility Collaborator (CRC) 81

A.42 GenRestFactory Class Responsibility Collaborator (CRC) 82

A.43 Grid Class Responsibility Collaborator (CRC) 82

A.44 Index Class Responsibility Collaborator (CRC) 82

A.45 IndexFactory Class Responsibility Collaborator (CRC) 82

A.46 InvertedEvalTerm Class Responsibility Collaborator (CRC) 82

A.47 NormalEvalTerm Class Responsibility Collaborator (CRC) 82

A.48 VectorEvalTerm Class Responsibility Collaborator (CRC) 82

A.49 NormalGenRest Class Responsibility Collaborator (CRC) 83

A.50 OMUtil Class Responsibility Collaborator (CRC) 83

A.51 RectIndex Class Responsibility Collaborator (CRC) 83

A.52 RectShape Class Responsibility Collaborator (CRC) 83

A.53 RectShapeIterator Class Responsibility Collaborator (CRC) 83

A.54 RectStructRest Class Responsibility Collaborator (CRC) 83

A.55 Shape Class Responsibility Collaborator (CRC) 83

A.56 ShapeFactory Class Responsibility Collaborator (CRC) 84

LIST OF TABLES xi

A.57 StructRest Class Responsibility Collaborator (CRC) 84

A.58 StructRestFactory Class Responsibility Collaborator (CRC) 84

A.59 ElementDialog Class Responsibility Collaborator (CRC) 84

A.60 ISpecModelSelectable Class Responsibility Collaborator (CRC) 84

A.61 SpecEditor Class Responsibility Collaborator (CRC) 84

A.62 SpecEditorContributor Class Responsibility Collaborator (CRC) . . . 85

A.63 SpecElementLabelProvider Class Responsibility Collaborator (CRC) . 85

A.64 SpecErrorHandler Class Responsibility Collaborator (CRC) 85

A.65 SpecOutlinePage Class Responsibility Collaborator (CRC) 85

A.66 SpecTreeContentProvider Class Responsibility Collaborator (CRC) . 85

A.67 FillmorePreferencePage Class Responsibility Collaborator (CRC) . . 86

A.68 PreferenceConstants Class Responsibility Collaborator (CRC) 86

A.69 PreferenceInitializer Class Responsibility Collaborator (CRC) 86

A.70 TestOraclePreferences Class Responsibility Collaborator (CRC) . . . 86

List of Acronyms

Acronym Description

TOG Test Oracle Generator

TDD Test Driven Development

XP Extreme Programming

JML Java Modeling Language

TTS Table Tool System

FM Formal Methods

ADT Abstract Data Type

xii

Chapter 1

Introduction

Test-Driven Development (TDD) is a methodology that uses tests to help developers

make the right decisions at the right time. TDD is not about testing, it is about using

tests to create software in a simple, incremental way. Not only does this improve the

quality and design of the software, but it also simplifies the development process. The

steps of TDD are illustrated in the UML activity diagram of Figure 1.1. TDD is one of

the core practices of Extreme Programming (XP)[6, 21]. Two key principles of TDD

are 1) that no implementation code is written without first having a test case that

fails with the current implementation, and 2) that we stop writing the implementation

as soon as all of the existing test cases pass. Although not all developers agree with

all of the XP practices, the ideas of TDD have started to gain wide acceptance.

In TDD, the test code is a formal documentation that describes the required

behaviour for the component or the system being developed for the particular test

cases included. However, tests alone describe the properties of a program only in

1

1. Introduction 2

Figure 1.1: The Steps of Test-Driven Development (TDD)[2]

terms of examples and thus are not sufficient to completely describe the behaviour

of a program. So, this documentation is unavoidably incomplete and often over-

specific. To solve this problem we propose an alternative approach to TDD, which

is to develop a formal specification of the required behaviour as a part of the TDD

process and then generate test oracles from that specification. We thus propose a

variation on the key TDD principles listed above: 1) No implementation code is

written without first having a specification for the behaviour that is not satisfied by

the current implementation, and 2) we stop writing the implementation as soon as

the implementation satisfies the current specification. By generating oracles directly

from the specification we are able to quickly and accurately check if the specification

1. Introduction 3

is satisfied by the implementation for the selected test cases.

1.1 Purpose

In the context of test driven development, tests specify the behaviour of a program

before the code that implements the program is actually written. In addition, they are

used as a main source of documentation in XP projects, together with the program

code.

An alternative approach to TDD is to develop a formal specification of the required

behaviour as a part of the TDD process and then generate test oracles from that

specification. If a program has been formally specified, it should be possible to use

the specification as an oracle, so the expected output need not to be given by the user.

This is particularly useful if the formal documentation is of a from that can be read

and understood by both domain experts and programmers. Such documentation can

be reviewed by the domain experts to ensure that the specified behaviour is correct

and then used to communicate their intentions to the programmers. Generating

an oracle from this documentation allows us to ensure that the documentation and

prgram are consistent.

The purpose of this work is to develop tools in support of this approach that allow

formal specifications to be written in a readable manner that is tightly integrated

with the code through an integrated development environment, and test oracles to

be generated automatically. One of the tools that we have developed is a Test Oracle

Generator (TOG) tool that, given a relational program specification [33] using tabular

1. Introduction 4

expressions [34], will produce a program that will act as an oracle. This oracle program

will take as input an (input, output) pair from the program under test and will return

true if the pair satisfies the relation described by the specification, or false if it does

not.

1.2 Scope

In this thesis, we considered applying our approach for Test Driven Develop-

ment(TDD) on methods and classes which are the basic components for any software

application.

In our work, the kind of testing that we considered is the one composed of eval-

uating executable parts of the software system. Testing is one of the methods used

to verify the software system, but in this work we didn’t use the software verification

since it has more wide meaning. We didn’t discuss the selection of suitable tests

for a component and how efficient those tests are. Interested readers are referred to

the cited publication [46] for more details about these issues and a good survey of

the related literature. Also, the kind of programs that we considered in this work is

the terminating programs. For the non-terminating programs, some terminating sub

programs (e.g. the body of an infinite loop) could be documented and tested using

these methods.

Our methods are applicable for programs written in different kinds of program-

ming languages but the tools that we have implemented to describe and explain these

techniques only work for those written in ‘Java’.

1. Introduction 5

1.3 Types of Documents

The documentation is very important for computer systems. The goal of software

documentation is to describe software systems and software processes. According

to information in [22], consistent, correct and complete documentation of a software

system is an important vehicle for the maintainer to gain an understanding of the

system, to ease the learning and /or relearning processes, and to make the system

more maintainable. Poor system documentation, on the other hand, is the primary

reason for quick software system quality degradation and aging. Proper process doc-

umentation records the process, its stages and tasks, executing roles, their decisions

and motivations, and the results of each individual process task.

With reference to the set of documents described in [36], in this work, we are

focused on using module internal design documents [37] or module interface speci-

fications to drive the development [42]. These two types of documents specify the

behaviour of the module either in terms of the internal data structure and the effect

of each access program on it, or in terms of the externally observable behaviour of

the module.

1.4 Fillmore Software Project

The Fillmore Software Project [39, 40], is a collaborative project between researchers

at Memorial University, McMaster University and the University of Limerick that

was started in the Fall of 2006 and is aimed at building a suite of tools to provide

1. Introduction 6

better support for software specifications or descriptions of software behaviour. The

purpose of these tools is to improve the quality of the developed software.

This project attempts to develop a suite of tools for development, analysis and

use of tabular software specifications. The set of tools that may be appropriate

outcomes from this project is very large and includes powerful editors, document

consistency checkers, verification systems, oracle generators, test case generators and

model checkers. As a part of our work, we implemented the TOG part of the Fillmore

Software Project.

1.5 Outline of This Thesis

Chapter 2 describes the related work. Chapter 3 describes the content and the format

of the type of the program specification to be used for generating a test oracle. The

design of the oracle itself and the design of the Test Oracle Generator are discussed

in Chapter 4, and Chapter 5 discusses the Test Driven Development approach with

oracles and formal specifications. Chapter 6 discusses the conclusions.

Chapter 2

Related Work

2.1 Test Driven Development

This section first describes TDD practice in detail, then details an empirical study

of TDD that has been completed by researchers in Germany [26]. It also, describes

some research that uses TDD.

In the TDD, before writing implementation code, the developer writes automated

unit test cases for the new functionality they are about to implement. After writing

test cases that generally will not even compile, the developers write implementation

code to pass these test cases. The developer writes a few test cases, implements the

code, writes a few test cases, implements the code, and so on. The work is kept

within the developers intellectual control because he or she is continuously making

small design and implementation decisions and increasing functionality at a relatively

consistent rate. A new functionality is not considered properly implemented unless

7

2. Related Work 8

these new unit test cases and every other unit test cases ever written for the code

base run properly.

Based on [16], TDD is considered preferable over other approaches.

• In any process, there exists a gap between decision (design developed) and

feedback (performance obtained by implementing that design). The favorable

outcome of TDD can be ascribed to the lowering, if not eliminating, of that gap,

as the granular test-then-code cycle gives constant feedback to the developer

[7]. Consequently, bugs and their causes can be easily determined—the bug

must lie in the code that was just written or in code with which the recently

added code interacts. An often-cited tenet of Software Engineering, in concert

with the Cost of Change [9], is that the longer a bug remains in a software

system the more difficult and costly it is to remove. By using TDD, bugs are

determined very quickly and the source of the bug is more easily determined.

Therefore, it is this higher granularity of TDD that distinguishes the practice

from other testing and development models.

• TDD gives programmers the ability to write code that can be tested automati-

cally, such as having functions/methods returning a value which can be checked

against expected results. Some benefits of automated testing include: (1) pro-

duction of reliable systems, (2) improvement to the quality of the test effort,

and (3) reduction of the test effort and minimization of the schedule.

• The TDD test cases create a thorough regression test bed. By continuously

running these automated test cases, one can easily determine if a new change

2. Related Work 9

breaks anything in the existing system. This test bed should also allow smooth

integration of new functionality into the code base.

Lately, there are studies to analyze the efficiency of the TDD approach. Muller

and Hagner [26] reported an experiment to compare TDD with traditional program-

ming. The experiment is done with 19 graduate students, evaluated the efficiency

of TDD in terms of (1) programming speed, (2) program reliability and (3) program

understanding. In this experiment, the subjects were divided into two groups, TDD

and control, with each group solving the same task. The task to be solved in this

experiment is called “GraphBase”. It consists of implementing the main class of a

given graph library containing only the method declarations and method comments

but not the method bodies; the students completed the body of the necessary meth-

ods. The programming was done in this way to give the researchers the ability to

assess automated acceptance testing for their analysis.

The test cases that was specified by the TDD group was implemented while the

code was written, but the control group students wrote automated test cases after

completing the code. Subjects work for the two groups was divided into two phases,

an implementation phase (IP), during which the subjects solved their assignment

until they thought that their program would run correctly. This phase finished with

their call for the acceptance-test. An acceptance-test phase (AP), during which the

subjects had to fix the faults that caused the acceptance-test to fail. The researchers

found no difference between the groups in overall development time. The TDD group

had lower reliability after the IP phase and higher reliability after the AP phase.

2. Related Work 10

However the TDD groups had statistically significant fewer errors when the code was

reused. Based on these results the researchers concluded that writing programs in

test-first manner neither leads to quicker development nor provides an increase in

quality. However, the understandability of the program increases, measured in terms

of proper reuse of existing interfaces.

Despite these results, this study is far from being a complete evaluation of test-

first programming. The authors encourage other researchers to do the experiment

again or to conduct a similar in order to extend the knowledge about test-first.

There are some researchers who have described tools that can be used to combine

formal specifications with test driven development without loosing the agility of test

driven development. In [5], Baumeister describes a tool that provides support to

combine formal specifications with test driven development. This is done by using

the tests, that drive the development of the code, also to drive the development of

the formal specification. By generating runtime assertions from the specification it is

possible to check for inconsistencies between code, specifications, and tests. Each of

the three artifacts improves the quality of the other two, yielding better code quality

and better program documentation in the form of a validated formal specification of

the program. This method is exemplified by using the primes example with Java as

the programming language, JUnit as the testing framework, and the Java Modeling

Language (JML) [24] for the formulation of class invariants and pre- and postcon-

ditions for methods. They use JML since JML specifications are easily understood

by programmers, and because it comes with a runtime assertion checker [11], which

2. Related Work 11

allows them to check invariants and pre- and postconditions of methods at runtime.

Our work is different from the work above in that we use relations for the speci-

fications, which characterize the acceptable set of outcomes for a given input. Also,

we use test oracles that are generated automatically from the program specifications

to determine if the software behaviour is correct or not for a given test input and

output. By generating oracles directly from the specification we are able to quickly

and accurately check if the specification is satisfied by the implementation for the

selected test cases.

In [19], Herranz and Moreno-Navarro have studied how the technology of For-

mal Methods (FM) can interact with an agile process in general and with Extreme

Programming (XP) in particular. They have presented how some XP practices can

admit the integration of Formal Methods and declarative technology. In particular,

unit testing, refactoring, and, in a more detailed way, incremental development have

been studied from the prism of FM.

2.2 Oracle Generation

The research that has been done on improving the efficiency of software testing is

divided into two categories: one is focused on the test case selection [17, 15, 27, 30],

the other has concentrated on developing tools to help generate, maintain and track

the testing documentation or run tests in simulated environments [10, 18, 31, 32].

All previous research areas are supportive to, but is different from the work that has

done in this thesis.

2. Related Work 12

Several researchers have developed tools that give the user the ability to determine

if the results of a test are correct or not. In [31], Panzl explained three different kinds

of automatic software test drivers that can be used to automate the verification of

test results. In [18] Hamlet described another automatic testing system based on

finite test-data sets, implemented by modifying a compiler. The disadvantages of

these testing systems are: 1) The user should specify the expected result, which may

be hard to acquire, and 2) The relational specifications, which may accept more than

one acceptable result for a given input, can’t be used because these systems only

compare the expected and actual result.

The last disadvantage is partly solved by Chapman in [10]. This system de-

scribes the design and implementation of a program testing assistant which aids a

programmer in the definition, execution, and modification of test cases during incre-

mental program development. Moreover, it gives the programmer the ability to set

the success criteria for a test case or use the default criterion equal, which checks for

simple equality of a result and its correct value. Examples of other success criteria

are set-equal, which checks two sets to see that they contain the same elements and

isomorphic, which checks that arbitrary structures, possibly including pointer cycles,

are topologically identical.

In[41] Peters and Parnas discuss the use of test oracles generated from program

documentation. They describe an algorithm that can be used to generate a test oracle

from program documentation, and present the results of using a tool based on it to

help test part of a commercial network management application. The results demon-

2. Related Work 13

strate that these methods can be effective at detecting errors and greatly increase

the speed and accuracy of test evaluation when compared with manual evaluation. A

design of test oracle generator they used allows using only C programming language

in this prototype. If we need to choose among several programming languages we

need to add several additional sub modules, one for each language.

In [38] Peters developed a prototype automated Test Oracle Generator (TOG) tool

that, given a relational program specification using tabular expressions, will produce

a program that will act as an oracle. This oracle program will takes input an input,

output pair from the program under test and will return true if the pair satisfies the

relation described by the specification, or false if it does not.

Other kind of systems, such as ANNA [25] and APP [44], give the user the ability

to write code annotated with assertions that are evaluated while the code is exe-

cuted. These assertions can be used as an oracle if they are completely specified and

accurately placed to define the program specification.

In [45], Stocks and Carrington described a Test Template Framework (TTF) which

is a structured strategy and a formal framework for Specification-based Testing (SBT)

which is using the Z notation. In [43], Richardson et al. encourage the process of

generating test oracles from formal specifications.

Other researchers have explained generating test oracles for abstract data types

(ADTs) that are defined using algebraic specifications, e.g [3, 8, 14] or ‘trace’ specifi-

cations [47]. These kind of specification approaches discuss another kind of problem

which is different from the specification approaches that is used in this work in that

2. Related Work 14

they specify the desired properties of an ADT which is implemented by a group of

programs, but the approaches that are used in this work are used specify the effect

of a single program on some data structure.

Chapter 3

Methodology

3.1 Formal Software Specifications

Formal Specifications are documentation methods that use a mathematical descrip-

tion of software or hardware, which may be used to develop an implementation

to drive automated testing. The emphasis is on what the system should do, not

necessarily how the system should do it. Also, formal software specifications are

expressed in a language whose vocabulary, syntax and semantics are formally defined.

Examples of such languages (or notations) are VDM, Z, and B.

Formal specifications have several advantages over more traditional (informal)

techniques:

I Since they are precisely defined, there is little room for misinterpretation

of the intended meaning. This is in stark contrast to natural language and

15

3. Methodology 16

other informal techniques, which leave lots of room for (mis)interpretation.

II Formal Specifications are mathematical entities, so they may be analyzed

using mathematical methods and tools.

III They can be processed automatically, so we can use them as an exchange

medium for software tools that depend on it.

IV They can be used as a guide for identifying appropriate test cases.

V They can be used to objectively determine if the behaviour of a system is

acceptable or not.

For automated testing some form of formal specification of the required behaviour is

essential. In a traditional automated testing process, this specification is in the form of

the testing code, which will implement comparisons or tests to determine if the actual

behaviour is acceptable. In this work we propose that the specification be expressed in

a mathematical notation and that specification can be used to automatically generate

testing code.

3.2 Program Specifications

A program specification in our work, describes the required behaviour of a program

either in terms of the internal data structure and the effect of each access program

on it, or in terms of the externally observable behaviour of the module. It consists of

these components: constants, variables, auxiliary function and predicate definitions,

3. Methodology 17

the program invocation, which gives the name and type of the program and lists all

its actual argument program variables, and an expression that gives the semantics of

the program. The following explains these in more detail.

3.2.1 Constants

A constant is a special kind of variable whose value cannot be altered during pro-

gram execution. Many programming languages make an explicit syntactic distinction

between constant and variable symbols. For example, in Java the following are con-

stants: 10 and “Any Text”.

3.2.2 Variables

In the specification, variables are strings of characters used to represent either the

value of program variables in the initial state or final state of an execution, the value of

expressions passed as arguments in auxiliary definitions, or as quantification indices.

Variables which represent quantification indices are considered to represent a value

only where they are bound.

All variables must have a type and should be defined in the documentation.

3.2.3 Auxiliary Function And Predicate Definitions

The definition of an auxiliary function consists of a name, a type, a list of argument

variables and an expression that defines the semantics of the auxiliary function. Also,

the definition of the auxiliary predicate is the same but the expression is a predicate

3. Methodology 18

expression which is described in Section 3.2.4.

3.2.4 Predicate Expressions

A predicate expression is an expression that evaluates to true or false and consists of

either quantified expression as described below, or a string of the form G∧H, G∨H,

H ⇒ G or ¬G, where G and H represents predicate expressions.

3.2.5 Quantified Expressions

In our test oracle generator, quantification must be restricted to a finite set, which

can be implemented as a java collection so that it can be automatically generated.

This is done by permitting only the following forms of quantified expressions, where

i is a variable, known as the index variable of the quantification, G(i) is a collection

and H(i) is any predicate expression of a permitted form:

(∀i : G(i).H(i))

(∃i : G(i).H(i))

3.2.6 Tabular Expressions

The nature of computer system behaviour often is that the system must react to

changes in its environment and behave differently under different circumstances. The

result is that the mathematics describing this behaviour consists of a large number

of conditions and cases that must be described. It has been recognized for some time

3. Methodology 19

that tables can be used to help in the effective presentation of such mathematics

[35, 1, 34, 20]. In our work we show such tabular representation of relations and

functions as an significant factor in making the documentation more readable, and so

we have specialized our tools to support them.

A complete discussion of tabular expressions is beyond the scope of this thesis,

so interested readers are referred to the cited publications. In their most basic form,

tabular expressions represent conditional expressions. For example, the function

definition 3.1, could be represented by the tabular expression 3.2.

f(x, y)
df
=

x + y if x > 1 ∧ y < 0

x− y if x ≤ 1 ∧ y < 0

x if x > 1 ∧ y = 0

xy if x ≤ 1 ∧ y = 0

y if x > 1 ∧ y > 0

x/y if x ≤ 1 ∧ y > 0

(3.1)

f(x, y)
df
=

x > 1 x ≤ 1

y < 0 x + y x− y

y = 0 x xy

y > 0 y x/y

(3.2)

Although 3.1 and 3.2 are clearly a nonsensical example, they are representative of

the kind of condintional expression that occurs often in documentation of software

3. Methodology 20

based systems. We have found that the tabular form of the expressions is not only

easier to read, but, perhaps more importantly, it is also easier to write correctly. Of

particular importance is that they make it very clear what the cases are, and that

all cases are considered.

Modern general purpose documentation tools, of course, have support for tables

as part of the documents, but they are often not very good at dealing with tables as

part of mathematical expressions. These tools also encourage authors to focus efforts

on the wrong things: authors will work very hard to try to get the appearance of the

table right, sometimes even to the detriment of readability(e.g., shortening variable

names so that expressions fit in the columns).

3.2.7 Sample Program Specification

Figure 3.1, specifies a program ‘ggcd’ which compares an integer value ‘i’ with another

integer value ‘j’, returns the greatest common divisor of them if ‘i > 0 ∧ j > 0’,

otherwise returns 0. Additionally, it indicates if the two integers are positive by using

the returned value, which is represented by a boolean variable ‘result’.

3.3 Tool Support

The tool support helped us to develop techniques and tools to facilitate the production

of software design documentation that is 1) readable and understood by the users, 2)

complete and accurate enough to allow analysis, both manually and mechanically and

3. Methodology 21

Program Specification
Boolean
ggcd(Integer i, Integer j, Integer gcdvalue)

i > 0 ∧ j > 0 i ≤ 0 ∨ j ≤ 0

gcdvalue = max({x ∈ [0, min(i, j)]|cDiv(i, j, x)}) 0
result = TRUE FALSE

Auxiliary Predicate Definitions
Boolean cDiv(Integer a, Integer b, Integer x)

df
= (a%x = 0) ∧ (b%x = 0)

Figure 3.1: Ggcd Program Specification

3) suitable for use as a specification from which to produce an acceptable program.

We can’t get these things with the general word processors.

3.3.1 OMDoc Document Model

As described in [23], the OMDoc (Open Mathematical Documents) format is a con-

tent markup scheme for (collections of) mathematical documents including articles,

textbooks, interactive books, and courses. OMDoc also serves as the content lan-

guage for the communication of mathematical software. OMDoc is an extension of

the OpenMath and (content) MathML standards and concentrates on representing

the meaning of mathematical formulae instead of their appearance. OpenMath and

MathML are formats for individual mathematical expressions and OMDoc is a for-

mat for documents that include mathematics. The specifications in our work consist

of program specifications, which, in OMDoc terms, are symbol definitions contained

within theories. Also, each symbol has a type and possibly other information. Con-

3. Methodology 22

sequently, this leads us to propose our specification model which consists of these

OMDoc elements:

Theory : a theory is a self-contained part of a specification. It could, for example,

represent a requirements specification, a module interface specification, a mod-

ule internal design document or a single program function. A theory contains

zero or more sections of each of the following kind.

Symbol : a symbol is a basic component of a specification: a variable, function,

relation or constant. All symbols that are used in a specification must be

defined somewhere, either by being declared to be a bound variable, defined

in the specification itself, defined (globally) in an imported theory, or from a

standard set (e.g., standard OpenMath content dictionary). A symbol has the

following attributes:

Name : for referring to the symbol (required).

TTS Role : indicates how this symbol is used as part of a specification (op-

tional).

Type : all symbols should have a type supplied.

Definition : a definition contains an expression that gives the semantics of a symbol.

Presentation : a presentation contains the format for a mathematical symbol. A

presentation element has for attribute which identifies the symbol represented.

3. Methodology 23

Each presentation contains one or more use elements. For more details see

section 4.2.5.

Use : indicates how the symbol represented is in a specific language. A use element

has the following attributes:

Format : specifies the name of the language this use element applies to. It

could be a programming language, a text processing language such as latex

or could identify some other tool.

Fixity : determines the placement of the symbol. This attribute can be one of

the keywords prefix, infix, and postfix. For prefix it is placed in front

of the arguments. For infix it is placed between the arguments. Finally,

for postfix it is placed behind the arguments.

Separator : this specifies the separator in the argument list.

lbrack/rbrack : these two attributes handle the brackets to be used in pre-

sentation.

Code : is unparsed formal text and it is not needed in our documents but in some

documents it is needed.

Text : is unparsed informal text and it is important for readability of the document.

Based on [4], any type of tabular expressions can be defined by providing:

A restriction : each type of tabular expression must satisfy a stated restriction.

A restriction is a predicate that states the condition that a tabular expression

3. Methodology 24

should meet, which might be on such properties as the number of grids, the

index sets of grids, the type of elements in each grid and some properties of the

grids. The restriction must be observed when the tables are constructed.

An evaluation term : a tabular expression represents a relation which may be a

function. The evaluation term of a tabular expression has to be evaluated to

determine the value of the tabular expression for a given assignment. The eval-

uation term is constructed using conventional and tabular expressions appear

in the tabular expression as well as auxiliary functions.

A set of auxiliary function definitions : these functions are applied in defining

the restriction and the evaluation term and will be used in evaluating or checking

the table.

In OMDoc it is straightforward to add support for tabular expressions, simply by

defining appropriate (OpenMath) symbols to denote them: we use a symbol for “ta-

ble”, which, following the model presented in [4], takes four argument expressions

representing

1. The evaluation term, which expresses how the value of a tabular expression is

defined in terms of the expressions in its grids. For (3.2) this expression would

express that the value is that of the element grid, T[0], which is indexed by

indices of the true elements of each of the “header” grids, T[1] and T[2], as

follows: T[0] [select(T[1]),select(T[2])], where select is a function on a predicate

grid that gives the index of the cell that is true.

3. Methodology 25

2. The static restriction, which defines a condition that must be true of the grids,

independent of the expressions in the grids, but possibly dependent on their

types. This is used, for example, to assert the conditions on the number and

size of the grids(i.e., the shape of the table). For (3.2) this would express that

the index set of the central grid should be power set of the index sets of the

header grids, and that the header grids must contain predicate expressions.

3. The dynamic restriction, which defines a condition that must be true of the grid

expressions. This is used to assert constraints on the table to ensure that it has

a well defined meaning. For (3.2) this would assert than the header grids, T[1]

and T[2], must be “proper” - only one cell expression should be true for any

assignment.

4. A list of grids, which are indexed sets, represented by n-ary applications with

symbol “grid” and taking pairs of cell index and cell contents as its arguments.

3.3.2 The Eclipse Framework

Eclipse is a software platform comprising extensible application frameworks, tools and

a runtime library for software development and management. It is written primarily in

Java to provide software developers and administrators an integrated development en-

vironment (IDE).“Eclipse employs plug-ins in order to provide all of its functionality

on top of (and including) the runtime system, in contrast to some other applications

where functionality is typically hard coded”[13]. Using this framework to develop our

tool provides significant advantages over developing a stand-alone tool including its

3. Methodology 26

widespread use in the user community, its facilities for tight integration of documents

with other software artifacts, and provision of support for software development tasks.

3.3.3 Specification Editor

As part of our tools, we are developing a specification editor to support production

of software documents, which is illustrated in Figure 3.2. This Editor provides a

“multi-page editor” (which provides different views of the same source file) for “.tts”

files, which are OMDoc files. One page of the editor is a structured view of the doc-

ument, another one shows the raw XML representation, and another gives a detailed

view of the document giving the user the ability to view and edit the mathematical

expressions. The support libraries in Eclipse provide techniques to ensure that the

views of the document are consistent. This editor is built using several open source

libraries including the RIACA OpenMath Library.

This editor is seen as a primary means for the human users to interact with

specification documents.

3. Methodology 27

Figure 3.2: Screenshot of Editor

Chapter 4

Oracle Generation

This chapter describes the internal design of the oracle that will be the output of the

Test Oracle Generator (TOG). The design is explained by using some examples from

an oracle, which was produced for the sample ‘ggcd’ program specification given in

3.2.7. This chapter also describes the requirements and design of the TOG. The work

reported in this thesis is similar to the work in [41] but our approach for generating

test oracles has the following characteristics that make it unique:

• We are using OMDoc as a standardized storage and communications format for

our specifications, and so we can take advantage of other tools.

• The semantics of tabular expressions have been generalized to allow more precise

definition of a broader range of tabular expression types.

• The test oracle generator is implemented using Java. This makes it easy to

integrate with the Eclipse platform.

28

4. Oracle Generation 29

• The oracle generator has a ‘graphical user interface’ which is shown in Figure

3.2. This interface gives the user the ability to select any program specification

and generate the oracle from it. This has the advantage of enabling the user to

interact easily with the specifications.

• The generated test code integrates smoothly with test frameworks (e.g., JUnit)

and hence, it can be directly used to test the behaviour of the program.

4.1 Oracle Design

4.1.1 Programming Language

The oracle is implemented using Java. This decision should not be seen as a significant

feature of the design—if the intended application were different, the oracle design

could be translated with some changes.

4.1.2 Internal Design Overview

The oracle can be viewed as a ‘compiled’ version of the specification in that it is

generated by translating the ‘source’ specification into an executable form (Java code).

The oracle can be executed without reference to the specification from which it was

derived. So, it can be integrated smoothly with test frameworks (e.g., JUnit). This

design has an advantage is that it reduces the time required for oracle execution by

giving the user the ability to use optimization techniques.

4. Oracle Generation 30

An alternative approach to design of the oracle is to build it as an ‘interpreter’

which would represent the specification by data and evaluate it directly. This kind of

design has an advantage that the oracle generation process is relatively simple and,

since there is no generated code involved in the oracle, the oracle programs will be the

same for any specification, only the data they use is dependent on the specification. A

disadvantage for this design is that the oracle will need to interpret the semantics of

the documentation during evaluation, and so would probably be comparatively slow

to execute.

4.1.2.1 Expression Implementation

Any expression consists of one or more sub-expressions, the complexity of imple-

menting this expression is managed by decomposing each expression into its sub-

expressions and implementing each sub-expression individually. The oracle code thus

consists of a set of internal functions and objects, each of which implements a sub-

expression and may call other internal functions or object methods.

All programming languages in general, and Java in particular, provide support for

basic logical and relational operators (i.e. ∧,∨,¬, >,<, = etc.), these operators can be

used to implement some of the expressions. Also, it is possible to use these operators

for implementing an entire expression as a single Java statement by translating it into

a purely scalar, quantifier free expression (by expanding the quantification to a series

of conjunctions or disjunctions) but the resulting Java statement would consist of

many lines. While this would undoubtedly result in an oracle that executes relatively

4. Oracle Generation 31

quickly, since there would be none of the overhead associated with loops or function

calls. It would, however, require significant effort on the part of the TOG to do the

translation and would result in virtually incomprehensible oracle code. So, that is

why the oracle is implemented using the Java logical and relational operators only

where they directly represent the operators in the specification.

Another way to implement expressions is to use a class of Java objects. A specific

expression is implemented by instantiating the suitable objects, which include refer-

ences to their sub-expression objects. This helps to simplify the oracle generation

process for expressions that have complex semantics such as tabular expressions. So,

the TOG need only translate the expression into the suitable object constructor. In

this work, we used the above two ways to implement the expressions.

The code to implement each type of expression is explained in the following sec-

tions below.

4.1.3 Scalar Expressions

Scalar(i.e. non-tabular) expressions can be translated into equivalent Java statements

as described below.

4.1.3.1 Logical Operators

The logical operators can be directly translated to their Java eqivalent, as given in

Table 4.2. (G and H are arbitrary predicate expressions.)

4. Oracle Generation 32

Table 4.1: Logical Operator Conversions
Logical Operator Java Equivalent

¬G !G
G ∨H G||H
G ∧H G&&H

So, given the expression (a > b ∧ a > 5) in the specifications, the corresponding

Java code for that expression is:

(a > b)&&(a > 5)

4.1.3.2 Quantification

Quantifier expressions are implemented by using loops that call the suitable proce-

dures to enumerate the elements of the set characterized as an integer interval and

the boundaries for the interval given in the specifications. In our test oracle genera-

tor, quantification (∀ — for all, and ∃ — there exists) must be restricted to a finite

set, which can be implemented as a java collection so that it can be automatically

generated from the specifications. In the example below the boundaries are (0,10).

One distinction between the work reported in this thesis and that in [41] is that

the previous work used Inductively Defined Predicate to specify the range for the

quantification but we used a java collection.

The quantification “(∀i : {0..10}.p B[i] = p x)”, can be implemented as follows.

boolean r e s u l t=true ;

I n t e g e r I n t e r v a l bRange =new I n t e g e r I n t e r v a l (0 , 1 0) ;

4. Oracle Generation 33

I n t e g e r i=new I n t e g e r (0) ;

for (I t e r a t o r <Integer > i t=bRange . i t e r a t o r () ; i t . hasNext()&& r e s u l t ;)

{

i=i t . next () ;

r e s u l t =((p B [i]==p x)&&r e s u l t) ;

}

4.1.4 Tabular Expressions

Tabular expressions are implemented by instantiating an object of one of several

classes of (Java) table objects which implement the various types of tabular expres-

sions(normal, inverted and vector). These table classes contain all knowledge of the

semantics of tabular expressions, so there is no need for this knowledge to be in the

TOG. The expression in each cell of the table is implemented as Java class that ex-

tends a CellBase class and therefore contains a procedure, eval, which evaluates the

expression in the cell.

Table objects have the following method, which is used to evaluate the table:

evaluateTable finds the index for the main cell that should be evaluated and returns

the contents of that cell.

The expression “i > 0 ∧ j > 0”, which is in the first cell of the column header of

the ggcd tabular expression in Figure 3.1, is implemented as follows.

package o r a c l e s ;

import ca . F i l lmore so f tware . p lug in . O r a c l e U t i l i t i e s . ∗ ;

4. Oracle Generation 34

public class ggcd1 Gr id 2 Ce l l 0 extends Cel lBase {

private VarMap vars ;

public ggcd1 Gr id 2 Ce l l 0 (VarMap vars){

this . vars=vars ;

}

public Object eva l (){

I n t e g e r i =(I n t e g e r) vars . getValue (” i ”) ;

I n t e g e r j =(In t eg e r) vars . getValue (” j ”) ;

return ((i >0)&&(j >0)) ;

}

}

The other cells in each table are implemented in a similar fashion. The oracle

design for the ggcd tabular expression in Figure 3.1 is illustrated in Figure 4.1 and

the design for the gcd tabular expression looks similar.

4. Oracle Generation 35

An alternative approach for implementing the tabular expressions that was con-

sidered is to convert the tabular expression into the equivalent scalar expression and

implement the scalar expression as explained in the previous section. This approach

has an disadvantage that the TOG would need to have the ability to do the transla-

tion.

Figure 4.1: Oracle Design of ggcd Tabular Expression

4.1.5 Auxiliary Functions

An auxiliary function is implemented as a procedure, with the expression, imple-

mented as described above, forming the body of the procedure. For example, consider

the auxiliary function, which is used in the sample program specification in section

3.2.7 defined as follows:

4. Oracle Generation 36

Boolean cDiv(Integer a, Integer b, Integer x)

df
= (a%x = 0) ∧ (b%x = 0)

This is implemented by the following procedure:

package o r a c l e s ;

import ca . F i l lmore so f tware . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class AuxFunctions{

stat ic public Boolean cDiv (I n t e g e r a , I n t e g e r b , In t eg e r

x){

return (a % x == 0) && (b % x == 0) ;

}

}

Suitable calls to this procedure are used in the code that implements expressions

using the auxiliary function.

4. Oracle Generation 37

4.1.6 Compilation and Execution

The oracle in our approach consists of two kinds of code: that generated by the Test

Oracle Generator (TOG), and the other kinds of classes, including Integer Interval,

InvertedTable, NormalTable and VectorTable, which are not generated by the TOG

but are used by the TOG generated code. For more details about the above classes

see section 4.2

The code below shows the implementation of the root class for the oracle (ggcdO-

racle.java) for the sample program specification that described in section 3.2.7. To

see the whole generated classes from the example see appendix B

package o r a c l e s ;

import ca . F i l lmore so f tware . p lug in . O r a c l e U t i l i t i e s . ∗ ;

import stat ic org . j u n i t . Asser t . ∗ ;

public class ggcdOracle{

private VarMap vars ;

private Outggcd1 t0 ;

public ggcdOracle (){

vars=new VarMap () ;

4. Oracle Generation 38

t0=new Outggcd1 (vars) ;

}

private Boolean ggcdTOracle (I n t e g e r i , I n t e g e r j ,

I n t e g e r gcdvalue , Boolean r e s u l t){

Boolean r e s u l t O r a c l e ;

vars . setValue (” i ” , i) ;

vars . setValue (” j ” , j) ;

vars . setValue (” gcdvalue ” , gcdvalue) ;

vars . setValue (” r e s u l t ” , r e s u l t) ;

r e s u l t O r a c l e=t0 . ggcdT1 () ;

return r e s u l t O r a c l e ;

}

4. Oracle Generation 39

public void assertggcdTOrac le (I n t e g e r i , I n t e g e r j ,

I n t e g e r gcdvalue , Boolean r e s u l t){

asse r tTrue (ggcdTOracle (i , j , gcdvalue , r e s u l t)) ;

}

}

Using the oracle involves implementing test code that calls the program under

test and then calls the oracle procedures. In this work, the JUnit framework is used

since it has a number of advantages. One important advantage of JUnit is that it

is widely used, which will make it easier for others to understand the test cases and

write new ones. In addition, it provides a graphical user interface (GUI) which makes

it easier to write and test the program quickly and easily. JUnit shows test progress

in a bar that is green if testing is going fine and it turns red when a test fails. This is

makes it easy for the software developer to quickly identify failing test cases as they

are found. The code below shows how to run the oracle generated from the sample

program specification in 3.2.7 with JUnit:

package o r a c l e s ;

import org . j u n i t . Before ;

import org . j u n i t . Test ;

4. Oracle Generation 40

public class OracleTest extends j u n i t . framework . TestCase{

ggcdOracle com ;

@Before

public void setUp () throws Exception {

com=new ggcdOracle () ;

}

@Test

public void testCon (){

I n t e g e r gc=GCD. gcd (25 , 2 0) ;

com . assertggcdTOrac le (25 , 20 , gc , true) ;

}

}

The previous code contains one test case to test that the program correctly finds the

greatest common divisor of (25,20) which is 5. The greatest common divisor is com-

puted by the static method GCD.gcd(int,int) meant to implement the specification.

The user can add any number of test cases. The result for the previous code is shown

in Figure 4.2.

4. Oracle Generation 41

Figure 4.2: TestResult

4.2 Test Oracle Generator Design

4.2.1 Requirements

The requirements for the TOG are that using a specification written in the form

discussed in chapter 3, it will output the executable test oracle code as described in

section 4.1.

4.2.1.1 Assumptions

The oracle code generated by the TOG uses two kinds of object classes: Tabular

expressions (Normal Table, Vector Table and Inverted Table) and Integer Interval im-

plemented in NormalTable.java, VectorTable.java, InvertedTable.java and IntegerIn-

terval.java. These table classes contain all knowledge of the semantics of tabular

expressions and provide several methods (addHeaderCell, addMainCell, getMainCell,

evaluateTable) which give the user the ability to create and evaluate the tabular ex-

pressions. The Integer Interval class is a java collection used to implement the finite

set containing the integers in a specified range for the quantifications. These classes

4. Oracle Generation 42

are assumed to be correct.

4.2.1.2 User Interface

The Fillmore software specification editor leverages the eclipse plug-in architecture

to create a software specification editor. A part of the Fillmore software project is to

build a plug-in for eclipse to view and edit formal software specification documents.

Eclipse is an open development platform that supports extension through a plug-in

mechanism. The platform provides an advanced integrated development environment

for software development, and a wide range of available plug-ins to support such tasks

as testing, modeling and documentation. This plug-in is seen as a primary means for

the users to interact with software specification documents. This plug-in is used as a

user interface to the TOG, the plug-in is pictured in Figure 3.2. This interface gives

the user ability to select any program specfication and generate the oracle from it.

So, this is has the advantage that the user can interact easily with the specifications.

In [41], they used a ‘command line interface’ for the oracle generator.

4.2.1.3 Input Format

The input to the TOG is in the form of a specification file which follows our specifi-

cation model and contains information as described in Chapter 3. The file consists of

a collection of theories and each of which consists of symbols and each symbol defines

either a constant, variable, auxiliary function or program function.

4. Oracle Generation 43

4.2.1.4 Anticipated Changes

The items that are likely to change during the development of the TOG in the future:

• The format of the specification file. It is possible to add new elements to our

specification file over time and change the existing elements.

• The programming language that used to implement the oracle. Currently, we

are using Java to implement the oracle. It is possible in the future to use another

language such as C++.

• The design of the oracle. For example: each cell in the tabular expressions is

implemented as Java class. It is possible in the future to implement all cells in

one class.

• The user interface that is used to interact with the specifications. We may add

new features to the user interface such as giving the user the ability to view the

tree representation of the mathematical expressions.

4.2.2 Package Design

The TOG is implemented as a set of packages, each of which contains a set of classes

that encapsulate design decisions. Also, the packages can be divided into sub-packages

which contain more specific design decisions. This approach has advantages that the

design is easier to understand because of this separation of concerns, and it is easier

to change the TOG since the decisions affected by the change are likely to be isolated.

4. Oracle Generation 44

To illustrate the system design, the class diagram is used. Figure 4.3 illustrates

the package dependencies for the TOG.

Figure 4.3: Packages Diagram

4.2.3 New Packages Added To Fillmore

The packages below are new packages written as part of this thesis work.

4.2.3.1 Oracle Generator Actions (ca.Fillmoresoftware.plugin.actions)

This package represents the main controlling package for the TOG. It contains

the actions used to access the TOG (e.g. generate oracle and generate auxil-

iary function). It uses ca.Fillmoresoftware.plugin.editors to read the specification

from the file, ca.Fillmoresoftware.plugin.specmodel to access the specification and

ca.Fillmoresoftware.plugin.OracleGen to generate the oracles and auxiliary functions.

Figure 4.4 is the class diagram for the ca.Fillmoresoftware.plugin.actions showing

the relationships between the classes. This package contains three classes (Gener-

4. Oracle Generation 45

ateAuxFunAction.java, GenerateOracleAction.java and OracleAction.java). The in-

terface to these classes dictated by the eclipse plug-in interface.

Figure 4.4: Actions Package Class Diagram

4.2.3.2 Oracle Generation (ca.Fillmoresoftware.plugin.OracleGen)

This package is responsible for converting the specification into the or-

acle implementation. It uses ca.Fillmoresoftware.plugin.specmodel and

ca.Fillmoresoftware.plugin.kernel to access the tabular expressions. Figure 4.5

is the class diagram for the ca.Fillmoresoftware.plugin.OracleGen showing the

relationships between the classes. This package contains eight classes (CodeFro-

mOMobject.java, CodeFromOMA.java, CodeFromOMI.java, CodeFromOMS.java,

CodeFromOMV.java, CodeFromTheory.java, CodeFromTabularExp.java and Or-

acleModel.java). For more details about the responsibilities for the classes see

appendix A.

4. Oracle Generation 46

Figure 4.5: OracleGen Package Class Diagram

4.2.3.3 Oracle Utilities (ca.Fillmoresoftware.plugin.OracleUtilities)

This package provides classes that are necessary to run the test oracle. These classes

are previously manually implemented and are used by the TOG generated code. These

classes are CellBase.java, CellIndex.java, Integer Interval.java, InvertedTable.java,

NormalTable.java, TableGrid.java, VarMap.java and VectorTable.java. Figure 4.6

is the class diagram for the ca.Fillmoresoftware.plugin.OracleUtilities and shows the

relationships between the classes.

4.2.4 Old Packages In Fillmore

These packages below came as part of Fillmore and are modified as part of this work.

4. Oracle Generation 47

Figure 4.6: OracleUtilities Package Class Diagram

4.2.4.1 Specification Model (ca.Fillmoresoftware.plugin.specmodel)

This package used to construct our specification model that described in section 3.3.1

and provides classes that help us to access all parts of the specifications. These classes

are ChangeNotifier.java, Definition.java, DOMXMLWriter.java, ElementTag.java,

ISpecModelListener.java, MObject.java, OMDOMReader.java, Presentation.java,

SpecModel.java, SpecModelElement.java, SpecModelErrorHandler.java, SpecModel-

Parser.java, Symbol.java, Theory.java, TTSRole.java, Type.java and Use.java. This

4. Oracle Generation 48

package is modified to provide support for the “Presentation” and “Use” elements.

4.2.4.2 Kernel (ca.Fillmoresoftware.kernel)

This package used to construct our specifications for the tabular expressions and

provides classes that help us to access all parts of the tabular expressions. These

classes are EvalTerm.java, EvalTermFactory.java, GenRestFactor.java, Grid.java, In-

dex.java, IndexFactory.java, InvertedEvalTerm.java, NormalEvalTerm.java, Normal-

GenRest.java, OMUtil.java, RectIndex.java, RectShape.java, RectShapeIterator.java,

RectStructRest.java, Shape.java, ShapeFactory.java, StructRest.java, StructRestFac-

tory.java, Symbol.java, Table.java, TableFactory.java and VectorEvalTerm.java. This

package is modified to provide support for various kinds of tabular expressions (Nor-

mal, Vector and Inverted).

4.2.4.3 Editors (ca.Fillmoresoftware.plugin.editors)

This package used to implement “multi-page editor” to give the user ability to

access and edit the specifications. This package consists of several classes (Ele-

mentDialog.java, SpecEditor.java, SpecEditorContributor.java, SpecElementLabel-

Provider.java, SpecErrorHandler.java, SpecOutlinePage.java and SpecTreeContent-

Provider.java). This package is modified to give the user the ability to view the names

of the imported files (Content Dictionaries), which contain the java representation of

the symbols.

4. Oracle Generation 49

4.2.4.4 Preferences (ca.Fillmoresoftware.plugin.preferences)

Eclipse also provides a Preferences APIs used to add plug-in specific preferences. This

is a two step process:

• First the “org.eclipse.core.runtime.preferences” extension point is used to add

a preference to initialize the plug-in. PreferenceInitializer class is contributed

to initialize all the preferences when the plug-in is first initialized.

• Second the “org.eclipse.ui.preferencePages” extension point is used to add pref-

erence pages. It is important to note that the preference pages contributed

must arrange themselves in a neat hierarchy to not interfere with other plug-

ins. To accomplish this we add a base page name “Fillmore Preferences” and

id “ca.Fillmoresoftware.plugin.preferences.FillmorePreferencePage”

All the preference pages must include the id mentioned in the second step as their

category. Every preference page contributed through the extension point mechanism

can include a category attribute. The category attribute basically includes the id

path of the location of this preference page. For example the TOG preference page,

which is contributed as a child to the Fillmore preference page, includes the id of the

Fillmore preference page as it category attribute. The XML for this is shown below:

<extension

point="org.eclipse.ui.preferencePages">

<page

class="ca.Fillmoresoftware.plugin.preferences.FillmorePreferencePage"

4. Oracle Generation 50

id="ca.Fillmoresoftware.plugin.preferences.FillmorePreferencePage"

name="Fillmore Preferences"/>

<page

category="ca.Fillmoresoftware.plugin.preferences.FillmorePreferencePage"

class="ca.Fillmoresoftware.plugin.preferences.TestOraclePreferences"

id="ca.Fillmoresoftware.plugin.preferences.testOracle"

name="Test Oracle Generator"/>

</extension>

<extension

point="org.eclipse.core.runtime.preferences">

<initializer

class="ca.Fillmoresoftware.plugin.preferences.PreferenceInitializer"/>

</extension>

Also, this package includes these classes FillmorePreferencePage.java, Preference-

Constants.java, PreferenceInitializer.java and TestOraclePreferences.java which im-

plement the preference pages. This package is modified to add preference pages for

the Test Oracle Generator. These pages give the user the ability to specify: the path

for the TOG output oracle code, the output package name and the imported libraries.

4.2.5 Symbols Representation

Functions and operators in OMDoc are encoded as “symbols”, which are defined

either in Content Dictionaries, for the standard functions and operators, or in the

document itself, for functions that are particular to the given specification. The

4. Oracle Generation 51

OMDoc “presentation” element is used to define a representation of each symbol in

Java so that the tool can translate expressions using these symbols into Java.

To be more general and cover most of symbols, we have used presentation and

use elements for specifying the notation of symbols. OMDoc supplies a set of abbre-

viations that are sufficient for most presentation applications via the “use” elements

that can occur as a children of “presentation” elements. Given the relevant infor-

mation in the use elements, separate translation process generates the needed Java

Code for the expression. The presentation element has the following attributes:

for specifies the name of symbol that is represented.

The use element has these set of attributes:

format specifies the name of the language that is used to represent the symbol.

lbrack/rbrack handle the brackets to be used in presentation for a symbol.

separator specifies the separator in the argument list of symbol.

fixity determines the placement of the symbol. This attribute can be one of the

keywords prefix, infix, and postfix. For prefix it is placed in front of the

arguments. For infix it is placed between the arguments. Finally, postfix it is

placed behind the arguments.

4.2.5.1 Catagories of Symbols

Infix Symbols these symbols are placed between the arguments. For example: plus,

minus, times, divide, eq, lt, gt, leq, geq, and, or, dot. A few examples of defining

4. Oracle Generation 52

symbols are necessary to illustrate the concept of defining the presentation for

new symbols. So, these examples below illustrate how to represent the previous

symbols.

Plus Symbol:

<presentation for="plus">

<use format="java" fixity="infix" lbrack="(" rbrack=")"> + </use>

</presentation>

If the children for this symbol were a and b. The Java Output Code will be:

(a+b)

Minus Symbol:

<presentation for="minus">

<use format="java" fixity="infix" lbrack="(" rbrack=")"> - </use>

</presentation>

If the children for this symbol were a and b. The Java Output Code will be:

(a-b)

All symbols in this category have the same values of the attributes in the “use”

element but they are different in the value between the start and end tag of the

“use” element. The table below shows the values of the “use” element for the

rest of the previous symbols and the generated java code if the children of the

symbols are a and b.

4. Oracle Generation 53

Table 4.2: Infix Symbols “Use” Values
Symbol Value Generated Code
Times * a*b
Divide / a/b

Equality == a==b
Less than < a<b

Greater than > a>b
Less than or equal <= a≤ b

Greater than or equal >= a≥ b
And && a&&b
Or ‖ a‖b
Dot . a.b

Unary Symbols these symbols have one child and may be prefix or postfix. For

example: not and predefined functions that have one child like: abs, sqrt and

floor.

These examples below illustrate how to represent the previous symbols.

Not Symbol:

<presentation for="not">

<use format="java" fixity="prefix" lbrack="(" rbrack=")"> ! </use>

</presentation>

If the children for this symbol was a. The Java Output Code will be:

(!a)

All symbols in this category have the same values of the attributes in the “use”

element but they are different in the value between the start and end tag of

4. Oracle Generation 54

the “use” element. Also, they are different in the value of fixity attribute. The

symbols in the table below have no fixity. The table below shows the values of

the “use” element for the rest of the previous symbols and the generated java

code if the children of the symbols is a.

Table 4.3: Unary Symbols “Use” Values
Symbol Value Generated Code
Absolute abs abs(a)

Square Root sqrt sqrt(a)
Floor floor floor(a)

Function Symbols these symbols are functions that have more than one child. For

example: any user defined function or predefined function.

This example below illustrate how to represent the previous symbols.

Power Function Symbol:

<presentation for="pow">

<use format="java" lbrack="(" rbrack=")" separator = ","> pow

</use>

</presentation>

If the children for this symbol were a and b. The Java Output Code will be:

(pow(a,b))

Irregular Symbols these symbols use combined fixity. So, the fixity attribute is

not defined. For example: array get and dot symbols. These examples below

illustrate how to represent the previous symbols.

4. Oracle Generation 55

Array get Symbol:

<presentation for = "array_get">

<use format = "java" lbrack = "[" rbrack = "]"/>

</presentation>

If this symbol has two children and they were A and i. The Java Output Code

will be:

(A[i])

If this symbol has three children and they were A, i and j. The Java Output

Code will be:

(A[i][j])

Dot Symbol:

<presentation for = "bar">

<use format = "java" lbrack = "(" rbrack = ")" separator = ","> .

</use>

</presentation>

If this symbol has two children and they were a and b. The Java Output Code

will be:

(a.bar(b))

If this symbol has more than two children and they were a, b, c and d. The

Java Output Code will be:

4. Oracle Generation 56

(a.bar(b,c,d))

If there is no presentation or use for the symbol then it is assumed to be a function

so a normal function call is generated. For example, if the symbol is bar and the

children are a and b. Then the generated code will be:

bar(a,b)

4.2.6 Algorithem Overview

The alogrithm that we have used for generating test oracles is the same for the one

which is used in [41] and consists of the following steps:

1. Initialization: open files, initialize data structures.

2. Read specification from file.

3. Create oracle program contexts.

4. Code Auxiliary Definitions: Create a Java function for each, code the expression.

5. Code the oracle.

6. Write and close files.

7. Free data structures.

4.2.6.1 Expression Coding

The mathmematical expressions used in the specfications or in auxiliary definitions

are translated into code in the following manner: The expression syntax tree is tra-

4. Oracle Generation 57

versed using a depth-first traversal and each sub-expression is implemented in turn

as described in section 4.1.2.1. The code that gives the value of each sub-expression

is written into a buffer which is used to construct the code for the ‘parent’ expres-

sion. This process continues until the root expression has been implemented and the

resulting code is used as the body of the procedure in the oracle.

Chapter 5

Test Driven Development With

Oracles

This chapter describes our new approach for TDD. It also describes examples which

show how to apply this approach.

5.1 Test Driven Development with Oracles

This section introduces an alternative approach to TDD that is to develop the speci-

fication of the required behaviour in a formal notation as a part of the TDD process

and to generate test oracles from that specification.

The process looks like this:

• Write the specification for some required behaviour.

• Generate the test oracle from the specification and select test inputs.

58

5. Test Driven Development With Oracles 59

• Run the program under test in the test framework (e.g., JUnit) using the test

oracle to verify if it passes or fails.

• If the test fails, write code until this test passes.

• If the test passes and the specification is not completed yet, add to or refine the

specification and redo the process again.

• keep doing this process until the specification is complete.

The completeness in our work is determined by the designer. Using these tools to

do analysis of the test cases (e.g., coverage of the specification) is beyond this work.

So, this is could be done in the future.

The steps of TDD approach are illustrated in the flowchart in Figure 5.1.

TDD approach is applicable for methods and classes. This approach focuses on

deriving test oracles from the module internal design document [37] for methods and

module interface specification [42] for classes.

5.1.1 Test Driven Development For Methods

The illustration of TDD provided in [12, 29], in which a program is developed to con-

vert decimal numbers into their roman numeral equivalent, serves as a good, although

somewhat simplistic, illustration of this method.

The following example shows the whole process for specification supported TDD.

According to the TDD approach, the first step is to write a specification for some

required behaviour. So, starting with this specification:

5. Test Driven Development With Oracles 60

Figure 5.1: The Steps of TDD Approach

String dToR(Integer i)

df
=

i ≥ 1 ∧ i < 4

result = subDToR(i)

5. Test Driven Development With Oracles 61

String subDToR(Integer i)

df
=

i = 3 “III”

i = 2 “II”

i = 1 “I”

The above specification consists of two parts: the first part is the definition for

dToR(i) function which is the program function, the second part is the definition for

subDToR(i) function which is an auxiliary function. In program function definitions,

we use the convention that result represents the value returned by the function.

The required behaviour that is represented by this specification is to support the

conversion of numbers (1–3) into their corresponding roman numerals (I, II, III).

After writing the specifications, generate the test oracle from it and run the test

oracle to make sure that the program behaviour is consistent with the required be-

haviour. Following the TDD approach, the test cases should initially fail since the

program isn’t yet implemented. Then implement enough of the program to make the

cases pass.

The previous specification only specifies a behaviour for numbers in the range 1–3,

so if a test case outside that range is used then the test oracle will give an error that

says “NoSuchElementException”. Figure 5.2 shows that error.

The pattern used in the previous specification (i.e., explicitly specifying the corre-

sponding roman numeral representation for each decimal number) is clearly not prac-

tical for a very broad range of inputs. The previous specification can be re-written,

as follows (where “+” on Strings is used to represent concatenation):

5. Test Driven Development With Oracles 62

Figure 5.2: NoSuchElementException

String dToR(Integer i)

df
=

i ≥ 1 ∧ i < 4

result = subDToR(i)

String subDToR(Integer i)

df
=

i > 0 ∧ i < 4 “I” + subDToR(i− 1)

i = 0 “”

Then the domain of the previous specification can be broaden as follows:

String dToR(Integer i)

df
=

i ≥ 1 ∧ i < 5 i ≥ 5 ∨ i < 1

result = subDToR(i) “NA”

5. Test Driven Development With Oracles 63

String subDToR(Integer i)

df
=

i = 4 “IV”

i > 0 ∧ i < 4 “I” + subDToR(i− 1)

i = 0 “”

The previous specification defines the conversion of numbers from (1–4) into their

corresponding roman numerals (I, II, III, IV) and handles the error where subDToR

is not defined by specifying the behaviour for those inputs. After refining the initial

specification, do the same steps as we did in the previous one. Again refine the

implementation until the behaviour is consistent with the specification, then continue

to revise the specification, as follows.

String dToR(Integer i)

df
=

i ≥ 1 ∧ i < 9 i ≥ 9 ∨ i < 1

result = subDToR(i) “NA”

String subDToR(Integer i)

df
=

i ≥ 5 ∧ i < 9 “V” + subDToR(i− 5)

i = 4 “IV”

i > 0 ∧ i < 4 “I” + subDToR(i− 1)

i = 0 “”

The specification defines behaviour for the conversion of numbers from (1–8) into

their corresponding roman numerals (I, II, III, IV, V, VI, VII, VIII). We do the same

5. Test Driven Development With Oracles 64

steps as before and after that, we continue to revise the specification, as follows.

String dToR(Integer i)

df
=

i ≥ 1 ∧ i < 10 i ≥ 10 ∨ i < 1

result = subDToR(i) “NA”

String subDToR(Integer i)

df
=

i = 9 “IX”

i ≥ 5 ∧ i < 9 “V” + subDToR(i− 5)

i = 4 “IV”

i > 0 ∧ i < 4 “I” + subDToR(i− 1)

i = 0 “”

Now, the specification defines the conversion of numbers from (1–9) into their

corresponding roman numerals (I, II, III, IV, V, VI, VII, VIII, IX). So, in every

step we revise the specification to describe new behaviour and the specification is

represented in a formal way. Also, if the tests fail after we revise the specification

we have to write some code to satisfy the specification, and after that we continue to

revise the specification.

We keep doing this process until the specification is complete and the code be-

haviour is consistent with the required behaviour that is described by the specification.

After we have done several steps using TDD approach to develop the specification

and code together, the complete specification is as follows.

5. Test Driven Development With Oracles 65

String dToR(Integer i)

df
=

i ≥ 1 ∧ i ≤ 3999 i > 3999 ∨ i < 1

result = subDToR(i) “NA”

String subDToR(Integer i)

df
=

i ≥ 1000 “M” + subDToR(i− 1000)

i ≥ 900 ∧ i < 1000 “CM” + subDToR(i− 900)

i ≥ 500 ∧ i < 900 “D” + subDToR(i− 500)

i ≥ 400 ∧ i < 500 “CD” + subDToR(i− 400)

i ≥ 100 ∧ i < 400 “C” + subDToR(i− 100)

i ≥ 90 ∧ i < 100 “XC” + subDToR(i− 90)

i ≥ 50 ∧ i < 90 “L” + subDToR(i− 50)

i ≥ 40 ∧ i < 50 “XL” + subDToR(i− 40)

i ≥ 10 ∧ i < 40 “X” + subDToR(i− 10)

i = 9 “IX”

i ≥ 5 ∧ i < 9 “V” + subDToR(i− 5)

i = 4 “IV”

i > 0 ∧ i < 4 “I” + subDToR(i− 1)

i = 0 “”

Now, we have a complete specification that describes the whole required behaviour

for the program, and presumably the working implementation developed along with

5. Test Driven Development With Oracles 66

it using TDD. So, using this TDD approach results in a complete specification, im-

plementation and suite of test cases for the program.

5.1.2 Test Driven Development For Classes

We now consider applying our approach to modules or classes that have an inter-

nal data structure and methods for accessing or modifying the values of that data

structure. As an illustrative example we use the bounded stack as developed in [28].

As before, the first step in our approach is to specify some required behaviour, in

this case for creation of an empty stack:

Data Stucture

Integer s[]

Integer maxSize

Integer length

Program Functions

Stack stack(Integer x)

df
= (result.isEmpty() ∧ result.maxDepth() = x)

Boolean isEmpty()

df
= result = (length = 0)

Integer maxDepth()

df
= result = maxSize

5. Test Driven Development With Oracles 67

The specification consists of the data structure description, the definition for

stack(x) function, which is the program function specifying the behaviour of the

constructor and two program functions specifying the behaviour of the methods

isEmpty() and maxDepth().

After we write the specification, we generate the test oracle from it and write the

test code to call it (e.g., using JUnit). The test case will, of course, fail, so we should

implement the constructor and methods so that the test cases pass and we have a

program that is consistent with the specified behaviour.

We then modify the specification for push to cover the case where the stack is

initially empty, and add two more methods:

void push(Integer x)

df
=

p this.size() = 0

this.size() = p this.size() + 1

this| this.lastElement() = x

Integer size()

df
= result = length

Integer lastElement()

df
= result = s[length− 1]

Here we use the naming convention of prepending “p ” to a program variable name

(e.g., p this) to represent the value of the program variable (e.g., this) in the state

immediately before the function was executed. The new behaviour defined by the

5. Test Driven Development With Oracles 68

specification is to push an object on an empty stack. After the push the stack should

contain that element and the size for the stack after is increased by one. Again we

generate the test oracle and implement a test case, which will initially fail. The stack

code is then developed until the test case passes, and so it implements the specified

behaviour.

As we see the previous specification only defines pushing on an empty stack, which

is clearly not complete. We need to modify the specification to define behaviour for

pushing on a non-full stack:

void push(Integer x)

df
=

p this.size() ≥ 0 ∧ p this.size() < this.maxDepth()

this.size() = p this.size() + 1

this|

∀i : [0, p this.size()− 1].(

this.elementAt(i) = p this.elementAt(i))∧

(this.lastElement() = x)

Integer elementAt(Integer i)

df
= result = s[i]

Again we generate the test oracle and implement test cases, this time to push a

few elements onto the stack. After modifying the implementation to make it pass the

tests, we then modify the specification to cover the case where the stack is full:

5. Test Driven Development With Oracles 69

void push(Integer x)

df
=

p this.size() ≥ 0∧

p this.size() < this.maxDepth()

p this.size() =

this.maxDepth()

this.size() = p this.size() + 1 p this.size()

this| ∀i : [0, p this.size()− 1].this.elementAt(i) =

p this.elementAt(i)

∧
(this.lastElement() = x)

this = p this

The new behaviour supported by this specification is to attempt to push an object

on a full stack. The requirement is that the stack after the call returns is the same

size and contains the same elements as the stack before the call. The new test case

should check this behaviour by attempting to push on a full stack. Continuing the

development we add the specification for pop on a non-empty stack:

Integer pop()

df
=

p this.size() ≥ 1

this.size() = p this.size()− 1

this| ∀i : [0, this.size()− 1].

this.elementAt(i) =

p this.elementAt(i)

∧
(result = p this.lastElement())

Continuing in this manner, we eventually reach the full specification of the

bounded stack, as below, and we have at the same time developed a full imple-

5. Test Driven Development With Oracles 70

mentation and a full suite of test cases.

Data Stucture

Integer s[]

Integer maxSize

Integer length

Program Functions

Stack stack(Integer x)

df
= (result.isEmpty() ∧ result.maxDepth() = x)

void push(Integer x)

df
=

p this.size() ≥ 0∧

p this.size() < this.maxDepth()

p this.size() =

this.maxDepth()

this.size() = p this.size() + 1 p this.size()

this| ∀i : [0, p this.size()− 1].this.elementAt(i) =

p this.elementAt(i)

∧
(this.lastElement() = x)

this = p this

5. Test Driven Development With Oracles 71

Integer pop()

df
=

p this.size() ≥ 1

this.size() = p this.size()− 1

this| ∀i : [0, this.size()− 1].

this.elementAt(i) =

p this.elementAt(i)

∧
(result = p this.lastElement())

Integer top()

df
= result = this.lastElement()

Boolean isEmpty()

df
= result = (length = 0)

Integer maxDepth()

df
= result = maxSize

Integer size()

df
= result = length

Integer lastElement()

df
= result = s[length− 1]

Integer elementAt(Integer i)

df
= result = s[i]

Chapter 6

Future Work and Conclusion

6.1 Future Work

Clearly a next step in this research and tool development will be to support test case

generation from the specification as well, which will further reduce the amount of

’manual’ test code development effort.

Also, applying the techniques to real problems in a real-world development en-

vironment will undoubtedly provide some insight and help to refine the techniques.

Other possible improvements in the tool set (e.g., better visual editing etc.) could be

done in the future development of these tools. In addition to that using these tools

to do analysis of the test cases (e.g., coverage of the specification).

72

6. Future Work and Conclusion 73

6.2 Conclusions

In test driven development, tests are used to specify the behaviour of the program,

and the tests are additionally used as documentation of the program. However,

tests are not sufficient to completely define the behaviour of a program because they

only define the program behaviour by example and do not state general properties.

So, the latter can be achieved by using our TDD approach, which uses a formal

specification to specify the behaviour of the program and supports testing directly

against that specification by generating oracles. The outcome of this technique is

that, at the end of the development period, the developer has produced not only a

working implementation, but also a complete specification and a full set of test cases.

Appendix A

Class Responsibility Collaborator

(CRC)

The UML diagrams for the packages in the system are described in chapter 4.

A.1 Class Responsibility Collaborator (CRC) Ta-

bles

Table A.1: GenerateAuxFunAction Class Responsibility Collaborator
(CRC)

GenerateAuxFunAction
Generates the code for auxiliary functions SpecModel

SpecModelElement
Symbol
Definition
CodeFromOMobject

74

A. Class Responsibility Collaborator (CRC) 75

Table A.2: GenerateOracleAction Class Responsibility Collaborator
(CRC)

GenerateOracleAction
Generates the code for oracles SpecModel

SpecModelElement
Symbol
Definition
CodeFromOMobject

Table A.3: OracleAction Class Responsibility Collaborator (CRC)
GenerateOracleAction
Abstract base class for all test oracle actions SpecEditor

Table A.4: CodeFromOMobject Class Responsibility Collaborator (CRC)
CodeFromOMobject
Generates the code from the open math objects SpecModel
Generates the context for the test oracle and auxiliary functions Table

CodeFromTabularExp
Definition

Table A.5: CodeFromOMS Class Responsibility Collaborator (CRC)
CodeFromOMS
Generates the code from the open math symbol object SpecModel

Definition

Table A.6: CodeFromOMA Class Responsibility Collaborator (CRC)
CodeFromOMA
Generates the code from the open math application object SpecModel

Definition
CodeFromTabularExp

A. Class Responsibility Collaborator (CRC) 76

Table A.7: CodeFromOMI Class Responsibility Collaborator (CRC)
CodeFromOMI
Generates the code from the open math integer object

Table A.8: CodeFromOMV Class Responsibility Collaborator (CRC)
CodeFromOMV
Generates the code from the open math variable object

Table A.9: CodeFromTabularExp Class Responsibility Collaborator
(CRC)

CodeFromOMobject
Generates the code from the tabular expressions SpecModel

Table
CodeFromOMobject
Definition
StructRest
EvalTerm

Table A.10: CodeFromTheory Class Responsibility Collaborator (CRC)
CodeFromTheory
Generates the code from the theory CodeFromOMobject

SpecModel
Theory

Table A.11: OracleModel Class Responsibility Collaborator (CRC)
OracleModel
Write all required files for the oracle

Table A.12: CellBase Class Responsibility Collaborator (CRC)
CellBase
Represents the Cell Base that used to implement the tabular expressions

A. Class Responsibility Collaborator (CRC) 77

Table A.13: CellIndex Class Responsibility Collaborator (CRC)
CellIndex
Represents the index for the cell

Table A.14: Integer Interval Class Responsibility Collaborator (CRC)
Integer Interval
Represents the interval for quantifiers expressions

Table A.15: InvertedTable Class Responsibility Collaborator (CRC)
InvertedTable
Implements the inverted table and encapsulates all semantics knowledge TableGrid
about the inverted table

Table A.16: NormalTable Class Responsibility Collaborator (CRC)
NormalTable
Implements the normal table and encapsulates all semantics knowledge TableGrid
about the normal table

Table A.17: VectorTable Class Responsibility Collaborator (CRC)
VectorTable
Implements the vector table and encapsulates all semantics knowledge TableGrid
about the vector table

Table A.18: TableGrid Class Responsibility Collaborator (CRC)
TableGrid
Represents table grid that used to implement tabular expressions CellIndex

CellBase

A. Class Responsibility Collaborator (CRC) 78

Table A.19: VarMap Class Responsibility Collaborator (CRC)
VarMap
Represents the values for variables that used in the specification

Table A.20: SpecModel Class Responsibility Collaborator (CRC)
SpecModel
Top level for the specification model SpecModelElement
The model provides an abstract API for accessing ErrorHandler
the content of a software specification ChangeNotifier

Table A.21: SpecModelElement Class Responsibility Collaborator (CRC)
SpecModelElement
Base class for all elements in a specification SpecModel

ElementTag

Table A.22: SpecModelErrorHandler Class Responsibility Collaborator
(CRC)

SpecModelErrorHandler
Handle the errors ErrorHandler

Table A.23: SpecModelParser Class Responsibility Collaborator (CRC)
SpecModelParser
A parser for specification models DocumentBuilder
It knows the details about how to validate the specification SpecModelErrorHandler
files against the Relax NG schema
To avoid unnecessary re-reading of the DTD and schema files
and to conserve memory this is a singleton class

A. Class Responsibility Collaborator (CRC) 79

Table A.24: ISpecModelListener Class Responsibility Collaborator (CRC)
ISpecModelListener
Interface for listeners for changes to the specification model
Classes that want to be notified of changes to the specification
model should implement this interface and register themselves
via { link SpecModel#addListener(ISpecModelListener)}

Table A.25: ChangeNotifier Class Responsibility Collaborator (CRC)
ChangeNotifier
Manage change notification to ISpecModelListeners ISpecModelListener

ChangeNotification

Table A.26: DOMXMLWriter Class Responsibility Collaborator (CRC)
DOMXMLWriter
Convert DOM to XML
This class is based almost entirely on XMLtoTree

Table A.27: OMDOMReader Class Responsibility Collaborator (CRC)
OMDOMReader
An OpenMath DOM reader

Table A.28: ElementTag Class Responsibility Collaborator (CRC)
ElementTag
The possible kinds of elements in a specification
(Definition, Symbol, Theory, Type, MObject, Presentation, Use)

Table A.29: Theory Class Responsibility Collaborator (CRC)
Theory
Represent an omdoc theory Symbol

Presentation

A. Class Responsibility Collaborator (CRC) 80

Table A.30: Symbol Class Responsibility Collaborator (CRC)
Symbol
Represents a symbol declaration and definition TTSRole
which is the main building block of a specification definition

SpecModelElement

Table A.31: TTSRole Class Responsibility Collaborator (CRC)
TTSRole
The possible values for the tts:role attribute
These classify a definition by the role the defined
symbol plays in a specification

Table A.32: Type Class Responsibility Collaborator (CRC)
Type
A representation of an omdoc element as specialized MObject
for software specifications

Table A.33: Definition Class Responsibility Collaborator (CRC)
Definition
A representation of an omdoc element as specialized MObject
for software specifications and contains an open math
expression that defines the semantic meaning for the symbol

Table A.34: Presentation Class Responsibility Collaborator (CRC)
Presentation
Represents symbol presentation Use

Table A.35: Use Class Responsibility Collaborator (CRC)
Use
Represents the format for symbol

A. Class Responsibility Collaborator (CRC) 81

Table A.36: MObject Class Responsibility Collaborator (CRC)
MObject
A representation of an omdoc math object

Table A.37: Table Class Responsibility Collaborator (CRC)
Table
A representation for the tabular expression Grid
A tabular expression consists of : EvalTerm
An evaluation term GenRest
A structural restriction expression, the value StructRest
of which must be independent of the value of the
expressions in the table
A general restriction expression, the value of which
may depend on the value of the expressions in the table
A sequence of grids, each of which is an indexed set of expressions

Table A.38: TableFactory Class Responsibility Collaborator (CRC)
TableFactory
Construct a rectangular table(normal, vector and inverted) Table

Table A.39: EvalTerm Class Responsibility Collaborator (CRC)
EvalTerm
Interface for the evaluation term

Table A.40: EvalTermFactory Class Responsibility Collaborator (CRC)
EvalTermFactory
Constructs the evaluation term for the tabular expressions EvalTerm

Table A.41: GenRest Class Responsibility Collaborator (CRC)
GenRest
Interface for the general restriction

A. Class Responsibility Collaborator (CRC) 82

Table A.42: GenRestFactory Class Responsibility Collaborator (CRC)
GenRestFactory
Constructs the general restriction term for the tabular expressions

Table A.43: Grid Class Responsibility Collaborator (CRC)
Grid
Represents a grid which has a shape (index set) and Shape
corresponding expressions represented by OMObject OMObject

Index

Table A.44: Index Class Responsibility Collaborator (CRC)
Index
Interface for the cell index

Table A.45: IndexFactory Class Responsibility Collaborator (CRC)
IndexFactory
A factory class for generating shapes

Table A.46: InvertedEvalTerm Class Responsibility Collaborator (CRC)
InvertedEvalTerm
Represents the inverted table evaluation term

Table A.47: NormalEvalTerm Class Responsibility Collaborator (CRC)
NormalEvalTerm
Represents the normal table evaluation term

Table A.48: VectorEvalTerm Class Responsibility Collaborator (CRC)
VectorEvalTerm
Represents the vector table evaluation term

A. Class Responsibility Collaborator (CRC) 83

Table A.49: NormalGenRest Class Responsibility Collaborator (CRC)
NormalGenRest
Represents general restriction for the normal table

Table A.50: OMUtil Class Responsibility Collaborator (CRC)
OMUtil
Provides open math utlities

Table A.51: RectIndex Class Responsibility Collaborator (CRC)
RectIndex
Selects a particular cell within a grid

Table A.52: RectShape Class Responsibility Collaborator (CRC)
RectShape
Describes the index set for a rectangular grid

Table A.53: RectShapeIterator Class Responsibility Collaborator (CRC)
RectShapeIterator
An Iterator to iterate over a RectShape RectShape
RectShapeIterator’s can be used to iterate over any grid RectIndex
that has a shape of type RectShape

Table A.54: RectStructRest Class Responsibility Collaborator (CRC)
RectStructRest
Represents the rectangular structure restriction for the tabular expressions

Table A.55: Shape Class Responsibility Collaborator (CRC)
Shape
An Interface for shape objects
A Shape describes the index set for a grid

A. Class Responsibility Collaborator (CRC) 84

Table A.56: ShapeFactory Class Responsibility Collaborator (CRC)
ShapeFactory
A factory class for generating shapes

Table A.57: StructRest Class Responsibility Collaborator (CRC)
StructRest
Interface for the structure restriction

Table A.58: StructRestFactory Class Responsibility Collaborator (CRC)
StructRestFactory
Constructs the structure restriction for the tabular expressions

Table A.59: ElementDialog Class Responsibility Collaborator (CRC)
ElementDialog
Specify parts of the specifications SpecModel

Table A.60: ISpecModelSelectable Class Responsibility Collaborator
(CRC)

ISpecModelSelectable
This interface must be implemented by pages of the Spec
Editor which need to be notified of changes to the selected
element

Table A.61: SpecEditor Class Responsibility Collaborator (CRC)
SpecEditor
A multipage editor with the following pages: XMLEditor
XML Editor SFormEditor

SpecModel
SpecModelElement
SpecOutlinePage

A. Class Responsibility Collaborator (CRC) 85

Table A.62: SpecEditorContributor Class Responsibility Collaborator
(CRC)

SpecEditorContributor
Manages the installation/deinstallation of global actions
for multi-page editors
Responsible for the redirection of global actions to the
active editor
Multi-page contributor replaces the contributors for the
individual editors in the multi-page editor

Table A.63: SpecElementLabelProvider Class Responsibility Collaborator
(CRC)

SpecElementLabelProvider
Provides labels for the specification elements

Table A.64: SpecErrorHandler Class Responsibility Collaborator (CRC)
SpecErrorHandler
Handle the errors

Table A.65: SpecOutlinePage Class Responsibility Collaborator (CRC)
SpecOutlinePage
Constructs the outline specifications SpecEditor

Table A.66: SpecTreeContentProvider Class Responsibility Collaborator
(CRC)

SpecTreeContentProvider
Adaptor for the SpecModel to ITreeContentProvider SpecModel

A. Class Responsibility Collaborator (CRC) 86

Table A.67: FillmorePreferencePage Class Responsibility Collaborator
(CRC)

FillmorePreferencePage
Blank Preference page to properly organize all the preference
page for the plugin

Table A.68: PreferenceConstants Class Responsibility Collaborator
(CRC)

PreferenceConstants
Constant definitions for plug-in preferences

Table A.69: PreferenceInitializer Class Responsibility Collaborator (CRC)
PreferenceInitializer
Used to initialize default preference values

Table A.70: TestOraclePreferences Class Responsibility Collaborator
(CRC)

TestOraclePreferences
Test oracle preferences page StringFieldEditor

Appendix B

The Generated Oracle Code

B.1 The Generated Oracle Code From The Sam-

ple Example

This section shows the classes generated from the sample ‘ggcd’ program specification

given in 3.2.7

package o r a c l e s ;

import ca . F i l lmore so f tware . p lug in . O r a c l e U t i l i t i e s . ∗ ;

import stat ic org . j u n i t . Asser t . ∗ ;

public class ggcdOracle{

private VarMap vars ;

87

B. The Generated Oracle Code 88

private Outggcd1 t0 ;

public ggcdOracle (){

vars=new VarMap () ;

t0=new Outggcd1 (vars) ;

}

private Boolean ggcdTOracle (I n t e g e r i , I n t e g e r j ,

I n t e g e r gcdvalue , Boolean r e s u l t){

Boolean r e s u l t O r a c l e ;

vars . setValue (” i ” , i) ;

vars . setValue (” j ” , j) ;

vars . setValue (” gcdvalue ” , gcdvalue) ;

vars . setValue (” r e s u l t ” , r e s u l t) ;

B. The Generated Oracle Code 89

r e s u l t O r a c l e=t0 . ggcdT1 () ;

return r e s u l t O r a c l e ;

}

public void assertggcdTOrac le (I n t e g e r i , I n t e g e r j ,

I n t e g e r gcdvalue , Boolean r e s u l t){

asse r tTrue (ggcdTOracle (i , j , gcdvalue , r e s u l t)) ;

}

}

package o r a c l e s ;

import java . u t i l . ∗ ;

import ca . f i l l m o r e s o f t w a r e . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class Outggcd1{

private VarMap vars ;

private VectorTable nTable ;

B. The Generated Oracle Code 90

public Outggcd1 (VarMap vars){

this . vars=vars ;

nTable=new VectorTable (3) ;

Ce l l Index inHeader1 []=new Cel l Index [2] ;

Ce l l Index inHeader2 []=new Cel l Index [2] ;

for (int k0=0;k0<2;k0++)

inHeader1 [k0]=new Cel l Index (1) ;

for (int k1=0;k1<2;k1++)

inHeader2 [k1]=new Cel l Index (1) ;

Ce l l Index inMain []=new Cel l Index [4] ;

for (int j =0; j <4; j++)

inMain [j]=new Cel l Index (2) ;

inHeader1 [0] . s e t (0 , 0) ;

B. The Generated Oracle Code 91

nTable . addHeaderCell (0 , inHeader1 [0] ,new

ggcd1 Gr id 1 Ce l l 0 (vars)) ;

inHeader1 [1] . s e t (0 , 1) ;

nTable . addHeaderCell (0 , inHeader1 [1] ,new

ggcd1 Gr id 1 Ce l l 1 (vars)) ;

inHeader2 [0] . s e t (0 , 0) ;

nTable . addHeaderCell (1 , inHeader2 [0] ,new

ggcd1 Gr id 2 Ce l l 0 (vars)) ;

inHeader2 [1] . s e t (0 , 1) ;

nTable . addHeaderCell (1 , inHeader2 [1] ,new

ggcd1 Gr id 2 Ce l l 1 (vars)) ;

int index =0;

for (int l 0 =0; l0 <2; l 0++)

for (int l 1 =0; l1 <2; l 1++)

{

inMain [index] . s e t (0 , l 0) ;

inMain [index] . s e t (1 , l 1) ;

index++;

}

nTable . addMainCell (inMain [0] ,new ggcd1 Gr id 0 Ce l l 0 (vars)) ;

B. The Generated Oracle Code 92

nTable . addMainCell (inMain [1] ,new ggcd1 Gr id 0 Ce l l 1 (vars)) ;

nTable . addMainCell (inMain [2] ,new ggcd1 Gr id 0 Ce l l 2 (vars)) ;

nTable . addMainCell (inMain [3] ,new ggcd1 Gr id 0 Ce l l 3 (vars)) ;

}

public Boolean ggcdT1 (){

Boolean r e s u l t=nTable . eva luateTable () ;

return r e s u l t ;

}

}

package o r a c l e s ;

import ca . F i l lmore so f tware . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class AuxFunctions{

stat ic public Boolean cDiv (I n t e g e r a , I n t e g e r b , In t eg e r

x){

B. The Generated Oracle Code 93

return (a % x == 0) && (b % x == 0) ;

}

}

package o r a c l e s ;

import java . u t i l . ∗ ;

import ca . f i l l m o r e s o f t w a r e . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class ggcd1 Gr id 0 Ce l l 0 extends Cel lBase {

private VarMap vars ;

public ggcd1 Gr id 0 Ce l l 0 (VarMap vars){

this . vars=vars ;

}

public Object eva l (){

I n t e g e r i =(I n t e g e r) vars . getValue (” i ”) ;

I n t e g e r j =(In t eg e r) vars . getValue (” j ”) ;

I n t e g e r x=(I n t e g e r) vars . getValue (”x”) ;

B. The Generated Oracle Code 94

I n t e g e r gcdvalue=(I n t e g e r) vars . getValue (” gcdvalue ”) ;

return (gcdvalue==AuxFunctions . cDiv (i , j , x)) ;

}

}

package o r a c l e s ;

import java . u t i l . ∗ ;

import ca . f i l l m o r e s o f t w a r e . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class ggcd1 Gr id 0 Ce l l 1 extends Cel lBase {

private VarMap vars ;

public ggcd1 Gr id 0 Ce l l 1 (VarMap vars){

this . vars=vars ;

}

public Object eva l (){

I n t e g e r gcdvalue=(I n t e g e r) vars . getValue (” gcdvalue ”) ;

B. The Generated Oracle Code 95

return (gcdvalue ==0);

}

}

package o r a c l e s ;

import java . u t i l . ∗ ;

import ca . f i l l m o r e s o f t w a r e . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class ggcd1 Gr id 0 Ce l l 2 extends Cel lBase {

private VarMap vars ;

public ggcd1 Gr id 0 Ce l l 2 (VarMap vars){

this . vars=vars ;

}

public Object eva l (){

Boolean r e s u l t =(Boolean) vars . getValue (” r e s u l t ”) ;

B. The Generated Oracle Code 96

return (r e s u l t==true) ;

}

}

package o r a c l e s ;

import java . u t i l . ∗ ;

import ca . f i l l m o r e s o f t w a r e . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class ggcd1 Gr id 0 Ce l l 3 extends Cel lBase {

private VarMap vars ;

public ggcd1 Gr id 0 Ce l l 3 (VarMap vars){

this . vars=vars ;

}

public Object eva l (){

Boolean r e s u l t =(Boolean) vars . getValue (” r e s u l t ”) ;

return (r e s u l t==fa l se) ;

B. The Generated Oracle Code 97

}

}

package o r a c l e s ;

import java . u t i l . ∗ ;

import ca . f i l l m o r e s o f t w a r e . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class ggcd1 Gr id 1 Ce l l 0 extends Cel lBase {

private VarMap vars ;

public ggcd1 Gr id 1 Ce l l 0 (VarMap vars){

this . vars=vars ;

}

public Object eva l (){

I n t e g e r gcdvalue=(I n t e g e r) vars . getValue (” gcdvalue ”) ;

return gcdvalue ;

}

B. The Generated Oracle Code 98

}

package o r a c l e s ;

import java . u t i l . ∗ ;

import ca . f i l l m o r e s o f t w a r e . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class ggcd1 Gr id 1 Ce l l 1 extends Cel lBase {

private VarMap vars ;

public ggcd1 Gr id 1 Ce l l 1 (VarMap vars){

this . vars=vars ;

}

public Object eva l (){

Boolean r e s u l t =(Boolean) vars . getValue (” r e s u l t ”) ;

return r e s u l t ;

}

}

B. The Generated Oracle Code 99

package o r a c l e s ;

import java . u t i l . ∗ ;

import ca . f i l l m o r e s o f t w a r e . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class ggcd1 Gr id 2 Ce l l 0 extends Cel lBase {

private VarMap vars ;

public ggcd1 Gr id 2 Ce l l 0 (VarMap vars){

this . vars=vars ;

}

public Object eva l (){

I n t e g e r i =(I n t e g e r) vars . getValue (” i ”) ;

I n t e g e r j =(In t eg e r) vars . getValue (” j ”) ;

return ((i >0)&&(j >0)) ;

}

}

B. The Generated Oracle Code 100

package o r a c l e s ;

import java . u t i l . ∗ ;

import ca . f i l l m o r e s o f t w a r e . p lug in . O r a c l e U t i l i t i e s . ∗ ;

public class ggcd1 Gr id 2 Ce l l 1 extends Cel lBase {

private VarMap vars ;

public ggcd1 Gr id 2 Ce l l 1 (VarMap vars){

this . vars=vars ;

}

public Object eva l (){

I n t e g e r i =(I n t e g e r) vars . getValue (” i ”) ;

I n t e g e r j =(In t eg e r) vars . getValue (” j ”) ;

return ((i <=0) | |(j <=0));

}

}

Bibliography

[1] R. F. Abraham. Evaluating generalized tabular expressions in software documen-
tation. M. Eng. thesis, McMaster University, Dept. of Electrical and Computer
Engineering, Hamilton, ON, Feb. 1997.

[2] S. Ambler. Agile Database Techniques:Effective Strategies for the Agile Software
Developer. Wiley Publishing, United States of America, 2003.

[3] S. Antoy and D. Hamlet. Self-checking against formal specifications. In W. W.
Koczkodaj, P. E. Lauer, and A. A. Toptsis, editors, Proc. Int’l Conf. Computing
and Information (ICCI), pages 355–360. IEEE Computer Society Press, May
1992.

[4] A. Balaban, D. Bane, Y. Jin, and D. Parnas. Mathematical model of tabular
expressions. SQRL Document, 2006.

[5] H. Baumeister. Combining formal specifications with test driven development.
pages 1–12. Springer Berlin/Heidelberg, 2004.

[6] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
2000.

[7] K. Beck. Test-Driven Development by Example. Addison-Wesley, 2003.

[8] G. Bernot, M. Gaudel, and B. Marre. Software testing based on formal speci-
fications: A theory and a tool. Software Engineering Journal, 6:387–405, June
1990.

[9] B. W. Boehm. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1981.

[10] D. Chapman. A program testing assistant. Communications ACM, 25(9):625–
634, Sept. 1982.

101

BIBLIOGRAPHY 102

[11] Y. Cheon and G. T. Leavens. A runtime assertion checker for the java modeling
language (JML). In H. R. Arabnia and Y. Mun, editors, International Confer-
ence on Software Engineering Research and Practice (SERP02), pages 322–328.
CSREA Press,Las Vegas, 2002.

[12] C. Ching. A brief introduction to test driven development using microsoft excel
and vba. http://www.clarkeching.com/2006/04/test driven dev.html.

[13] E. Clayberg and D. Rubel. Eclipse Plug-ins. Addison-Wesley, 2008.

[14] J. Gannon, P. McMullin, and R. Hamlet. Data-abstraction implementation,
specification, and testing. ACM Trans. Programming Languages and Systems,
3(3):211–223, July 1981.

[15] D. Gelperin and B. Hetzel. The growth of software testing. Communications
ACM, 31(6):687–695, June 1988.

[16] B. George and L. Williams. An initial investigation of test driven development
in industry. Proceedings of the 2003 ACM symposium on Applied computing,
Melbourne, Florida.

[17] J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection.
IEEE Trans. Software Engineering, 1(2):156–173, June 1975.

[18] R. Hamlet. Testing programs with the aid of a compiler. IEEE Trans. Software
Engineering, SE-3(4):279–290, July 1977.

[19] A. Herranz and J. J. Moreno-Navarro. Formal extreme (and extremely formal)
programming. In Extreme Programming and Agile Processes in Software En-
gineering, 4th International Conference, XP 2003, Genova, Italy, May 2003,
volume 2675 of LNCS, pages 88–98. Springer, 2003.

[20] R. Janicki. On a formal semantics of tabular expressions. CRL Report 355,
Communications Research Laboratory, Hamilton, Ontario, Canada, Oct. 1997.

[21] R. Jeffries, A. Anderson, and C. Hendrickson. Extreme Programming Installed.
Addison-Wesley, 2001.

[22] M. KAJKO-MATTSSON. A survey of documentation practice within corrective
maintenance. Empirical Software Engineering, 10(1):31–55, January 2005.

[23] M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Documents
(Version 1.2). Number 4180 in Lecture Notes in Artificial Intelligence. Springer
Verlag, 2006.

BIBLIOGRAPHY 103

[24] G. T. Leavens, A. L. Baker, and C. Ruby. JML: a notation for detailed design.
In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications for
Businesses and Systems, chapter 12, pages 175–188. Kluwer, 1999.

[25] D. Luckham, F. von Henke, B. Krieg-Brückner, and O. Owe. ANNA A Language
for Annotating Ada Programs Reference Manual. Number 260 in Lecture Notes
in Computer Science. Springer-Verlag, 1987.

[26] M. Muller and O. Hagner. Experiment about test-first programming. IEEE
Software, October 2002.

[27] G. J. Myers. The Art of Software Testing. John Wiley & sons, 1979.

[28] J. Newkirk and A. Vorontsov. Test-Driven Development in Microsoft .NET.
Microsoft Press, 2004.

[29] D. Nicolette and K. Scotland. Manager’s introduction to test-driven devel-
opment. Agile Conference, 2008. http://www.infoq.com/presentations/TDD-
Managers-Nicolette-Scotland.

[30] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying
and generating functional tests. Communications ACM, 31(6):676–686, June
1988.

[31] D. Panzl. Automatic software test drivers. Computer, pages 44–50, Apr. 1978.

[32] D. J. Panzl. A language for specifying software tests. In S. P. Ghosh and L. Y.
Liu, editors, Proc. National Computer Conf., pages 609–619. AFIPS, June 1978.

[33] D. L. Parnas. A generalized control structure and its formal definition. Commu-
nications ACM, 26(8):572–581, Aug. 1983.

[34] D. L. Parnas. Tabular representation of relations. CRL Report 260, Communi-
cations Research Laboratory, Hamilton, Ontario, Canada, Nov. 1992.

[35] D. L. Parnas. Inspection of safety critical software using function tables. In Proc.
IFIP Congress, volume I, pages 270–277. North Holland, Aug. 1994.

[36] D. L. Parnas and J. Madey. Functional documentation for computer systems.
Science of Computer Programming, 25(1):41–61, Oct. 1995.

[37] D. L. Parnas, J. Madey, and M. Iglewski. Precise documentation of well-
structured programs. IEEE Trans. Software Engineering, 20(12):948–976, Dec.
1994.

BIBLIOGRAPHY 104

[38] D. K. Peters. Generating a test oracle from program documentation. M. Eng. the-
sis, McMaster University, Dept. of Electrical and Computer Engineering, Hamil-
ton, ON, Apr. 1995.

[39] D. K. Peters, M. Lawford, and B. T. y Widemann. An IDE for software devel-
opment using tabular expressions. In B. Spencer, M.-A. Storey, and D. Stewart,
editors, Proc. Conf. of the Centre for Advanced Studies on Collaborative Research
(CASCON), pages 248–251, Ontario, Canada, Oct. 2007.

[40] D. K. Peters, M. Lawford, and B. T. y Widemann. Software specification us-
ing tabular expressions and omdoc. In M. Kauers, M. Kerber, R. Miner, and
W. Windsteiger, editors, Proc. Calculemus/MKM 2007 Work in Progress, num-
ber 07-06 in RISC-Linz Report Series, pages 61–75, Johannes Kepler University,
A-4040 Linz, Austria, June 2007. Research Institute for Symbolic Computation.

[41] D. K. Peters and D. L. Parnas. Using test oracles generated from program
documentation. IEEE Trans. Software Engineering, 24(3):161–173, Mar. 1998.

[42] C. Quinn, S. Vilkomir, D. Parnas, and S. Kostic. Specification of software com-
ponent requirements using the trace function method. In Int’l Conf. on Software
Engineering Advances, page 50, Los Alamitos, CA, USA, 2006. IEEE Computer
Society.

[43] D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-based test oracles
for reactive systems. In Proc. Int’l Conf. Software Eng. (ICSE), pages 105–118,
May 1992.

[44] D. S. Rosenblum. A practical approach to programming with assertions. IEEE
Trans. Software Engineering, 21(1):19–31, Jan. 1995.

[45] P. A. Stocks and D. A. Carrington. Test templates: A specification-based testing
framework. In E. Straub, editor, Proc. Int’l Conf. Software Eng. (ICSE), pages
405–414, May 1993.

[46] Q. M. Tan, A. Petrenko, and G. v. Bochmann. A test generation tool for specifi-
caiton in the form of state machines. Technical Report 1016, Department d’IRO,
Université de Montréal, 1996.

[47] Y. Wang. Specifying and Simulating the Externally Observable Behavior of Mod-
ules. PhD thesis, Dept. of Computing and Information Science, Queen’s Univer-
sity, Kingston, Ontario, Canada, 1994.

