
Relational Specification of

Interface Modules for Real-time

Systems

By

c©Yingzi Wang, B. Eng.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

May 2006

St. John’s Newfoundland

Abstract

Documentation plays a key role as a component of design process, and a preview

of a task before it comes to be executed. A well-specified task might not take less

implementation time than one without documents, but one of the obvious advantages

is that misunderstandings are avoided and readable specification makes it easy for the

successive developers to exploit or modify the software or hardware design. Interface

Modules (IM) are modules that encapsulate input or output device hardware and

the related software, so that the application software can be written without specific

knowledge of the particular devices used.

In this work, we present a technique to IM specification that very few researchers

pay attention to in the formal specification area. The technique is an extension of

the System Requirements Documentation technique presented in [58], which is based

on the Software Cost Reduction (SCR) method. Since an IM interacts with both the

external environment and other software modules, the technique is used to specify a

hybrid of software and corresponding hardware devices. The interface quantities are

modeled as functions of time and the behavior is described in terms of conditions,

events and mode classes.

The contributions of this work to the field of formal specification in general, con-

sists in extending SCR method with introducing access programs and parameterized

modes to specify Interface Modules for real-time systems. In the SCR method, con-

ditions are defined as boolean functions of monitored or controlled variables. Such

definitions are limited to address the relationship to the environment. For interface

modules, we use access programs as conditions so that the relationship of the IMs

to other software modules can be expressed. The parameterized modes simplify the

specification by grouping a set of modes with particular values in the same mode

name. This technique facilitates concise and formal description of the module behav-

i

0. Abstract ii

ior, including tolerances and delays.

Acknowledgements

I sincerely thank my supervisor, Dr. Dennis K. Peters, for his great guidance, thought-

ful critisizm and constant support. I am thankful to our colleagues in Electrical and

Computer Engineering at Memorial University, and in particular to An Zhiwei for

many insightful discussions and technical support. Support from the Natural Sci-

ences and Engineering Research Council and the Faculty of Engineering at Memorial

University are greatly acknowledged.

iii

Contents

Abstract i

Acknowledgements iii

List of Acronyms ix

1 Introduction 1

1.1 Interface Modules . 2

1.2 Computer System Documentation . 3

1.2.1 The Four Variable Requirements Model 3

1.2.2 System Requirements Document 6

1.2.3 Module Interface Specification 6

1.3 Interface Module Specifications . 7

1.4 Scope . 8

1.5 Outline . 8

2 Related Work 10

2.1 System Requirements Specification 10

2.1.1 Automata Based Methods . 10

2.1.2 Abstract Model Based Methods 12

2.1.3 Predicate Logic Based Methods 12

2.1.4 SCR Requirements Method 14

2.2 Interface Specification . 14

2.3 Tabular Expression . 16

2.3.1 Normal Tables . 18

iv

CONTENTS v

2.3.2 Vector Tables . 18

2.3.3 Decision Tables . 19

3 SCR Requirements Documentation Introduction 22

3.1 SCR Requirements Documentation 22

3.1.1 Identifier Annotations . 23

3.1.2 Conditions . 23

3.1.3 Events and Event Classes . 24

3.1.4 Mode and Mode Classes . 28

4 Specifying Interface Modules 31

4.1 SCR Extensions . 31

4.1.1 Using Access Programs as Conditions 32

4.1.2 Public Variables . 33

4.1.3 Parameterized modes . 33

4.1.4 Callback functions in the User Interface 36

4.2 Interface Modules Specification . 39

4.2.1 Monitored and Controlled Quantities 39

4.2.2 Mode Classes . 40

4.2.3 Controlled Value Functions 41

4.2.4 Timing Requirements . 43

4.2.5 Environmental Constraints . 43

4.3 Specification of Human-Machine Interface Modules 44

4.4 Concurrent Applications . 44

4.5 Discussion . 46

5 Sample Applications 49

5.1 A Robot Arm Control System . 49

5.1.1 Robot Interface Module Specification 49

5.1.2 Mode Class ClMotion . 50

5.1.3 Mode Class ClGripper . 53

5.1.4 Conditions . 53

5.1.5 Controlled Value Functions 54

5.1.6 Constants . 55

CONTENTS vi

5.1.7 Environmental Constraints . 56

5.2 Public Variable Interface of Robot Arm Control System 57

5.2.1 Public Variables . 57

5.2.2 Mode Class ClMotion . 58

5.2.3 Controlled Value Functions 59

5.2.4 Conditions . 60

5.3 Callback Function Specification . 61

5.3.1 Environmental Quantities . 62

5.3.2 Mode Class ClMouseListener 63

5.3.3 Mode Class ClmouseMotionListener 64

5.3.4 Controlled Value Functions 66

5.3.5 Conditions . 67

5.3.6 Dictionary . 67

5.4 Automated Teller Machine . 68

5.4.1 Card Reader . 69

5.4.2 KeyboardAdaptor . 73

5.5 Discussion . 75

6 Conclusions 77

6.1 Contributions . 77

6.2 Applicability of This Work . 78

6.3 Limitations of the Method . 78

6.4 Future Work . 79

6.5 Conclusions . 80

List of Figures

1.1 Fire Alarm Control System . 2

1.2 Modularized Fire Alarm Control System 3

1.3 Four Variable Model . 4

2.1 Raw Table Skeleton of Table . 17

4.1 Robot system . 40

vii

List of Tables

2.1 An example of Normal Table . 17

2.2 An example of Vector Table . 19

2.3 An example of Decision Table . 21

3.1 Identifier Annotations . 24

3.2 Event Notation . 25

3.3 Event Class Notation . 26

3.4 Mode Transition Table 1 . 29

3.5 Mode Transition Table 2 . 29

4.1 Conditions . 32

4.2 Access Programs . 33

4.3 Transition Relation ClMotion . 34

4.4 Public Variables . 34

4.5 Accessing Public Variables . 34

4.6 Transition Relation for Non-parameterized mode class 35

4.7 Transition Relation for Parameterized mode class 35

4.8 Controlled Variable Function . 38

4.9 Environmental Quantities . 40

4.10 Mode Transition Relation ClGripper 42

4.11 Control Value Function . 42

viii

List of Acronyms

Acronym Description Page (definition)

SRD System Requirement Documentation 6

IM Interface Module 2

IMS Interface Module Specification 7

SDL Specification and Description Language 11

UML Unified Modelling Language 11

VDM Vienna Development Method 12

SCR Software Cost Reduction 14

ix

Chapter 1

Introduction

Documentation plays a key role as a component of software and hardware design

process, and a preview of a task before it comes to be executed. Complete and

precise system requirements documentation can be used to verify the feasibility of a

project before it is implemented. Faults can be found in the early stages, if there are

any, and thus the cost of maintenance for the project can be reduced.

To reduce complexity, a system can be decomposed into a set of modules, each

of which performs a certain task in the system [55]. As a part of system modules,

Interface Modules form the bridge between system software and the environment.

Often, interface modules will encapsulate input and output hardware devices (e.g.,

actuators or sensors) and related software. If the devices change, the interface module

will ideally be the only component that is required to change. The other modules

in the system are “protected” by the interface modules in that little or no change is

required.

The unique characteristics of Interface Modules require the capability of a tech-

nique to specify a relation of a combination of software and corresponding hardware

devices. As a part of the system behavioral documentation, interface module specifi-

cation describes the visible behavior of a practical interface module. A few authors

have researched on Interface Modules specification, e.g. see [33, 39]. This work in-

vestigates techniques for using techniques based on [58], including mode classes and

conditions to represent the behavior of Interface Modules for real-time systems.

1

1. Introduction 2

sensors software

alarm bell

Environment

Figure 1.1: Fire Alarm Control System

1.1 Interface Modules

Interface Modules (IM) are modules that communicate between system software and

the environment external to the system, encapsulating input or output device hard-

ware and the related software, so that the application software can be written without

specific knowledge of the particular devices used [54, 14]. An IM reduces the complex-

ity of the system design by isolating the interface details from the rest of the system

software. This is particularly important in embedded systems, where the IM will

often contain special purpose hardware devices (e.g., actuators or sensors): replacing

or modifying a device should only lead to changes in the IM, rather than requiring

changes to other modules in the system. If the interface hardware is not explicitly en-

capsulated, when a device changes, software depending on it will also need to change,

so the change could have surprising and widespread ramifications.

A fire-alarm system, for example, as illustrated in Figure 1.1, illustrates the basic

concept of Interface Modules. The sensors measure the current temperature in the

room once every time interval and then send it to the software which processes the

data under some constraints. When temperature is above the threshold, the software

will send out a signal to start the fire-alarms. If the whole system is decomposed into

a set of modules, as shown in Figure 1.2, both Input Interface and Output Interface

are examples of Interface Modules. Changes to the sensor or alarm hardware will not

effect other system software, but the interface modules only.

An ideal interface module will:

• be the only component that needs to change if the devices change;

1. Introduction 3

sensors software

alarm bell

Input Data
Processing

Output Data
Processing

Input Interface Output Interface

Figure 1.2: Modularized Fire Alarm Control System

• not need to change unless the devices change;

• be relatively small and simple in structure so that it can be easily changed if

necessary.

1.2 Computer System Documentation

By specification, we mean a description of the acceptable behavior of an entire sys-

tem, sub-system, or component. A specification should describe what is to be built,

omitting details of how this will be achieved. A system or component that satisfies

the specification can be implemented in hardware, software, or combination of both.

An important goal is to avoid both overspecification and underspecification. Thus a

specification must characterize every black-box behavior acceptable to the customer.

Further, it should be free of implementation bias since the behavior and the interface

of the module are clearly specified [37].

1.2.1 The Four Variable Requirements Model

When specifying system and software requirements, it is important to distinguish

quantities that are external to the system (environmental quantities) from those that

are internal to the system [68, 69]. The Four Variable Model [56, 68, 69], addresses

this issue and is adopted as a framework of this work. According to this model, en-

vironmental quantities will include physical properties(e.g., temperatures, pressure,

location of objects), values of images on output display devices, settings of input

1. Introduction 4

Figure 1.3: Four Variable Model

switches, and settings of controlled devices. They are independent of the chosen solu-

tion and are apparent to the “customer”. Also, in real-time systems, environmental

quantities can be modeled by functions of time [35, 56, 63].

Environmental quantities can be classified into two sets: the controlled quantities

and monitored quantities. A monitored variable represents an environmental quan-

tity that influences system behavior, a controlled variable denotes an environmental

quantity that might be changed due to the operation of the system. In Four Variable

Model, as illustrated in Figure 1.3, the required system behavior is described as a

set of mathematical relations on four sets of variables — monitored and controlled

variables and input and output data items. Input and output data items, which are

the input to and output from these devices, are treated as resources for other system

modules.

Input devices (e.g., sensors) measure the monitored quantities and output devices

set the controlled quantities. The variables that the devices read and write are called

input and output data items.

The definition of four relations in the Four Variable Model — REQ, NAT, IN

and OUT is given in [69], which is the framework for describing system requirements.

NAT defines the natural constraints on system behavior, such as those imposed by

physical laws and by the system environment. REQ describes requirements by giving

1. Introduction 5

the relation that the system must maintain between the monitored and the controlled

quantities. The relation IN specifies the accuracy with which the input devices mea-

sure the monitored quantities and the relation OUT specifies the accuracy with which

the output devices set the controlled quantities. The software requirements specifica-

tion, called SOFT, defines the required relation between the input and output data

items. In the original Four Variable Model, IN and OUT describe behavior of devices

(i.e., hardware only). In this work, we take a slightly different view of IN and OUT

in that they may contain hardware and software. In this view IN and OUT can be

determined from the combination of all of the IM in the system. Accuracy and tol-

erance are used for the purpose of modeling the ideal system to describe errors and

delays that may be introduced anywhere in the system.

Since IMs interact with both other software modules and the environment external

to the system, they are examples of hybrid systems, which contain both discrete and

continuous components. Among the quantities that interact with IM, some of these

quantities are continuous, while others are discrete. For example, the change of the

environmental quantities like temperature, pressure, and the position of a moving

car is continuous; the values of variables measured in the system corresponding to

these environmental quantities are discrete. Thus, such combination of continuous

and discrete viriables presents new challenges for IM specification.

Writing specifications for interface modules is different from that for software

modules in that:

• IM interact with both environment and other software modules, so that discrete

and continuous valued variables are integrated in IM, while Software Modules

(SM) contain only discrete valued variables and discrete time. The Interface

Module Specification (IMS) must provide a suitable technique to clearly specify

such combinations.

• IM is the medium between system software and the environment, so that the de-

vice changes might require modification in IM, but ideally no other SM changes

occur. IMS must explicitly specify all environmental quantities relative to the

IM and give the acceptable behavior of the IM.

Interface modules are modules in the system which provide interface between the

environment and other modules in the system. When specifying interface modules,

1. Introduction 6

they can be viewed as “systems”, which are sub-systems in the target system. The

monitored variables for the IM are either the monitored variables or output data

items for the target system, and the controlled variables for the IM are either the

controlled variables or the input data items for the target system.

1.2.2 System Requirements Document

The goal of the System Requirements Documentation (SRD) is to precisely describe

a set of acceptable system behaviors. The idea is to make the “what decisions”

explicitly up front, not implicitly during design and implementation [37]. The SRD

supports the system development process in a number of important ways; it:

• Serves as a contract between the users and the developers;

• Ensures that developers need not decide what is the best for users;

• Provides essential support for independent verification;

• Supports estimates of time and resources;

• Provides protection against personnel turnover;

• Supports the maintainers.

While sometimes the SRD for an industrial system is large and complex so that it

does not make easy reading, it provides precise answers to important questions about

what must be built. Also important, it provides a framework in which to ask precise

questions. To avoid overspecification, the SRD should describe the system behavior

as a mathematical relation between entities in the system’s environment.

1.2.3 Module Interface Specification

Module Interface Specification (MIS) describes the observable behavior of the module

in the system. A module is the basic unit of development and change in the design

process. It could be a portion of a program that carries out a specific function, or

possibly with related hardware. Each module is defined according to the information-

hiding principle, so that module users (e.g., software developers) can use the module

without knowing how it is built.

1. Introduction 7

The module interface is the set of assumptions that the developers of external

programs may make about the module. It includes restrictions on the way that

modules may be used. Modules communicate either by one module using access

programs from other modules, or by one module being notified of an event that

was signaled by the other modules. The interface consists of assumptions about the

availability of the access programs, the syntax of the calls on the access programs,

the behavior of the access programs, and the meaning of events [37].

1.3 Interface Module Specifications

Interface Module Specifications (IMS) are components of the System Design Spec-

ification (SDS), as described in [58, 56]. Each treats a module as a “black box”,

identifying those programs that can be invoked from outside of the module (access

programs), and describing the externally-visible effects of using them. Like other

module specifications, the IMS perform a key role in modular system development

to four groups of people: designers, developers, verifiers, and end users. An IMS

illustrates to the module designer what behavior is required of the module for design

and review. It provides the developer with a clear statement of the required task and

allows it to be implemented without communicating with other module designers. In

addition, the IMS can be used to verify that the module internal design is correct

or that a module implementation obeys the convention. Designers of other modules

in the system can use the IMS to understand what behavior they can expect from

the module. Also the developers are freed from having to know implementation de-

tails about module internals. As a part of the system design process, the IMS and

the system architecture can be used to verify that the design satisfies the system

requirements [37].

Interface Module Specifications (IMS) describe the visible behavior of a particular

module — an Interface Module. Like other modules in the system, the visible behavior

of IM can be described by specifying the Module Interface. Each module interface

document describes the aspects of module behavior visible to other developers using

the module.

As mentioned in Section 1.2.1, the IN and OUT relation used here are slightly

different from that in [56] in that they may contain hardware and software, rather

1. Introduction 8

than the pure hardware devices. Unlike other module specifications (e.g., for pure

software or hardware modules), IMS must describe a combination of software and

corresponding hardware devices.

1.4 Scope

This thesis reports the results of an investigation of techniques for using a readable

form of system design documentation to specify the observed behavior of Interface

Modules. The following issues are addressed:

• The observable behavior of the Interface Modules.

• How the Interface Modules connect with environment and software modules.

The Interface Modules discussed in this work are assumed to be components in

the system that are decomposed in the ideal way according to the information hiding

principle, so that the relationship between Interface Modules and other Software

Modules can be specified explicitly. In practice, the system might not always be

divided in such an ideal way. Therefore the Interface Modules might be of large size

with complex structure. If the system is not well decomposed, a device change might

require modification to other components in the system, i.e., software modules.

The application of the technique that is presented in this thesis is not limited to

specifying interface modules, but also can be used to specify modules with relationship

to software modules, i.e., interface of a software module. This work is not suitable to

the electronic systems (e.g., Very Large Scale Integration circuit (VLSI)).

The assumption of our method for specifying Interface Modules is that System

Requirement Documentation (SRD) has been given. Some of the parameters, related

to Interface Modules are provided by the SRD, i.e. monitored and controlled variables.

1.5 Outline

Chapter 2 surveys some research work of formal specification that is related to inter-

face module specifications.

1. Introduction 9

Chapter 3 presents Software Cost Reduction (SCR) method in detail as a frame-

work of this thesis. The notations and definitions of the method that are adopted to

specify interface modules is addressed.

Chapter 4 describes the techniques that are extended from Peters’ work in [58].

The main contribution of this work is shown in this chapter.

Chapter 5 provides two examples for the Interface Module specification method

— a robot arm control system and an Automated Teller Machine (ATM). The spec-

ification of the user interface module is also discussed in this chapter.

Chapter 6 discusses the results of applying this work, suggests some future research

in this area and draws some conclusions.

Chapter 2

Related Work

Two areas of research are most closely related to this work: Specifying system re-

quirements and Interface Specification. Some of the most relevant work in these areas

is as follows.

2.1 System Requirements Specification

The formal techniques that are mainly applied in System Requirements Specification

are divided into Finite State Automata (FSA) based methods, Abstract Model based

methods and Predicate Logic based methods. Some of the most relevant work in

these areas is as follows. SCR Requirement Method, one of the FSA based methods,

is emphasized in Section 2.1.4 as the foundation of this thesis and discussed in detail

in Chapter 3.

2.1.1 Automata Based Methods

Most of the “popular” formal specification techniques, (e.g., SDL [38], statecharts

[25], Hybrid Automata [3, 47], and Petri Nets [50]) are based on automata theory.

They model the target system and its environment as one or more FSA, and describe

the required behavior of the system in terms of operations on that model.

One of the most widely used techniques in specifying the requirement of real-

time systems is Statecharts [25, 26]. It extends traditional FSA with nested states,

parallel (AND) or choice (OR) composition of state machines. Its notation allows

10

2. Related Work 11

relatively complex systems to be described using multiple levels of nesting so that the

specification is still understandable. Real-time requirements are described using an

implicit clock variable and timeout events.

Statecharts ideas have been adopted by several other techniques, for example

RSML [29, 46] and Modecharts [41]. In addition, [66] shows that the expressive

power of Statecharts increases when it is combined with temporal logic.

Specification and Description Language (SDL) [38] is mainly a language to spec-

ify and describe the logic of processes independently of implementation techniques,

and is also based on a FSA approach. In SDL, which allows textual and graphical

representations, a system is viewed as consisting of interconnected blocks. A system

communicates with the environment and its parts (blocks) communicate with each

other by channels which carry signals.

The representation of real-time systems can be realized in timed automata as an

abstract model by defining timed state sequences [18, 4]. Each state in the time

sequence includes an observation variable that satisfies the propositional constraint

and a clock interpretation that satisfies the timing constraint. As a different ap-

proach, timed-transition systems can be employed in real-time systems [27, 48, 36].

By restricting the time at which transitions may occur, time is incorporated into the

transition system model, which includes a set of propositions, a set of initial obser-

vations and a final set of transitions. A minimal and maximal delay is assigned for

each transition.

The Unified Modeling Language (UML) [62] is the de facto industry standard

language for specifying, visualizing, constructing, and documenting the artifacts of a

system, as well as for business modeling and other non-software systems. The UML

represents a collection of best engineering practices that have proven successful in the

modeling of large and complex systems [24]. Although UML is popular in industrial

practice due to its strong expressive ability and several supporting tools, like other

informal methods, UML defines the syntax of a given notation rigorously but leaves

the notation’s semantics defined informally. Therefore, it does not meet the needs of

this work since it cannot be used to unambiguously determine if any system behavior

is acceptable or not.

2. Related Work 12

2.1.2 Abstract Model Based Methods

The Vienna Development Method (VDM) [22] and Z [40] are two popular abstract

model based specification techniques. When specifying a software module in VDM

or Z, the required behavior of the module is described by constructing a model of the

system and defining the system behavior in terms of this model.

In VDM, for module interface specifications, the syntactic domains consist of

module access programs; the semantic domains are usually some well understood

data models (e.g., sequence, tuple, set, map, tree) used for denoting the states of

the modules and meaning of objects in the syntactic domains; and the interpretation

functions map the elements in the syntactic domains (module access programs) into

the semantic domains.

Z is a specification language based on the concepts and notations of first-order

logic and set theory. Sets are the only data model in Z: all the specifications are

written in terms of pre-defined set manipulation notation.

The basic specification unit in Z is the schema, which can be used to describe both

static and dynamic aspects of software modules in a style similar to VDM implicit

specifications. However, Z specifications are less readable because of the complicated

notations, and it provides no notation for real-time description. Since VDM and

Z are techniques for specifying software systems, they cannot specify quantities in

continuous value range.

2.1.3 Predicate Logic Based Methods

There are a number of other logic based methods using various forms of logical no-

tation and document structure. For example, in Real-Time Logic (RTL) [7, 42] the

behavior is described in terms of events and actions. In Albert II [12, 13] the system

is described as a collection of co-operating agents, using a variation of Real-Time

Temporal Logic to describe each of them [52]. Although like this work, it is using a

notation from the software requirements for the A-7E aircraft [2, 35], it is less readable

without using tabular expression.

Temporal logics employ special operators to denote that a condition is true always

(�) or eventually (♦). It was first used in specifying reactive systems over time by

Pnueli [59]. Ever since, it has been studied extensively as a means of describing the

2. Related Work 13

temporal behavior of computer systems that do not have real-time requirements [20].

Linear-time and Branching-time temporal logics are extended from temporal logics

(e.g., PTL [23],UB [10], CTL [20], and CTL* [17]). Linear-time logics are interpreted

over linear structures of states, each of which represents an execution sequence of a re-

active system. The classical example of linear-time logics is PTL [23]. Branching-time

temporal logics, on the other hand, are denoted as a set of states in tree structures.

Each tree represents a reactive system and each path of the tree denotes the possi-

ble execution sequences in the system. Classical examples of branching-time logics

include UB [10], CTL [20], and CTL* [17].

A variety of approaches have been developed for adding the time constraints

to temporal logics. Bounded temporal operators is a common way of introducing

real-time in the syntax by assigning an upper bound and a lower bound to the specific

operator. For example, the bounded operator ♦2,4 is interpreted as “eventually

within 2 to 4 time units”. However, the bounded-operator notation is limited within

the adjacent temporal contexts. Its shortcoming can be remedied by use of freeze

quantification that binds a variable to the corresponding time. The idea was first

introduced and analyzed in [6]. As the third method to write real-time requirements,

an explicit clock variable is used based on standard first-order temporal logic. A

dynamic state variable T is used as a clock variable to describe the values of the

corresponding time in each state. For instance, the time-bounded response property

can be specified by the formula

∀x ·2((p ∧ T = x) → ♦(q ∧ T ≤ x + 3))

where the global variable x is bound to the time of every state in which p is

observed (p and q each represents an event). The time constraint for p is T = x. q is

restricted with T ≤ x + 3.

Examples of expressing timing constraints in this method can be found in

[60, 19, 27, 61]; it has been studied for its expressiveness and complexity in [5, 28].

The temporal operators do not, however, increase the expressiveness of a logic since

“always” and “ eventually” can be expressed simply as quantification over time (∀t
and ∃t, respectively).

2. Related Work 14

2.1.4 SCR Requirements Method

The “Software Cost Reduction” (SCR) requirements method [32] is a formal method

based on tables for the specification and analysis of the behavior of complex systems.

The SCR method has been applied to several practical systems such as avionics

systems, telephone networks, and safety-critical components of nuclear-power plants

and so on. Designed for use by engineers, it was introduced originally in a project

at the US Naval Research Laboratory (NRL) to specify the requirements for the

operational flight program of the A-7E aircraft [2, 34, 35], and is a forerunner of the

approach presented in this thesis. In the SCR method, the behavior of the system

is described by a set of mode classes, in which each mode represents a state in the

concurrently executing FSA. A condition is a predicate defined on one or more system

entities (a system entity is an input or output variables mode, term) at some point

in time. An event is the instant when a condition changes value [32].

Several authors have applied and extended SCR for requirements documentation

[8, 9, 58]. Also the use of SCR for hybrid systems is discussed in [30]. The effectiveness

of this approach is shown in a number of real examples (e.g., [11, 34, 45, 71]) and it

is also shown to satisfy some industrial expectations of requirements documentation.

D. Peters extends some notations from SCR in [58], deriving a monitor for real-time

systems from given system requirement documentation. He gives an interpretation

of this notation on behaviors as functions of continuous time, and defines a mode as

a set of possible histories instead of a unique state as in the SCR approach. This

simplifies the specification and clarifies the system behavior. As a previous work and

foundation of this thesis, SCR approach and its applications are discussed in more

detail in Chapter 3.

2.2 Interface Specification

There are many techniques in Module Interface Specification, whereas very few re-

searchers have concentrated on the issues of Interface Modules. One of the challenges

of Interface Module Specification is to specify variables in both continuous and dis-

crete range. Some research work uses hybrid system specification in formal method

[30]; their specifications are for system requirements rather than that for Interface

2. Related Work 15

Modules. In [49], N. Lynch, R. Segala and F. Vaandrager propose a hybrid automa-

ton model that is capable of describing both continuous and discrete behavior in the

system. The model, which extends the timed automaton model, allows communica-

tion among components using both shared variables and shared actions. Like other

requirements documentation techniques, interface module specifications can not be

fully expressed with these techniques.

A few of the module interface specification techniques that are most well suited

to IMS are listed below.

Several languages have been used in the Interface Specification. Bornea [65] is a

language designed for low-level specification of message behaviors using ADL frame-

work [64]. The main problem with Bornea is that it specifies the interface behavior

with auxiliary definitions, akin to coming up with an implementation. This blurs any

distinction between a specification and an implementation, thus making the specifi-

cation vulnerable to having faults as is the implementation.

IBDL is provided as a language for interface behavior specification and testing

based on the message passing paradigm [70]. In this method, formulas are given to

disambiguate termination from abnormal termination of a message using the return

values and exception to reflect whether the pre-condition associated with the mes-

sage is satisfied or not. State changes caused by a message invocation are specified

by enumerating subsequent messages that a message invocation enables (and/or) dis-

ables, by establishing their pre-conditions. However, like other informal specification

techniques, the structured English adopted in ISDL [70] leads to its lack of precisely

defined behavioral semantics. Thus it does not meet the requirement of this work

since it cannot determine whether any behavior is acceptable or not.

Some other research regarding Interface Specification Languages can be found in

[72, 16, 67].

Britton et al propose an abstract interface to describe interface modules [14].

Such an abstract interface is an abstraction that represents more than one interface; it

consists of the assumptions that are included in all of the interfaces that it represents.

The technique includes assumption lists, access function tables and event tables.

Although the technique is similar with the format adopted in this work, the abstract

interface cannot fully specify the interface modules since it only provides the interface

between the user programs and the device interface modules.

2. Related Work 16

The Trace Assertion method [57] is a software module specification method based

on the state machine model where the states of the machine are denoted by its history.

In this method, each module is considered as providing a number of programs that

a user program can invoke. Some programs (O(for operation)-programs) can cause

changes in state of the module, and other programs (V(for value)-programs) can give

to a user program the values of the variables making up that state.

In [57], Wang and Parnas present the Trace Assertion Method to specify module

interfaces with examples of specifying operations on some typical data structure mod-

ules — stack, queue, and binary tree. These are all examples for software modules. As

discussed in [51], Trace Assertion Method has the ability to specify nondeterministic

cases. Janicki and Sekerinski apply the Trace Assertion Method in Module Interface

Specification in [44]. However, it is restricted to software-based specification and is

not suitable for hybrid systems containing both hardware and software (i.e., it fails

to represent variables in the real domain in the interface module). Like Z, Trace

Assertion Method does not provide explicit and complete specification of real-time

aspects.

2.3 Tabular Expression

Tabular expressions are used in this work to denote the module behaviors. As de-

scribed in [1], which is based on [43, 53], they are designed for denoting software be-

haviors. Using traditional mathematical notation to document real software products

often generates large and complicated expressions. If such complex documentation is

considered unreadable, it will not be used by maintainers and will become less valu-

able. The wide application of tabular expressions can be found in several industrial

projects and research efforts [31, 35, 46].

Tabular notation has been found to be useful for improving the readability of com-

plicated mathematical expressions, and is particularly well-suited to software docu-

mentation. The structure provided by tabular notation makes it easier for a person

to consider every case separately while writing or reading a design document.

An n-dimensional table contains of n headers (denoted as H1, H2,. . . , Hn), and

an n-dimensional main grid, G. As illustrated in Table 2.1, H1 is the row header

containing the expressions h1,1, h1,2 and h1,3. Also, H2 contains the expressions h2,1

2. Related Work 17

Figure 2.1: Raw Table Skeleton of Table

f(x, y)

df
=

pT : H1 ∧H2

rT : G
Normal

x < 0 x = 0 x > 0

y < 0 −x − y −y x − y
y = 0 −x 0 x
y > 0 y − x y x + y

Table 2.1: An example of Normal Table

and h2,2. G contains the expressions g1,1, g1,2, g2,1, g2,2, g3,1 and g3,2. An index,

α, is a tuple of length n such that ∀i, 1 ≤ i ≤ n ⇒ 1 ≤ α[i] ≤ length(Hi), where

α[i] represents the element at position i of index α. An index locates a unique cell

in each header H and in the main grid G. For example, in Table 2.1, we define

f(x, y) = |x + y|. The tuple (1, 2) is an index for the table in Table 2.1 and locates

the first cell in H1, y < 0, the second cell in H2, x = 0, and −y in G.

In Tabular Expressions, the semantics of each form are described by the cell

connection graph (CCG) case and two “table rules”: the table predicate rule, PT ,

which defines the domain of the expression, and the table relation rule, rT , which

defines the value of the expression.

The cells of headers mentioned in the table predicate rule (H1 and H2 in Table 2.1)

are called guard cells, combined according to PT to form a guard expression PT [α] for

a particular α. The cells of main grids in the table relation rule (G in Table 2.1) are

2. Related Work 18

called value cells, forming the value expression according to headers. For example in

Table 2.1, for α = (1, 1), PT [α] = y < 0 ∧ x < 0. The conjunction of PT [α] with the

value expression for that index, rT [α], forms a raw element relation, Rα, for example

R1,1 is defined as {(x, y, v) | (y < 0) ∧ (x < 0) ∧ v = (−x− y)}, where v is the value

of the function f(x, y).

The cell connection graph determines how the raw element relations are to be

combined to construct the table relation, RT . RT for Normal Tables, Vector Tables

and Decision Tables are defined in Section 2.3.1, Section 2.3.2 and Section 2.3.3

respectively.

2.3.1 Normal Tables

Normal Tables evaluate the value expression for the index that makes the guard

expression true. The table relation of Normal Table can be expressed as

RT =
⋃
α∈I

Rα

where I is the index set of G and α ∈ I.

As an example of interpreting a Normal Table in Table 2.1, expression of PT :

H1 ∧ H2, rT : G and CCG case “Normal” specifies that the table is interpreted by

choosing i and j such that H1[i] ∧H2[j] is true. The value of the tabular expression

is given by G[i, j], giving the table relation,

RT =
⋃3

j=1

⋃3
i=1 R(i,j) = R1,1 ∪R2,1 ∪R3,1 ∪R1,2 ∪R2,2 ∪R3,2 ∪R1,3 ∪R2,3 ∪R3,3

Thus, in Table 2.1, if x < 0 and y > 0, for example, the value of the tabular

expression is y − x.

2.3.2 Vector Tables

Vector tables “join” the value expressions for all indices (a row or column) that

make the guard expression true. Vector tables are useful when describing a function

whose range is a tuple of elements, because one dimension of the table is dedicated

to separating the different elements. The relation for Vector tables is

RT =
n⊗

i=1

 ⋃
αv=i
α∈I

Rα

2. Related Work 19

pT : H2

rT : H1 = G
Vector

P ¬P

x1 a b
x2 c d

Table 2.2: An example of Vector Table

The operator “
⊗

”, is a variation of “join” from relational databases, and is used

to merge relations to form a single ‘vector’ relation. For example, if A ⊆ U0×U1 and

B ⊆ U0 × U2, then

A⊗B = {(x0, x1, x2)|(x0, x1) ∈ A ∧ (x0, x2) ∈ B}.
For example, Table 2.2 specifies values for the tuple (x1, x2). The first row of the

main grid specifies the value of x1 only, while the second row gives values for x2 only.

In Table 2.2, the table predicate rule is “H2”, therefore the expressions in header H2

are used to select a column. The table relation rule is “H1 = G”, but this rule must be

applied to both rows of the table. The equivalent concurrent-assignment statement

for the first column of the table is “x1, x2 := a, c”.

The relation of Table 2.2 can be explicitly defined in terms of the table’s four raw

element relations as

RT = (R1,1 ⊗R1,2) ∪ (R2,1 ⊗R2,2)

= ({(x1, P) | P ∧ (x1 = a)} ⊗ {(x2, P) | P ∧ (x2 = c)})∪
({(x1, P) | ¬P ∧ (x1 = b)} ⊗ {(x2, P) | ¬P ∧ (x2 = d)})

=

{
(x1, x2, P)

∣∣∣∣∣ (P ∧ (x1 = a) ∧ (x2 = c))∨
(¬P ∧ (x1 = b) ∧ (x2 = d))

}

2.3.3 Decision Tables

Decision tables are useful when describing a function whose domain is a tuple of

elements, and also when the conditional expressions do not follow regular rules. A

normal table header often contains conditions on only one element of the domain. In

the case of many elements, the table may contain too many dimensions and become

unreadable. Therefore, decision tables can be applied to separate the different ele-

ments of the domain. For example, Table 2.3 specifies a function whose input is the

tuple (x1, x2).

2. Related Work 20

The value that x1 and x2 may take are given in the main grid G. The first row

of G gives possible values of x1, while the second row gives possible value for x2.

Cells from both rows of Table 2.3 contribute to the selection of the correct column,

therefore, the table is interpreted by taking the intersection of raw element relations

from each row of the table. The overall relation of the decision table is defined by

the union of these aggregate relations.

The relation RT of decision tables can be expressed as

RT =
⋃

β∈ID

 k⋂
αv=1

α|v=β

Rα

ID is the index set for the table with the vector header index removed, and α|ν

is the index formed by deleting the νth element from α. ν is the length of the vector

header.

To be a standard notation, α can be defined as being an element of a

set, which is defined itself in terms of β. So we define DT (β, v, k) =

{(β1, β2, . . . βv−1, j, βv, . . . βn) | 1 ≤ j ≤ k} (that is, the set of tuples formed by in-

serting the values from 1 to k at the vth position in β), and thus the expression

is

RT =
⋃

β∈ID

 ⋂
α∈DT (β,v,k)

Rα

where v is the vector header number and k is the length of the vector header.

For example, R1,1 can be expressed as R1,1 =

{(y1, y2, y3, y4, x1, x2) | y1 ∧ (x1 = True)}. The relation of Table 2.3 can be ex-

plicitly defined in terms of the table’s eight raw element relations as follows.

RT = (R1,1 ∩R2,1) ∪ (R1,2 ∩R2,2) ∪ (R1,3 ∩R2,3) ∪ (R1,4 ∩R2,4)

=

(y1, y2, y3, y4, x1, x2)

∣∣∣∣∣∣∣∣∣∣
(y1 ∧ (x1 = True) ∧ (x2 = On))∨
(y2 ∧ (x1 = True) ∧ (x2 = Off))∨
(y3 ∧ (x1 = False) ∧ (x2 = On))∨
(y4 ∧ (x1 = False) ∧ (x2 = Off)

Informally, Table 2.3 is to be read as follows. The table predicate rule is “H1

= G”, therefore the values in header H1 and the main grid G are used to select a

2. Related Work 21

pT : H1 = G
rT : H2

Decision
y1 y2 y3 y4

x1 True True False False
x2 On Off On Off

Table 2.3: An example of Decision Table

column that satisfies this predicate. However, the column must be chosen such that

both elements of the tuple (x1, x2) are associated with the correct value. The table

relation rule is “H2”, therefore the result of the function is the value of the expression

in the selected column of header H2.

Chapter 3

SCR Requirements Documentation

Introduction

The notation and terminology used to describe the software requirements in the Soft-

ware Cost Reduction (SCR) requirements method is introduced in this chapter. Some

of the notations in this work are extended from [58], which is based on the SCR re-

quirements method.

3.1 SCR Requirements Documentation

The SCR requirements method was introduced more than two decades ago to specify

software requirements for real-time embedded systems concisely [34]. More recently,

the method has been extended and applied to system requirements, rather than simple

software, to specify the functional requirements (the values that the system assigns

to the output) and non-functional requirements (e.g., timing and accuracy) [56].

The SCR requirement method consists of tabular notations, conditions, events,

input and output data items, mode classes, and terms [32]. The Four Variable Model

of Parnas and Madey [56], which is illustrated in Chapter 1, provides a formal frame-

work for the SCR method. To specify the relations of the Four Variable Model in a

practical and concise manner, the SCR method introduces modes, terms, conditions

and events.

The SCR requirements method describes the required system behavior as a set of

22

3. SCR Requirements Documentation Introduction 23

mode classes, each of which is represented as a finite state machine. Complex systems

are defined by several mode classes operating in parallel.

In [58], the SCR method is extended in the definition of event and mode. Instead of

the SCR definition of events as changes in the value of conditions, this method defines

the events as instants when one or more conditions change value, together with the

status of all conditions at the same time. Thus the need for special conditioned events

is avoided and the elimination of “simultaneous events” simplifies the specification of

requirements. The extension method defines a mode as an equivalence class of system

histories, whereas SCR defines a mode as a state of a finite state machine [58].

In the SCR method, requirements specifications use tabular expressions method

— condition tables, event tables, and mode transition tables, to present the required

system behavior precisely and concisely. Each table defines a mathematical relation

or function. A condition table describes a controlled variable or a term as a function

of a mode and a condition; an event table describes a controlled variable or term as

a function of a mode and an event. A mode transition table describes how a mode

transits to a new mode according to events [32].

The notations expressed below are adopted from SCR as well as [58] and applied

to specify Interface Modules.

3.1.1 Identifier Annotations

To make the specification concise, throughout this thesis we use prefix “c”, “m”,“mc”

“Md”, “Cl”, “C” and “p”, where their annotations are described in Table 3.1 to help

clarify the meaning of identifiers. The type of a variable indicates the range of values

that may be assigned to that variable.

3.1.2 Conditions

The values of controlled quantities are changed by the system in response to changes

in the monitored quantities, e.g., a user pushing a button, or the value of a quantity

exceeding some threshold. Such relevant properties of the monitored and controlled

quantities can often be succinctly characterized by predicates, called conditions, which

are Boolean functions of time defined in terms of the monitored and controlled quan-

tities. These conditions can be expressed by using constants, the environmental

3. SCR Requirements Documentation Introduction 24

Form Meaning Example
cx Controlled variable ccvarx
mx Monitored variable mmvarx
mcx Monitored and Controlled variable mcmcvarx
Mdx Mode Mdmodex
Clx Mode class Clmclassx
Cx Constant Cconstx
px Condition pcondx

Table 3.1: Identifier Annotations

quantities, and functions of them, together with standard relational (e.g., <,>) and

logic (e.g., ∧,∨,¬) operators, and tabular expressions.

For a particular system, we assume a finite set of conditions, p1, p2, . . . , pn. For

the purpose of simplifying the specification, we assign the conditions in a fixed order

and refer to them simply by their index in that order (i.e., p2, etc.) [58].

In the specification for a real-time system, time elapsed from the initial state may

affect the module behavior. Hence conditions specified in terms of time are often

needed. If this is the case, time is a monitored quantity and no special notation is

required [58]. In a real-time system, the acceptable behavior of the system not only

must be functionally correct, but also must be temporally correct — satisfying some

timing constraints [37]. Such real-time constraints are often the important issue in

designing safety- or mission-critical real-time systems, for example in aviation and

military applications.

The representation of timing constraints in real-time systems can be achieved by

the time elapsed since some fixed time prior to the start time of the system — when

the system is turned on.

3.1.3 Events and Event Classes

The instants when one or more conditions change value are significant to the behavior

of the system, and these instants are referred to as events. Formally, an event e, is

a pair, (t, c), where e.t ∈ < is a time at which one or more conditions change value

and e.c denotes the status (i.e., true, false, becoming true, becoming false — denoted

T, F, @T, @F, respectively) of all conditions at e.t, as defined in Table 3.2.

3. SCR Requirements Documentation Introduction 25

e.c[i] pi

T 8pi(e.t) ∧ pi(e.t)
′

F ¬8pi(e.t) ∧ ¬pi(e.t)
′

@T ¬pi(e.t)
′ ∧ pi(e.t)

′

@F 8pi(e.t) ∧ ¬pi(e.t)
′

Table 3.2: Event Notation

The notations 8pi(e.t) and pi(e.t)
′ are used to denote the value of pi(e.t) immedi-

ately before and after e.t, respectively. The notations “@T” and “@F” characterize

the event becoming true or false, respectively. The notations “T” and “F” denote

that the condition is remaining “true” or “false” since there is no event of conditions

changing [58].

The type EvSp, which is defined as Real ×{T, F, @T, @F}n, is the event space —

the set of all possible events relevant to a particular system. A finite set of events Ev

⊂ EvSp denotes any particular finite behavior of the system operation.

In many cases the description of system behavior can be stated concisely by con-

sidering sets of similar changes in conditions. Such sets of events are referred to as

event classes. An event class, EC, is a subset of the events relevant to the system:

EC ⊆ Ev. Note that since all changes at an instant are described in one event, there

is no need to consider “simultaneous events” as a special case. Instants, when two or

more relevant changes occur at the same time are cases where an event is in two or

more event classes [58].

Some simple event class expressions are defined in Table 3.3. The notations “@T”,

“@F”, “T” and “F” are defined in Table 3.2. The notation “t” denotes that the con-

dition is either remaining true (T) or becoming false (@F), and “f” denotes remaining

false (F) or becoming true (@T). t′ denotes remaining or becoming true, and f ′ de-

notes remaining or becoming false. The notation “∗” indicates that the system is

not affected by the condition. The event argument is omitted from event class ex-

pressions, i.e., @T(pi) is defined as { e ∈ Ev | e.c[i] = @T}. The juxtaposition of

two or more event class expressions denotes the conjunction of the expressions, e.g.,

“@T (p1) WHEN(p2)” denotes @T (p1) ∧WHEN(p2).

The following standard functions, which are adopted from [58], are used in inter-

face module specifications. Implicitly, all the functions describe a particular behavior

3. SCR Requirements Documentation Introduction 26

Notation Event Class
scalar tabular Expression

pi

@T(pi) @T e.c[i] = @T
@F(pi) @F e.c[i] = @F

WHILE(pi) T e.c[i] = T
WHILE(¬pi) F e.c[i] = F
WHEN(pi) t e.c[i] = T ∨ e.c[i] = @F

WHEN(¬pi) f e.c[i] = F ∨ e.c[i] = @T
t′ e.c[i] = T ∨ e.c[i] = @T
f ′ e.c[i] = F ∨ e.c[i] = @F

CONT(pi) e.c[i] = F ∨ e.c[i] = T
∗ true
∅ false

Table 3.3: Event Class Notation

on the finite period of system operation [ti, tf], in which ti is the system initial time,

and tf refers to the “current” time, i.e., the final point of the behavior being consid-

ered. By convention, when referring to the “current” time (i.e., tf) the time argument

can often be omitted.

Definition 3.1 For an event class, e, and time, t, such that ti ≤ t ≤ tf , Prev(e,t) is

the set of events in e that occur prior to t, i.e.,

Prev(e, t)
df
= {x ∈ e|x.t < t}

Definition 3.2 For an event class, e, and time, t, ti ≤ t ≤ tf , Last(e,t) is the time

of the latest event from e before t.

Last(e, t)

df
=

Prev(e, t) 6= ∅ Prev(e, t) = ∅

max({x|∃y ∈ Prev(e, t), y.t = x}) 0

Definition 3.3 For an event class, e, and time, t, ti ≤ t ≤ tf , First(e, t) is the time

of the earliest event from e before t.

3. SCR Requirements Documentation Introduction 27

First(e, t)

df
=

Prev(e, t) 6= ∅ Prev(e, t) = ∅

min({x|∃y ∈ Prev(e, t), y.t = x}) 0

Definition 3.4 For a condition, pi, and time, t, such that ti < t < tf , Drtn(pi, t) is

the duration of time that pi has been continuously true if pi(t) is true, otherwise, if

pi(t) is false, then Drtn(pi,t) = 0.

Drtn(pi, t)

df
=

pT : H1 ∧H2

rT : G

Normal

pi(t) ¬pi(t)

Prev(@T(pi), t) 6= ∅ t− Last(@T(pi), t) 0

Prev(@T(pi), t) = ∅ t− ti 0

Definition 3.5 For a condition, pi, and times, t1 and t2 such that ti ≤ t1 ≤ t2 ≤ tf ,

totalDrtn(pi, t1, t2) is the total amount of time that pi has been true between t1 and

t2.

totalDrtn(pi, t1, t2)
df
=

∫ t2
t1

onTime(pi, t)dt

where onT ime(pi, t)

df
=

pT : H1

rT : G

Normal

pi(t) 1

¬pi(t) 0

Definition 3.6 For an event class, e, and time, t, ti ≤ t ≤ tf , Since(e,t) is the time

elapsed since the latest event e before t.

Since(e, t)

df
=

Prev(e, t) 6= ∅ Prev(e, t) = ∅

t − Last(e, te) 0

3. SCR Requirements Documentation Introduction 28

3.1.4 Mode and Mode Classes

The behavior of the system can be described as a sequence of events with respect

to condition changes since some initial state. Such a sequence of events is denoted

as history in some time interval, [ti, tf], concisely describing the system behavior by

giving the value of the relevant conditions at ti (initial conditions at the initial time)

and listing the sequence of events between ti and tf [58].

Similarly, the history that is relevant to the behavior of a module can thus be

described by the initial conditions and the sequence of events that have occurred

since the initial state. It is noted in [34, 35, 58] that it is often the case that many

histories are equivalent with respect to their impact on future behavior. Since many

histories are the same with respect to current and future behavior, they are grouped

together into a mode. A set of modes that partition the possible histories — forming

an equivalence relation on the set of histories — is known as a mode class.

Definition 3.7 An environmental mode class (or simply mode class) is an equiva-

lence relation on possible histories, MC ⊆ Hist × Hist, such that, if MC(H1, H2), and

Ĥ1 and Ĥ2 are the extensions of H1 and H2 by the same event, then MC(Ĥ1, Ĥ2).

A mode class consists of the set of mode names, {Mdm1,
Mdm2, · · ·, Mdmk}, where

k ∈ int, and the function, M: Hist → {Mdm1,
Mdm2, · · ·, Mdmk}, mapping each

possible history to a mode in the mode class. The mode name is used to represent

the characteristic predicate of the mode. For example for a mode Mdm, and a time t,
Mdm(t) is a condition that is true if and only if the history on [ti, t] is in Mdm. Note

that by convention t is implicitly tf , so this condition is denoted by “Mdm”.

A mode transition function specifies the next mode for any combination of cur-

rent mode and event. In this work, as illustrated in Table 3.4 and Table 3.5, two

forms of mode transition table are applied. In Table 3.4, the original mode is Mdm1.

When the condition pcondition1 becomes true, the system moves to the mode Mdm2.

Table 3.5 moves the status of conditions to the grid cell of the table, which allows

more conditions that are relevant to the mode class in the H2 cell.

In general, a mode is a set of states that are related in the system response to future

events. The state describes the status of the system in the specific time, whereas a

mode can be referred to a relatively broad description of the system response that

3. SCR Requirements Documentation Introduction 29

Mode Event New mode
Mdm1 @T (pcondition1)

Mdm2
Mdm2 @T (pcondition2)

Mdm1

Table 3.4: Mode Transition Table 1

pT : H1 ∧G(H2)
rT : H3

Decision p
co

nd
it
io

n 1
p
co

nd
it
io

n 2

New Mode
Mdm1 @T ∗ Mdm2
Mdm2 ∗ @T Mdm1

Table 3.5: Mode Transition Table 2

relates to the occurrence of future events. The same change in conditions occurring

at different times is different events, thus the corresponding states are different from

each other. However they could be in the same mode — we group these states into a

mode — a set of states that is equivalent with current or future behavior.

In addition, the difference between modes and states has more to do with other

mode classes than events at different times. The SCR work defines “state” to be

the values of all variables relevant to the system, and terms like “environmental

state” and “system state” to refer to the values of all environmental quantities or

system variables, respectively. The term “mode” is used to be distinct from this,

but is essentially the same as what is called “state” in many other techniques (e.g.,

Statecharts). In SCR, the system is in only one state at any given instant, whereas

it will be in many modes (one in each class). In Statecharts, for example, the system

could be in several states at the same time (if they were nested or parallel). Note,

however, that there is no notion of ‘nested’ modes in SCR as there is for states in

StateCharts.

For example, in describing the motion of a robot arm, it is difficult to describe a

particular position of the arm when it is moving. Since the arm position is changing

with time, the system will contain several distinct states during the period of motion

of the robot arm, e.g., a state set of when the arm is in the position of (10, 10), (10.5,

10), (10.6, 10.1), (10.7, 10.2), · · ·. Such distinct but analogous states bring complexity

and difficulty to the specification. With mode representation method, these states

3. SCR Requirements Documentation Introduction 30

can be grouped together as a mode in responding to the event that causes the robot

arm motion. Thus, when the arm is moving toward to the destination, wherever it

is, the system will remain in one mode — MdmovingTo(x, y). Therefore the problem

addressed above could be solved.

Chapter 4

Specifying Interface Modules

In this chapter, we will introduce some extension techniques from the previous work

of SCR method [58] and how we apply SCR technique to specify Interface Mod-

ules. These extensions are the main contribution of this work for Interface Module

Specification.

4.1 SCR Extensions

System requirement documentation focuses on specifying the observable behavior of

the system, which is treated as a “black box” and which only interacts with the

environment. Since Interface Modules connect not only the environment but also

other system modules, SCR method, as a requirement based formal technique, is

not suitable for IMS. Therefore some extensions are needed to make it suitable for

Interface Module Specification.

In this chapter, we will use a Robot Arm Control System as a basis for explana-

tion. The computer-controlled robot arm can grasp an object and move it to another

position. The robot has five motors to grasp or release the “hand” and position the

tip. As illustrated in Figure 4.1, the system contains a robot arm, a PC and the

interface hardware.

31

4. Specifying Interface Modules 32

Name Condition
plow mVtip < 0.8V

pfloat 0.8V < mVtip < 2.0V
phigh mVtip > 2.0V

Table 4.1: Conditions

4.1.1 Using Access Programs as Conditions

In the SCR method, conditions are boolean funtions of the monitored or controlled

variables that have some scope of the value and some time period restriction in the

real-time systems. Table 4.1 illustrates some examples of condition definitions. Com-

plete condition definitions for the robot example are detailed in Chpater 5.

Such a specification of conditions is suitable for system requirement documenta-

tion. However, an IMS needs to specify not only the relationship to the environment,

but also the relationship to other modules in the system. For interface modules, we

extend [58] by using access programs as conditions — using the access program name

and parameters to denote a condition that is true only when the access program is

executing.

Access programs are programs that may be called by programs outside of the

module to which they belong. A module interacts with other system modules by

calling their access programs. They form a “window” to communicate with other

modules. Access programs can be called by other modules and used to access these

modules. Thus, they form the interface to the other system modules.

For example, if foo is an access program of an IM, then foo(x) is true if and only

if foo is executing, and foo(x) ∧ x < 0 is true if and only if foo is executing and its

parameter x was less than 0 when it was called.

The Access Programs table provides syntax descriptions of programs that may be

called by modules in the system. In the robot arm control system as illustrated in

the Table 4.2, there are four access programs in the interface module.

An event occurs when one or more conditions change value. Thus an event might

occur when an access program condition becomes true — the program is called. For

the robot example in Table 4.3, @T (moveInitialPos()) denotes the event class of

instants when the access program moveInitialPos() starts to execute. Similarly,

@F (moveLinear(x, y)) denotes the event class of instants when moveLinear(x, y)

4. Specifying Interface Modules 33

Name Descriptions Parameter Types

moveInitialPos move the arm to the initial position (CX, CY)
moveLinear move the arm to the destination (x,y) float, float
graspGripper grasp the gripper
releaseGripper loose the gripper

Table 4.2: Access Programs

finishes.

4.1.2 Public Variables

Access programs are not the only approach for software modules to access the interface

module in the system. They can interact with the module by changing the value of

the public variables in the module. The public variables form a different interface

to the interface module that also can be accessed and modified directly by software

modules in the system. An event occurs when the value of a public variable is changed.

For example, we could replace the access programs in the robot system with public

variables, as illustrated in Table 4.4.

The three variables form a different interface by replacing the access programs

moveLinear(x, y) and moveInitialPos(). Software modules directly assign new val-

ues to these public variables of the destination for the next movement instead of

calling the access programs. The internal design remains the same as before except

for the changed interface. In this sort of interface, as shown in Table 4.5, mx, my,

and marmHeight are public variables that can be accessed directly and changed by

programs in other modules (or by the users directly) in the system.

4.1.3 Parameterized modes

Parameterized modes denote a set of modes with one name — one for each element of

the Cartesian product of domains of the parameters. For example, MdmovingTo(x, y)

denotes the set of modes containing one mode for each element of the domains of x and

y — the possible destination positions for the robot arm. Thus MdmovingTo(0, 0) is a

mode in this set, as are MdmovingTo(0, 1.5), MdmovingTo(1, 1) and MdmovingTo(1, 0.1).

4. Specifying Interface Modules 34

Modes : Mduninitialized, MdmovingTo(x, y), Mdstopped

Initial Mode : Mduninitialized

Transition Relation :

pT : H1 ∧G(H2)
rT : H3

Decision m
o
v
e
I
n
i
t
i
a
l
P
o
s
()

p
on

P
os

it
io

n(
x
,y

)

m
o
v
e
L
i
n
e
a
r
(x

,y
)

Mduninitialized @T ∗ ∗
MdmovingTo
(CXi,

CYi)
MdmovingTo(x, y) ∗ @T ∗ Mdstopped

Mdstopped ∗ ∗ @T
MdmovingTo
(x, y)

Maximum Delay : cRT MOVING

Table 4.3: Transition Relation ClMotion

Public Variable Description
mx x coodinate of the arm position
my y coodinate of the arm position

marmHeight height of the arm tip above the surface

Table 4.4: Public Variables

Modes : MdmovingTo(x, y), Mdstopped

Initial Mode : Mdstopped

Transition Relation :
Mode Event New mode

Mdstopped @F (ponPosition(mx, my))
MdmovingTo

(mx, my)
MdmovingTo(x, y) @T (ponPosition(x, y)) Mdstopped

Maximum Delay : cRESPONSE TIME MOVING

Table 4.5: Accessing Public Variables

4. Specifying Interface Modules 35

pT : H1 ∧G(H2)
rT : H3

Decision pa pb new mode
MdA @T ∗ MdB
MdB ∗ @T MdA

Table 4.6: Transition Relation for Non-parameterized mode class

pT : H1 ∧G(H2)
rT : H3

Decision pa pb(x) new mode
MdA(x) @T ∗ MdB
MdB ∗ @T MdA(x)

Table 4.7: Transition Relation for Parameterized mode class

The domain of each parameter in the parameterized modes is defined in the specifi-

cation.

Parameterized modes simplify the specification by providing a set of modes with

particular values. As illustrated in Table 4.5, when the values of the monitored vari-

ables (mx, my) change such that they are different from the actual position, (cx, cy), the

system enters the mode MdmovingTo(mx, my), indicating that it is moving towards the

new destination position. It remains in this mode until the actual position is within

some tolerance of the destination, at which time the event @T (ponPosition(x, y)) oc-

curs and the arm stops. This table thus describes transitions to and from a large set

of modes
{

MdmovingTo(x, y) | x ∈ float, y ∈ float
}

representing each of the possible

destination positions for the arm.

However, the parameterized modes would allow a mode class to be infinite (i.e., an

infinite domain for a parameter would result in an infinite mode class). The solution

is to restrict the parameters to finite domains, which will limit the mode class to

finite set of modes. This is a significant restriction. Since specifying a finite type for

the parameters in a parameterized mode ensures that the mode class is finite – there

is one mode for each possible value of the parameter, so there is a finite number of

modes. If, on the other hand, an infinite type were used then the mode class would

be infinite.

When discussing parameterized modes, it is necessary to explain the semantics

4. Specifying Interface Modules 36

of decision tables clearly. Consider a decision table as illustrated in Table 4.6. Its

semantics can be expressed as

((8m = MdA ∧ @T (pa)) ⇒ m′ = MdB) ∧ ((8m = MdA ∧ ¬@T (pa)) ⇒ m′ =
MdA)∧ ((8m = MdB∧@T (pb)) ⇒ m′ = MdA)∧ ((8m = MdB∧¬@T (pb)) ⇒ m′ = MdB)

With parameterized mode and condition, we have Table 4.7. The semantics can

be expressed as

∀x·(((8m = MdA(x)∧@T (pa)) ⇒ m′ = MdB)∧((8m = MdA(x)∧¬@T (pa)) ⇒ m′ =
MdA(x)))∧ (8m = MdB∧ ((∃y ·@T (pb(y))∧m′ = MdA(y))∨ (¬∃y ·@T (pb(y))∧m′ =
MdB)))

When consider an instant where 8m = MdB and @T(Mdb(0)), while pa remains

constant, we can show that m′ = MdA(0).

4.1.4 Callback functions in the User Interface

It is often the case that events may not only cause changes within the module, but

refer to cooperation with other modules. If a modification on a variable monitored

in module M1 requires to call an access program (e.g., foo()) in another module M2,

such access program (foo()) in the M2 can be considered to be a controlled condition

of module M1. In another word, change in module M1 invokes an access program

foo() in module M2; thus foo() is controlled by module M1 since its status is changed

due to M1. In this work, we treat access programs as conditions. Therefore, foo() is

a controlled condition which is controlled by M1.

Since an interface module encapsulates all of what is necessary to connect the

application software to the external world, the boundary between the IM and the

application software is that the IM must relate external quantities to software quan-

tities/access programs. In the case where a module is implemented in the environment

of a support tool, this support system (i.e., UI environment) itself is the interface mod-

ule. The callback function is one of the interacting formats between the developing

environment and the IM.

The interface of a robot control system is implemented in Java AWT. Here we

specify a small, but functionally complete part of java.awt.Component, as an example

4. Specifying Interface Modules 37

of our specification of callback functions.

The behavior of the GUI of the robot control system is that the user can control

the motion of the robot arm by dragging the mouse of the computer. When the user

clicks and moves the mouse, the robot arm moves simultaneously according to the

position of the cursor on the screen of the computer.

The specification given in Section 5.3 is only for the part of the behavior of

java.awt.Component that relates to the IM in our example. In this example, we

use abstract state variables (mouseListener list and mouseMotionListener list)

and specify how the callback events are related to these variables. The mouseListener

list is a sequence of references to MouseListener and mouseMotionListener list is a

sequence of references to MouseMotionListener.

The method mouseDragged() is invoked when the mouse button is pressed on a

component and then dragged. It is one of the components in mouseMotionListener

that provides human-machine interface by Java GUI. The behavior of the

addMouseListener() and addMouseMotionListener() methods is to add the argu-

ment to the end of the given sequence. When an external mouse motion event oc-

curs, the appropriate member functions of the objects in the mouseListener or

mouseMotionListener lists are called to implement the interface.

For example, as a member function of each of the objects in the mouseMotionLis-

tener list, the mouseDragged() method is invoked when a user drags the mouse.

Technically, we denote the motion of the mouse as a monitored quantity
mmouseMotion. The change of mmouseMotion invokes mouseDragged() as a registered

listener object. It is called in response to change of certain environmental conditions.

When we use it as a condition, it will be a controlled condition because the interface

module will make it true when the appropriate event (i.e., @T (mmouseMotion) or

@F (mmouseMotion)) occurs. It may also be a monitored condition, since the inter-

face module may not be able to respond to other events until it becomes false (i.e.,

the callback has completed).

The IMS states the relationship of callback events and the monitored events

by the controlled variable function. Table 4.8 illustrates that the method mouse-

Dragged() is invoked in the mode MdmouseDragging. l denotes the ith object in the

mouseMotionListenerList. The mouseDragged or mouseMoved method will be

invoked on this object as appropriate.

4. Specifying Interface Modules 38

l

|

pT : H2

rT : H1 = G
Vector M

d
id

le

M
d
pr

o
ce

ss
in

gE
ve

nt
(C

M
ou

se
M

ov
ed

,
i)

M
d
pr

o
ce

ss
in

gE
ve

nt
(C

M
ou

se
D

ra
gg

ed
,
i)

l.mouseDragged(CmouseDragged) false true false

l.mouseMoved(CmouseMoved) false false true
where cl = mouseMotionListenerListi for all i : int, 0 ≤ i <
|mouseMotionListenerList|

Table 4.8: Controlled Variable Function

4. Specifying Interface Modules 39

4.2 Interface Modules Specification

This section illustrates how the SCR method is applied in Interface Module Specifi-

cation. The technique of specifying Interface Modules views the Interface Modules

as “systems” in the sense of [58]. We use access programs as conditions and events

are triggered when the status of these conditions is changed. Quantities related to

the Interface Module interface are represented as monitored quantities and controlled

quantities. Module behavior is described in terms of abstract state variables and one

or more mode classes.

State variables define the state space in terms of a collection of typed variables

[37]. Each variable is declared by providing its name and type. In the IMS, abstract

state variables are introduced to specify the module behavior. The word “abstract”

is used to distinguish these from “concrete” state variables, which would be used in

the module internal design documentation. When it is clear from the context that

we are using abstract state variables then it is safe to leave off “abstract”.

4.2.1 Monitored and Controlled Quantities

Since Interface Modules interact with both the environment and the other software

modules in the system, quantities related to IM are environmental quantities and

software quantities. IMS combines software and environmental variables in one doc-

ument.

As stated in [58] environmental quantities are quantities that are external to the

system, “independent of the chosen solution and are apparent to the ‘customer’.”

From the point of view of the IM, the ‘customer’ is the designer of the software that

will use the IM to communicate with the external environment, and the quantities of

interest are both internal (software) and external quantities. The internal quantities

are software quantities that form the interface between the IM and other system mod-

ules, including, for example, parameters to access programs. The external quantities

are the environmental quantities relevant to the system and represent such things as

temperature, switch settings, or the position of a robot arm. All these quantities can

be represented by functions of time. Note that for real-time systems, time, itself, is

a relevant environmental quantity.

The IMS must describe the behavior of the IM in terms of these quantities. It must

4. Specifying Interface Modules 40

Software

Processing

Serial I/O

Robotic arm
User

Interface

Robot

Interface

Figure 4.1: Robot system

Variable Description Value Set
mt current time Real
carmPos position of the arm tip(x, y) in mm Real×Real
carmHeight up position of the arm tip in mm Real
cgripPres pressure applied by the gripper (Pa) Real

Table 4.9: Environmental Quantities

give the value of the controlled quantities depending on the current and past values of

the monitored quantities. Consider, for example, a system for making signs that uses

a robot arm as illustrated in Figure 4.1. The system consists of three modules (each

of which may be further divided into smaller modules): User Interface, Processing,

and Robot Interface. The User Interface and Robot Interface are both examples of

interface modules, which isolate the processing software from the specific details of

the input or output of software and hardware device. If, for example, the mechanical

properties of the robot arm were to be modified, it would probably require that the

software controlling it also change. The Robot Interface module limits the impact of

these changes to the module itself.

The Environmental Quantities table defines the syntax of environmental quantities

relative to the system. Monitored and controlled quantities are distinguished by the

prefix “m” and “c”. Also, time is always a monitored quantity in real-time systems,

as shown in Table 4.9.

4.2.2 Mode Classes

For IMS, we take the mode definition to specify how the module behavior depends

on previous events, and the controlled state functions can be specified in terms of the

4. Specifying Interface Modules 41

current mode in one or more mode classes. It is often possible that there would be

more than one mode class in the IM. If the behavior is specified for every mode in a

mode class, then it is fully specified.

For example, as illustrated for the robot control system in Table 4.3 and Ta-

ble 4.10, there are two mode classes ClMotion and ClGripper in the Robot Interface

Module. ClMotion represents the motion of robot arm — moving the arm to another

position, and ClGripper describes the motion of the gripper — grasping or releasing

the “hand”. The Transition Relation Table gives the next mode for any current mode

and event combination. In ClMotion, the initial mode is Mduninitialized. When the

event @T (moveInitialPos()) occurs (i.e., the access program moveInitialPos() is

called), the IM enters the mode MdmovingTo(CXi,
CYi) — the arm is moving toward its

initial position. Similarly, @T (moveLinear(x, y)) initiates the movement towards the

position (x, y). When the arm reaches its destination, the condition ponPosition(x, y)

becomes true (i.e., @T (ponPosition(x, y))) and the IM enters the mode Mdstopped —

it stops at that position.

Mode class ClGripper relates to the opening and closing of the gripper. The mode

change is initiated by either @T (graspGripper()) or @T (releaseGripper()), to

close or open the gripper, respectively. The mode changes to Mdgrasped or Mdreleased

when the access program returns (@F (graspGripper()) or @F (releaseGripper()))

— indicating that the call will not return until the gripper has completed the opera-

tion.
ClMotion and ClGripper describe the mode classes in the robotic arm module and

each mode in the mode class is clearly specified. If there is any mode in the mode

class that is left unspecified, then the specification is incomplete. In other words, if

the behavior is specified for every mode in the mode class, then the module is fully

specified.

4.2.3 Controlled Value Functions

Since the values of the controlled quantities are changed by the system in response

to changes in the monitored quantities, the status for each controlled quantity in

each mode in the mode class needs to be specified clearly. The Control Value Func-

tion expresses the acceptable values of controlled quantities in terms of the previous

4. Specifying Interface Modules 42

Modes : Mdgrasping, Mdgrasped, Mdreleasing, Mdreleased

Initial Mode : Mdreleased

Transition Relation :
Mode Event New mode
Mdreleased @T (graspGripper()) Mdgrasping
Mdgrasping @F (graspGripper()) Mdgrasped
Mdgrasped @T (releaseGripper()) Mdreleasing
Mdreleasing @F (releaseGripper()) Mdreleased

Maximum Delay : cRT GRIPPER

Table 4.10: Mode Transition Relation ClGripper

(carmPos)
|

pT : H1

rT : H2 G
Vector

carmPos |

Mduninitialized d
dt

(carmPos) = (0, 0)
Mdstopped d

dt
(carmPos) = (0, 0)

MdmovingTo(x, y)
d
dt

(|carmPos− (x, y)|) < 0 ∧
Drtn(MdmovingTo(x, y)) ≤ CMOVE TIME

Table 4.11: Control Value Function

behavior, current mode in one or more mode classes, abstract states and condition

values. To be concise and precise, these quantities are expressed by mathematical

expressions.

For example, as illustrated in Table 4.11, the controlled quantity carmPos is defined

in terms of every mode in the mode class ClMotion. In the mode Mduninitialized and
Mdstopped, the value is constant, expressed as carmPos | d

dt
(carmPos) = (0, 0), where

“|” denotes “such that”; while in the mode MdmovingTo(x, y), its value is changing

such that the arm is moving closer to the destination (x, y), which is expressed as
d
dt

(|carmPos− (x, y)|) < 0. In addition, the duration of a particular movement must

be less than timing constraint CMOVE TIME.

4. Specifying Interface Modules 43

4.2.4 Timing Requirements

The mode changes depend on the occurrence of events (e.g., the user pressing a button,

receiving a response from the application devices or an access program being called by

the software modules). In many cases the maximum duration of the mode transition is

important. Specification can be made by giving either a single maximum delay for all

transitions as part of the mode class definition, as is done in Table 4.10 or specifying

the maximum delay for different transitions in a tabular form. Other formats of

timing constraint can be expressed by adopting Definition 3.1, Definition 3.2, · · ·,
and Definition 3.6 in the Section 3.1.3.

In the system, the event occurs instantly. But it will take a while for the system

to respond to that change. The Maximum Delay expresses that the correspondence

of the system according to the occurrence of an event is required to be no later

than the defined maximum delay time. For example in the ClGripper illustrated in

Table 4.10, when condition @T (graspGripper()), the system must respond no later

than maximum delay time cRT GRIPPER.

For real-time systems, the amount of time between events may be relevant to the

module behavior. This amount of time can be expressed using the functions defined

in Section 3.1.2. For example, if a robot arm is required to move the arm to another

position within a maximum amount of time CMOVE TIME, the specification can be

expressed as : Drtn(MdmovingTo(x, y)) ≤ CMOVE TIME, where MdmovingTo(x, y) is

the mode that the arm is moving to the destination (x, y). Drtn(MdmovingTo(x, y))

denotes the amount of time when the mode MdmovingTo(x, y) is continuously true

until the time that it becomes false (when the arm has reached the position (x, y)).

4.2.5 Environmental Constraints

Exclusive conditions and possible simultaneous changes are discussed in [58]. Often

some of the conditions used in an SRD are mutually exclusive, i.e., one being true

implies that the other is false.

“Knowledge of possibility and impossibility of simultaneous changes can be essen-

tial for checking that all possibilities are addressed in SRD” [21]. Such simultaneous

changes do exist in IM, for example the users are not allowed to press “ON” and

“OFF” buttons of the machine at the same time; or if they do, there must be some

4. Specifying Interface Modules 44

priority addressed in the IMS for system protection. Besides, due to the mechanical

limitations of application devices, IMS must provide these constraints clearly to the

implementors. For example in the robot arm system, due to the physical limitation of

the robot arm, there is maximum speed at which it can move. Such constraints can be

described by constraints on environmental quantities in addition to the range limits.

For example,
∣∣ d
dt

(carmPos)
∣∣ ≤ CARM RATE describes that the rate of tip motion is

bounded by the physical capability of robot mechanism.

4.3 Specification of Human-Machine Interface

Modules

A human-machine or user interface is any aspect of a system that impacts a user’s

interaction with that system. The basic function of a user interface however is to

provide the user with the available controls, a presentation of the control options and

feedback of the actions taken [37].

For a software system, the importance of the user interface specification is to

clearly address a set of possible user operations (i.e., clicking the mouse or keyboard to

execute the software) and the corresponding access programs with possible feedbacks.

For the robot arm example in Section 5.1.1, the user inputs the destination of the

robotic arm from the keyboard. Such an interface can be specified by using the access

programs as conditions. Section 5.3 presents a different interface that the user can

control the motion of the robotic arm by dragging the mouse, and the domain of

the arm position is expanded from the x-y plane to three dimension x-y-z. Although

the interface is not more accurate with respect to Section 5.1.1, it is much more

convenient to the user. As the interface is implemented in Java AWT, a small, but

functionally complete part of java.awt.Component is specified as an example of our

specification on callback functions.

4.4 Concurrent Applications

The purpose of the modularization for interface modules is to make them simple

and practical, so that they can be easily changed if needed. In the concurrent and

4. Specifying Interface Modules 45

distributed systems, the interface modules can be simplified by avoiding concurrent

and distributed issues. For example in the banking system, the operations in the

banking machine (i.e., the users key in the password) belong to the interface modules.

For the individual banking machine, there is no concurrent event occurring in the

interface module.

However, since in general, monitored variables can change values at any time,

changes that might occur in a very short period of time could be treated as concurrent

events. The problem arises — how to specify the case when the monitored variable

is changing its value while the access program is executing. Since the value of a

monitored variable is monitored and restricted by a condition, an event will occur

if the status of the condition changes. The problem is solved by ensuring that the

response due to any event is specified for all modes.

As for the whole system, it will be handled by other system software modules.

If the user presses two or more numbers at one time, which is a kind of concurrent

event, or simultaneous event, as mentioned in [58], we can avoid the confusion in the

IM by using environmental constraints in the IMS.

For access programs, we assume that an IM acts as a “monitor” (in the concurrent

programming sense). Since a monitor is a module that restricts access such that, for a

particular instance, only one thread can be executing any of the access programs at a

given instance. Therefore, for a particular instance, only one process can be executing

an access program at a time, so the concurrency issues can safely be neglected. For

example, in the robot arm motion specification, the destination (mx, my) of the arm

tip are monitored variables. The access program moveLinear(x, y, true) takes the

coordinate from the user input and drives the robot arm moving toward it. While the

access program moveLinear(x, y, true) is executing, the (mx, my) will not allowed to

change until the execution of the access program ends.

However, concurrency issues can only be avoid as long as no access program blocks

waiting for an external event. If an IM were intended to be used in a multi-threaded

environment and not restricted in this way, then some extensions are needed to define

to denote the possibility that more than one thread could be executing an access

program at one time. The same issue exists in the callback function specification

when multiple callbacks are allowed to happen in parallel. The research on such issue

would be our future work.

4. Specifying Interface Modules 46

4.5 Discussion

In this chapter, we introduce an extension of the System Requirements Documenta-

tion technique presented in [58], which is based on the Software Cost Reduction (SCR)

method, and illustrates how we apply these techniques to IMS. An IM is specified as

a “sub-system” that interacts with both the external environment and other software

modules in the system. The interface quantities are modeled as functions of time

and the behavior is described in terms of conditions, events and mode classes. This

technique facilitates concise and formal description of the module behavior, including

tolerance and delay.

In the SCR method [56] and its extension [58], the techniques provided are mainly

for specifying system requirements. The technique of interface module specification

has not been discussed. As illustrated in Section 4.1, in this work, we apply the

SCR method to specify the behavior of interface modules and make contributions in

using access programs as conditions to trigger the occurrence of the events, specifying

public variables that can be accessed by software modules and defining parameterized

modes. Also the monitored and controlled quantities and mode class are adopted in

the specification.

In the work of [58], terms or logic expressions are used as conditions to check the

status. Such a technique is suitable for system requirement documentation, i.e., sys-

tem mode will change with the change of the value of some environmental quantities,

since the interface of the system is the environment. For the interface module, the

interface not only relates to the environment, but also the system software. Using

access programs as conditions in IMS, the interface between modules and the system

software is clearly specified.

As defined in SCR approach [58, 32], a condition can be both monitored and

controlled. Since, in this work we apply the access programs as conditions, the access

programs can also be monitored and controlled.

When a condition is both monitored and controlled, it is only controlled in a

very limited sense. Since, a monitored and controlled variable must be related to

the environment; thus it is monitored by the system. Therefore, in many cases for

such a variable, the control of a quantity will be limited by nature. For example, the

cruise-control function of a car maintains the speed in a certain scope. So a driver

4. Specifying Interface Modules 47

does not need to control the speed if the car is set to be cruise-controlled. In this

case, the speed of the car is a monitored and controlled variable, but clearly the speed

and changes in it are limited by the physics of the car, road etc.

In the same way, such environmental limitation also applies to the access program

when it is monitored and controlled. A module can make the condition false (i.e., by

returning from the call), but cannot normally prevent it from becoming true. Namely,

in most cases a module can call its own access programs, so it can make the condition

true. However a module cannot normally restrict the condition when the condition

will become true (i.e., when another module will call the access program). An ex-

ception here would be if the module is a “monitor” (in the concurrent programming

sense) and so the condition being true with respect to one thread will constrain it

from becoming true with respect to another thread. A module might also be able to

prevent a condition from becoming true (e.g., if the module is a monitor and another

access program is executing).

For example in the user interface of robot arm system, the access program mouse-

Dragged() is monitored and controlled. The interface module makes it true when the

position of physical mouse of a computer is changed (i.e., a user is moving the mouse)

— the interface module calls mouseDragged(). Since an interface module is implied

as a “monitor”, in the multi-threaded environment, one thread calls mouseDagged()

when other threads in the interface module are prevented from calling it due to the

mutual exclusive characteristics of the “monitor”. In such a case, the interface module

has little control effect to the access program mouseDragged(). Also, if the interface

module is not a “monitor”, other modules are allowed to call mouseDagged() simul-

taneously. The interface module will have weak control effect to make it true in such

a case.

Accessing public variables is another kind of interface to the system software.

Often, it is called shared variable in software systems. The application of such a

technique does not hinder specifying interface modules, but also can be used to specify

modules with relationship to software modules, i.e., interface of a software module.

Section 4.1.4 and Section 5.3 show a functionally complete callback functions

specification of part of java.awt.Component. The behavior of the GUI of the robot

control system is specified in terms of abstract state variables and mode classes.

However, the specification does not include the external objects that are referenced by

4. Specifying Interface Modules 48

the module being specified, i.e., mouseEntered() in the mouseListener interface. One

possible solution is to treat them as monitored quantities. However, the problem is

that it would be difficult to be complete because there is actually a set of each listener

interface. Although further improvement is needed (i.e., how to deal with external

objects that are referenced by the module being specified), the callbacks interface

specification shows that the technique is promising in specifying user interfaces.

Chapter 5 illustrates the interface module specification in two examples — a robot

arm control system and an ATM Banking Machine control system. Both are simple

applications but contain typical features of interface modules. In practice, the inter-

face modules could be much more complex. In this case, they can be decomposed

into sub-modules, each of which can be specified in this approach.

Chapter 5

Sample Applications

This chapter illustrates the applicability of our IMS methods by presenting sample

specifications for interface modules such as might be used in two sample applications:

a robot arm control system and an automated teller banking machine. Together these

systems represent most of the characteristics of interface modules.

5.1 A Robot Arm Control System

The system is a robot arm that can be controlled by a computer to grasp and move

objects from one place to another. In the robot arm control system illustrated in

Figure 4.1, the system contains a robot arm, a PC and the interface hardware. The

robot arm has five motors to position the tip and open or close the “hand”, and

the motion of the robot arm is controlled by software on the PC via a serial link.

There are three modules in the system, both User Interface and Robot Interface are

examples of interface modules.

5.1.1 Robot Interface Module Specification

The specification of IM contains access program tables, environmental quantities

tables, mode transition tables, control value function tables, condition function defi-

nitions, constant tables, and environmental constraints.

Access programs are defined in a table, describing the function and the param-

eter type of those access programs. The blank cell in the Parameter Types column

49

5. Sample Applications 50

indicates that there is no parameter for this access program. For example, the access

program moveInitialPos drives the arm to the initial position (CXi,
CYi), which is

set in the program and cannot be changed by the user. There is no parameter in this

program since the coordinate of the original position is set in the program and cannot

be changed by other modules.

The quantities relevant to the modules are specified explicitly in the environmental

quantity table. In this illustration we will consider the tip position in two dimensions

only, carmPos representing the robot arm’s position on a drawing surface, and two

real valued variables, carmHeight, to represent the height of the arm tip, and cgripPres

to denote the pressure between the fingers of the gripper.

Access Programs

Name Descriptions Parameter Types

moveInitialPos moves the arm to the initial position(
CXi,

CYi

)
moveLinear moves the arm to the destination (x, y)

with arm up/down (true/false)

float, float, Boolean

graspGripper closes the gripper

releaseGripper opens the gripper

Environmental Quantities

Variable Description Value Set

mt current time Real
carmPos position of the arm tip(x, y) from the inside left corner of

the drawing surface in mm

Real×Real

carmHeight height of the arm tip above the surface in mm Real
cgripPres pressure applied by the gripper (Pa) Real

5.1.2 Mode Class ClMotion

The mode class ClMotion is comprised of six modes, one of which is parameterized:
Mduninitialized, Mdraising, Mdlowering, MdmovingTo(x : float, y : float), Mdholding and
Mdstopped. The mode transition relation table describes the next mode for any com-

bination of current mode and event. Informally, transition table for ClMotion can

5. Sample Applications 51

be read as follows. The table predicate rule is “H1 ∧ G(H2)”, therefore the values

in header H1 and the main grid G are used to select a column that satisfies this

predicate. Note that G(H2) in the predicate rule denotes the status of event class in

the cell of H2. For example, in the second column of the first row, G(H2) denotes

@T (moveInitialPos()). The table relation rule is “H3”. Therefore the result of the

function is the value of the expression in the selected column of header H3. For exam-

ple, the value of Mduninitialized∧@T (moveInitialPos())∧WHEN(¬(carmHeight =
CHIGHTPOINT)) is Mdraising. The notation “∗” indicates that the system is not af-

fected by the condition, as illustrated in Table 3.3. CRT MOVING, whose value is

defined in the Constant Table, restricts the maximum delay time for IM responding

to the events in this mode class, as discussed in Section 4.2.4.

Modes : Mduninitialized, Mdraising, Mdlowering, MdmovingTo(x : float, y :

float), Mdholding, Mdstopped

Initial Mode : Mduninitialized

Transition Relation :

5. Sample Applications 52

pT : H1 ∧G(H2)

rT : H3

Decision m
o
v
e
I
n
i
t
i
a
l
P
o
s
()

p
on

P
os

it
io

n(
x
,y

)

m
o
v
e
L
i
n
e
a
r
(x

,y
,t

ru
e
)

m
o
v
e
L
i
n
e
a
r
(x

,y
,f

al
se

)

c
ar

m
H

ei
gh

t
=

C
H

IG
H

T
P
O

IN
T

c
ar

m
H

ei
gh

t
=

0

p
in

R
an

ge
(c

ar
m

P
os

.x
,c

ar
m

P
os

.y
)

S
in

ce
(@

F
(p

in
R
an

ge
(c

ar
m

P
os

.x
,c

ar
m

P
os

.y
))

)

≥
C
H

O
L
D

IN
G

T
IM

E

New Mode

Mduninitialized @T ∗ ∗ ∗ f ∗ ∗ ∗ Mdraising

@T ∗ ∗ ∗ t ∗ ∗ ∗ MdmovingTo(CXi,
CYi)

Mdraising t ∗ ∗ ∗ @T ∗ ∗ ∗ MdmovingTo(CXi,
CYi)

f ∗ t f @T ∗ ∗ ∗ MdmovingTo(x, y)
MdmovingTo(x,y) ∗ @T ∗ ∗ ∗ ∗ T ∗ Mdstopped

∗ ∗ ∗ ∗ ∗ ∗ @F F Mdholding
Mdstopped ∗ ∗ @T f f ∗ ∗ ∗ Mdraising

∗ ∗ @T f t ∗ ∗ ∗ MdmovingTo(x, y)

∗ ∗ f @T ∗ t ∗ ∗
∗ ∗ f @T ∗ f ∗ ∗ Mdlowering

Mdlowering f ∗ f t ∗ @T ∗ ∗ MdmovingTo(x, y)
Mdholding @T ∗ ∗ ∗ f ∗ ∗ F Mdraising

F ∗ @T ∗ f ∗ ∗ F

F ∗ F @T ∗ f ∗ F Mdlowering

@T ∗ ∗ ∗ t ∗ ∗ F MdmovingTo(CXi,
CYi)

F ∗ @T ∗ t ∗ ∗ F MdmovingTo(x, y)

F ∗ F @T ∗ t ∗ F

F ∗ ∗ ∗ ∗ ∗ F @T Mdstopped

Maximum Delay : CRT MOVING

5. Sample Applications 53

5.1.3 Mode Class ClGripper

The mode class ClGripper describes the motion of the robot hand, grasping or

releasing the goods. It contains four modes: Mdgrasping, Mdgrasped, Mdreleasing

and Mdreleased. Informally, it can be read as follows. For example, when

the event @T (graspGripper()) occurs, IM enters to the mode Mdgrasping from

the mode Mdreleased. Therefore, the new mode resulting from Mdreleased ∧
@T (graspGripper()) is Mdgrasping. The Maximum Delay time CRT GRIPPER for

the reactions in the ClGripper is defined in the Constant Table.

Modes : Mdgrasping, Mdgrasped, Mdreleasing, Mdreleased

Initial Mode : Mdreleased

Transition Relation :
Mode Event New mode

Mdreleased @T (graspGripper()) Mdgrasping
Mdgrasping @F (graspGripper()) Mdgrasped
Mdgrasped @T (releaseGripper()) Mdreleasing
Mdreleasing @F (releaseGripper()) Mdreleased

Maximum Delay : CRT GRIPPER

5.1.4 Conditions

The condition ponPosition verifies whether the arm tip has arrived the destination

(x, y). The condition pinRange checks if the robot arm is out of the border or not. Both

conditions are boolean functions. The syntax of the condition is defined firstly, then

the semantics of the condition is defined. For example, the syntax of the condition
ponPosition is defined as ponPosition : Real×Real → Boolean.

ponPosition : Real×Real → Boolean
ponPostion(x, y)

df
= |carmPos.x− x| < Cε∧
|carmPos.y − y| < Cε

5. Sample Applications 54

pinRange : Real×Real → Boolean
pinRange(x, y)

df
= x ∈ [CMIN X, CMAX X]∧

y ∈ [CMIN Y, CMAX Y]

5.1.5 Controlled Value Functions

Controlled Value Function tables define the functions of controlled quantities in terms

of monitored quantities, and every mode in the mode class. For example, in the Con-

trolled Value Function table for carmPos, the robot arm does not move in the modes
Mduninitialized, Mdraising, Mdlowering, Mdholding, Mdstopped, i.e., the value of carmPos

in these modes is such that d
dt

(carmPos) = (0, 0), i.e., (H1 | G). In the mode
MdmovingTo(x, y), carmPos is changing such that d

dt
(|carmPos− (x, y)|) < 0, i.e., the

arm is moving toward (x, y). The clause Drtn(MdmovingTo(x, y)) ≤ CMOVE TIME

specifies that the time for a particular move must be less than CMOVE TIME.

carmPos

|
pT : H1

rT : H2 | G
Vector

carmPos

Mduninitialized
Mdstopped
Mdholding d

dt
(carmPos) = (0, 0)

Mdraising
Mdlowering

MdmovingTo(x, y)
d
dt

(|carmPos− (x, y)|) < 0 ∧
Drtn(MdmovingTo(x, y)) ≤ CMOVE TIME

carmHeight

|

5. Sample Applications 55

pT : H1

rT : H2 | G
Vector

carmHeight

Mduninitialized
Mdstopped d

dt
(carmHeight) = 0

MdmovingTo(x, y)
Mdraising d

dt
(carmHeight) > 0

Mdlowering d
dt

(carmHeight) < 0

cgripPres

|
pT : H1

rT : H2 | G
Vector

cgripPres

Mdreleasing
d
dt

(cgripPres) < 0 ∧
Drtn(Mdreleasing) ≤ CRELEASING TIME

Mdreleased d
dt

(cgripPres) = 0 ∧ cgripPres = 0

Mdgrasping
d
dt

(cgripPres) > 0 ∧
Drtn(Mdgrasping) ≤ CGRASPING TIME

Mdgrasped d
dt

(cgripPres) = 0 ∧ cgripPres ≥ CGRIP PRES

5.1.6 Constants

Constants table lists all the constants with constant name, discription and scope in

the specification. For example, the constant CXi is the home x position in (mm)

ranging ranging from -10 to 10. The constant CRT GRIPPER denotes the maximum

delay on the mode class ClGripper in (s) with the scope of (0, 5).

5. Sample Applications 56

Constant Description Range

CXi Home x position (mm) (−10, 10)
CYi Home y position (mm) (0, 20)
CHIGHPOINT Up position for arm (mm) (20)
Cε Tolerance on positions (mm) (0, 2)
CRT MOVING Maximum delay on mode class ClMotion (s) (5, 10)
CRT GRIPPER Maximum delay on mode class ClGripper (s) (0, 5)
CGRIP PRES Pressure applied by the gripper (Pa) (15, 18)
CGRASPING TIME Maximum grasping duration (s) (10, 15)
CRELEASING TIME Maximum releasing duration (s) (10, 15)
CMOVE TIME Maximum moving duration (s) (30, 35)
CHOLDING TIME Maximum holding duration (s) (30, 35)
CARM RATE Maximum moving rate (mm/s) (5, 8)
CMIN X Minimum x position (−20, 0)
CMAX X Maximum x position (0, 20)
CMIN Y Minimum y position (−20, 0)
CMAX Y Maximum y position (0, 20)

5.1.7 Environmental Constraints

In the robot arm system, due to the physical limitation of the robot arm, there

is maximum speed at which it can move. Such constraints can be described by

constraints on environmental quantities in addition to the range limits. For example,∣∣ d
dt

(carmPos)
∣∣ ≤ CARM RATE describes that the rate of tip motion is bounded by the

physical capability of robot mechanism.

•
∣∣ d
dt

(carmPos)
∣∣ ≤ CARM RATE

The rate of tip motion is bounded by the physical capability of robot mechanism.

• 0 ≤ carmHeight ≤ CHIGHPOINT

The height position of the arm is greater than 0 and can not exceed the highest

point CHIGHPOINT.

5. Sample Applications 57

5.2 Public Variable Interface of Robot Arm Con-

trol System

This section illustrates a different kind of interface of the robot arm control system

— other system modules access the interface module via the public variables in the

interface module. Public variables are variables that are public resources shared by

other modules in the system. They form the interface of the module that could be

used and modified by the module that they belong to or accessed by other modules

in the system. To illustrate this, the access programs in the robot system can be

replaced by three public variables: mx, my, mz — denoting the position of the robot

arm’s destination. System software modules can directly assign values to these pub-

lic variables for the destination of the next movement instead of calling the access

programs to make the movement. The tabular expression of specification on this

particular interface is illustrated below. This differs from the specification of the

interface with access programs in that we add a public variable table to describe

each public variable, the access program table is no longer used, the mode transition

function of mode ClMotion and controlled value functions for carmPos and carmHeight

are changed as illustrated below. The remaining parts — mode transition function

for the mode class ClGripper, other controlled value functions and constants are the

same as the specification for the interface with access programs. Therefore, we only

illustrate the different parts, as follows.

5.2.1 Public Variables

mx, my, and mz are public variables that can be accessed directly and changed by

programs in other modules (or by the users directly) in the system.

Name Descriptions Parameter Types

mx desired x coordinate float
my desired y coordinate float
mz desired height of the arm tip float

5. Sample Applications 58

5.2.2 Mode Class ClMotion

The mode class ClMotion is comprised of four modes:
Mdstopped, Mdraising, Mdlowering, Mdmoving. The mode transition relation table

describes the next mode for any combination of current mode and event. The disci-

pline of reading the mode transition table for ClMotion is similiar to Section 5.1.2.

The table predicate rule is “H1 ∧G(H2)”, therefore the values in header H1 and the

main grid G are used to select a column that satisfies this predicate.

For example, in the second column of the first row, G(H2) denotes

t′(carmHeight < mz). Referring to the event class notation in Table 3.3, it can be

expressed as (carmHeight < mz) ∨ @T(carmHeight < mz). The table relation rule is

“H3”. Therefore the result of the function is the value of the expression in the selected

column of header H3. For example, the value of Mdstopped ∧ t′(carmHeight < mz) ∧
WHEN(¬(|carmHeight− mz| < δ)) ∧ t′(pinRange(mx, my, mz)) is Mdraising.

The notation “∗” indicates that the system is not affected by the condition, as

illustrated in Table 3.3. CRT MOVING, whose value is defined in the Constant Table,

restricts the maximum delay time for IM responding to the events in this mode class,

as discussed in Section 4.2.4.

Modes : Mdstopped, Mdraising, Mdlowering, Mdmoving

Initial Mode : Mdstopped

Transition Relation :

5. Sample Applications 59

pT : H1 ∧G(H2)

rT : H3

Decision c
ar

m
H

ei
gh

t
<

m
z

c
ar

m
H

ei
gh

t
>

m
z

|c a
rm

H
ei

gh
t
−

m
z|

<
δ

p
on

P
os

it
io

n(
m

x,
m

y)

p
in

R
an

ge
(m

x,
m

y,
m

z)

New Mode

Mdstopped t′ ∗ F ∗ t′ Mdraising

∗ t′ F ∗ t′ Mdlowering

∗ ∗ T f ′ t′ Mdmoving
Mdraising ∗ ∗ @T t ∗ Mdstopped

∗ ∗ ∗ ∗ @F

∗ ∗ @T f t′ Mdmoving
Mdlowering ∗ ∗ @T t ∗ Mdstopped

∗ ∗ ∗ ∗ @F

∗ ∗ @T f ∗ Mdmoving
Mdmoving ∗ ∗ t′ @T t′ Mdstopped

∗ ∗ ∗ ∗ @F

@T ∗ F ∗ t′ Mdraising

∗ @T F ∗ t′ Mdlowering

Maximum Delay : cRESPONSE TIME MOVING

5.2.3 Controlled Value Functions

There are two controlled variables to be defined in the controlled value function

tables: carmPos and carmHeight. For example in the controlled value function table

for carmPos, the robot arm does not move in the mode Mdstopped, Mdraising and
Mdlowering. The value of carmPos in these modes is such that d

dt
(carmPos) = 0. In the

mode Mdmoving, carmPos is changing such that
d
dt

(|carmPos)− (mx, my, mz)|) < 0, i.e., the arm is moving toward (mx, my, mz).

carmPos

|

5. Sample Applications 60

pT : H1

rT : H2 | G
Vector

carmPos

Mdstopped
Mdraising d

dt
(carmPos) = 0

Mdlowering
Mdmoving d

dt
(|carmPos− (mx, my, mz)|) < 0

carmHeight

|
pT : H1

rT : H2 | G
Vector

carmHeight

Mdstopped d
dt

(carmHeight) = 0
Mdmoving
Mdraising d

dt
(carmHeight) > 0

Mdlowering d
dt

(carmHeight) < 0

5.2.4 Conditions

The condition ponPosition is defined to verify whether the robot arm has reached the

position (x, y, z). The condition pinRange is to denote whether the robot arm is out

of the range. The constants CMIN X, CMAX X, CMIN Y, CMAX Y and CHIGHPOINT

are defined in the constant table in Section 5.1.6.

ponPosition : Real×Real×Real → Boolean
ponPostion(x, y, z)

df
= |carmPos.x− x| < Cε∧
|carmPos.y − y| < Cε∧
|carmPos.z− z| < Cε

5. Sample Applications 61

pinRange : Real×Real×Real → Boolean
pinRange(x, y, z)

df
= x ∈ [CMIN X, CMAX X]∧

y ∈ [CMIN Y, CMAX Y]∧
z ∈ [0, CHIGHPOINT]

5.3 Callback Function Specification

As introduced in Section 4.3, a convenient human-machine interface is implemented

by allowing the user to control the motion of the robot arm by dragging the mouse.

The user can see the motion of the arm while dragging the mouse. Therefore such

an interface is easy for the user to use to control the robotic arm. The interface is

implemented in Java AWT. As an example of our callback function, the functionally

complete part of java.awt.Component specification is illustrated as follows.

Due to the characteristics of the callback functions, we add abstract state vari-

ables, state invariant, and assumptions to specify the module behavior. State

variables define the state space in terms of a collection of typed variables, as

introduced in Section 4.2. In this example, the abstract state variables are

mouseListenerList and mouseMotionListenerList. As illustrated in the access

program table of java.awt.Component, the access programs are addMouseListener

and addMouseMotionListener. The parameter type of these two access programs are

MouseListener and MouseMotionListener, respectively. Therefore, for example,

when the access program addMouseListener is called, a MouseListener object will

be added to the mouseListenerList to be called with mouse events. The status of

state variable mouseListenerList, whose value is a sequence of MouseListener,

will change. Since such a state variable does not exist in the real execution, we name

it “abstract” to assist the specification. The notation 8l and l′ are used to denote the

value of l immediately before and after the access program execution, respectively.

Access Programs of java.awt.Component

5. Sample Applications 62

Name Descriptions Parameter Types

addMouseListener Adds the specified mouse lis-

tener to receive mouse events

from this component

MouseListener

addMouseMotionListener Adds the specified mouse mo-

tion listener to receive mouse

motion events from this com-

ponent

MouseMotionListener

State Variables

mouseListenerList : sequence of reference to MouseListener

mouseMotionListenerList : sequence of reference to MouseMotionListener

State Invariant

none

Assumptions

Initially, mouseListenerList = � and mouseMotionLisenerList = �
Before addMouseListener() or addMouseMotionListener() is called, mouse

events that occurred are ignored since there are no registered listeners.

Access Program Semantics

addMouseListener(MouseListener l)
df
= mouseListenerList′ = 8mouseListenerList + l

addMouseMotionListener(MouseMotionListener l)
df
= mouseMotionListenerList′ = 8mouseMotionListenerList + l

5.3.1 Environmental Quantities

5. Sample Applications 63

In this illustration we consider the mouse motion in two ways: one is physi-

cal mouse motion; the other is the cursor’s position desplayed on the screen. The

monitored variable mmouseMotion monitors the rate of the physical mouse motion.
mmousePos monitors the change of the cursor displaying on the screen.

Variable Description Value Set

mt current time Real
mmouseMotion the rate of the physical mouse motion in (x,y) mm/s Real×Real
mcursorPos position of the cursor (x, y) displaying on the screen in

pixel

int× int

mlocationCom the location of the component displayed on the com-

puter screen (x,y) in pixel

int× int

mheight the height of the component in pixel int
mwidth the width of the component in pixel int
mpressButton the left button of the mouse Boolean

5.3.2 Mode Class ClMouseListener

The mode class ClMouseListener comprised of two modes, one of them is parame-

terized: Mdidle and MdprocessingEvent(e : mouseEvent, i : int). The mode transition

table can be read as follows. The system starts from the mode Mdidle. When

the condition @T(pinRange) occurs, for example, the system moves to the mode
MdprocessingEvent(CmouseEntered, 0), which causes the access program mouseEn-

tered() of the first mouseListener to be executed corresponding to the mouse event.

As the appropriate method of each registered listener is called in sequence, the system

moves to the mode MdprocessingEvent(CmouseEntered, i + 1) to process the event for

each listener in the mouseListenerList.

Modes : Mdidle, MdprocessingEvent(e : MouseEvent, i : int)

e: a MouseEvent corresponding to the event being processed.

For all i : int, 0 ≤ i < |mouseListenerList|

Initial Mode : Mdidle

Transition Relation :

5. Sample Applications 64

pT : H1 ∧G(H2)

rT : H3

Decision p
in

R
an

ge

m
pr

es
sB

ut
to

n
=

C
O

N

i
+

1<
|m

o
u
se

L
is

te
n
e
rL

is
t|

m
o
u
se

L
is

te
n
e
rL

is
t i

.m
ou

se
E

n
te

re
d
(e

)

m
o
u
se

L
is

te
n
e
rL

is
t i

.m
ou

se
E

x
it

ed
(e

)

m
o
u
se

L
is

te
n
e
rL

is
t i

.m
ou

se
P

re
ss

ed
(e

)

m
o
u
se

L
is

te
n
e
rL

is
t i

.m
ou

se
R

el
ea

se
d
(e

)

New Mode

Mdidle @T ∗ ∗ ∗ ∗ ∗ ∗ MdprocessingEvent(CmouseEntered, 0)

@F ∗ ∗ ∗ ∗ ∗ ∗ MdprocessingEvent(CmouseExited, 0)

∗ @T ∗ ∗ ∗ ∗ ∗ MdprocessingEvent(CmousePressed, 0)

∗ @F ∗ ∗ ∗ ∗ ∗ MdprocessingEvent(CmouseReleased, 0)
MdprocessingEvent ∗ ∗ t @F ∗ ∗ ∗ MdprocessingEvent(CmouseEntered, i + 1)

(CmouseEntered, i) ∗ ∗ f @F ∗ ∗ ∗ Mdidle
MdprocessingEvent ∗ ∗ t ∗ @F ∗ ∗ MdprocessingEvent(CmouseExited, i + 1)

(CmouseExited, i) ∗ ∗ f ∗ @F ∗ ∗ Mdidle
MdprocessingEvent ∗ ∗ t ∗ ∗ @F ∗ MdprocessingEvent(CmousePressed, i + 1)

(CmousePressed, i) ∗ ∗ f ∗ ∗ @F ∗ Mdidle
MdprocessingEvent ∗ ∗ t ∗ ∗ ∗ @F MdprocessingEvent(CmouseReleased, i + 1)

(CmouseReleased, i) ∗ ∗ f ∗ ∗ ∗ @F Mdidle

5.3.3 Mode Class ClmouseMotionListener

The mode class ClMouseMotionListener comprised of two modes, one of them is pa-

rameterized: Mdidle, MdprocessingEvent(e : mouseEvent, i : int). The mode transition

table can be read as follows. The system starts from the mode Mdidle. When the

condition @T(|mmouseMotion| > 0) occurs and pinRange is true, for example, the sys-

tem moves to the mode MdprocessingEvent(CmouseMoved, 0), which causes the method

mouseMoved() of the mouseMotionListener to be executed corresponding to the

5. Sample Applications 65

mouse event. As the appropriate method of each registered listener is called in se-

quence, the system moves to the mode MdprocessingEvent(CmouseMoved, i + 1) to pro-

cess the event by the next object in the mouseMotionListenerList until all regis-

tered listeners have processed the event.

Modes : Mdidle, MdprocessingEvent(e : MouseEvent, i : int)

e: a MouseEvent corresponding to the event being processed.

For all i : 0 ≤ i < |mouseMotionListenerList|, i ∈ int

Initial Mode : Mdidle

Transition Relation :

pT : H1 ∧G(H2)

rT : H3

Decision p
in

R
an

ge
m

pr
es

sB
ut

to
n

=
C
O

N
i
+

1
<
|m

o
u
se

M
o
ti

o
n
L
is

te
n
e
rL

is
t|

|m
m

ou
se

M
ot

io
n|

>
0

m
o
u
se

M
o
ti

o
n
L
is

te
n
e
rL

is
t i

.m
ou

se
M

ov
ed

(e
)

m
o
u
se

M
o
ti

o
n
L
is

te
n
e
rL

is
t i

.m
ou

se
D

ra
gg

ed
(e

)

New Mode

Mdidle t f ′ ∗ t′ ∗ ∗ MdprocessingEvent(CmouseMoved, 0)

t t′ ∗ t′ ∗ ∗ MdprocessingEvent(CmouseDragged, 0)
MdprocessingEvent ∗ ∗ t ∗ @F ∗ MdprocessingEvent(CmouseMoved, i + 1)

(CmouseMoved, i) ∗ ∗ f ∗ @F ∗ Mdidle
MdprocessingEvent ∗ ∗ t ∗ ∗ @F MdprocessingEvent(CmouseDragged, i + 1)

(CmouseDragged, i) ∗ ∗ f ∗ ∗ @F Mdidle

5. Sample Applications 66

5.3.4 Controlled Value Functions

In the following controlled value functions, “l” represents the ith object in the

mouseLisenerList, where i ∈ int. The value of the mouseLisenerList is changed

by the IM, so it is a controlled variable. In order to fully specify the behavior of

mouseLisener, we list all the possible mouseLisener’s access programs that are

related to the mouse motion in the controlled value function table. For example,
cl.mouseEntered(CmouseEntered) denotes the access program mouseEntered() to be

called in response to the mouseEntered event.

cl

|
pT : H2

rT : H1 = G

Vector M
d
id

le

M
d
pr

o
ce

ss
in

gE
ve

nt
(C

M
ou

se
E
nt

er
ed

,
i)

M
d
pr

o
ce

ss
in

gE
ve

nt
(C

M
ou

se
E
xi

te
d,

i)

M
d
pr

o
ce

ss
in

gE
ve

nt
(C

M
ou

se
P
re

ss
ed

,
i)

M
d
pr

o
ce

ss
in

gE
ve

nt
(C

M
ou

se
R
el

ea
se

d,
i)

cl.mouseEntered(CMouseEntered) false true false false false
cl.mouseExited(CMouseExited) false false true false false

cl.mousePressed(CMousePressed) false false false true false
cl.mouseReleased(CMouseReleased) false false false false true

where cl = mouseListenerListi, for all i : 0 ≤ i < |mouseListenerList|, i

∈ int

5. Sample Applications 67

cl

|

pT : H2

rT : H1 = G

Vector M
d
id

le

M
d
pr

o
ce

ss
in

gE
ve

nt
(C

M
ou

se
M

ov
ed

,
i)

M
d
pr

o
ce

ss
in

gE
ve

nt
(C

M
ou

se
D

ra
gg

ed
,
i)

cl.mouseMoved(CMouseMoved) false true false
cl.mouseDragged(CmouseDragged) false false true

where cl = mouseMotionListenerListi, for all i : 0 ≤ i <

|mouseMotionListenerList|, i ∈ int

5.3.5 Conditions

The condition pinRange represents whether the cursor position displyed on the com-

puter screen is out of the range of the component. The monitored variables mwidth

and mheight denote the width and height of the component.

pinRange : Real×Real → Boolean
pinRange(x, y)

df
= mcursorPos.x ∈ [mlocationCom.x, mlocationCom.x + mwidth]∧

mcursorPos.y ∈ [mlocationCom.y, mlocationCom.y + mheight]

5.3.6 Dictionary

The access programs of MouseListener interface and MouseMotionListener interface

are defined as follows.

5. Sample Applications 68

Access programs in the MouseListener Interface

Name Descriptions Parameter Types

mouseEntered Invoked when the mouse enters a component MouseEvent

mouseExited Invoked when the mouse exits a component MouseEvent

mousePressed Invoked when a mouse button has been pressed

on a component

MouseEvent

mouseReleased Invoked when a mouse button has been re-

leased on a component

MouseEvent

mouseClicked Invoked when the mouse button has been

clicked (pressed and released) on a component

MouseEvent

Access programs in the MouseMotionListener Interface

Name Descriptions Parameter Types

mouseMoved Invoked when the mouse has been moved on a

component (with no buttons down)

MouseEvent

mouseDragged Invoked when a mouse button is pressed on a

component and then dragged

MouseEvent

5.4 Automated Teller Machine

An Automated Teller Machine (ATM), is an electronic device that allows bank cus-

tomers to make cash withdrawals and check their account balances at any time with-

out the need for a human teller. ATMs are activated by inserting a client card that

contains the user’s account number on a magnetic stripe. The ATM calls up the

bank’s computers to verify the PIN number. It can accept deposits, dispense cash

or make bill payments according to the customer’s request and then transmit a com-

pleted transaction notice.

Here, as an example of IMS application, we specify some of the interface modules

that could be used in an ATM. In the banking system, the operations in the banking

machine (i.e., the users key in the password) belong to the interface modules. For the

individual banking machine, there is no concurrent event occurring in the interface

5. Sample Applications 69

module. The interface modules that are relevant to an ATM are a Card Reader and a

keyboardAdaptor. It is clear that there are other modules that would also be relevant

for a real ATM, e.g., screen display, cash dispenser.

5.4.1 Card Reader

A Card Reader accepts cards from banking customers, validates the cards by reading

the card number and confiscates the cards if the system finds any potential violation

(e.g., false pretenses). When the system is powered, the Card Reader is initialized

and it is ready to accept the card from the customer. If a card is inserted, the Card

Reader reads the card number and sends it for authorization. The module accepts the

commands from the system software to eject or confiscate the card. We assume the

ATM is kept on running, except for technical checking, failure or power shut off. So

the Card Reader module starts from the mode MdReady. When a card is confiscated,

the transaction is over right away. The ATM turns to be ready to serve another

customer. In this case, the ATM returns to the mode MdReady.

Access Programs

Name Description Parameter Type

cardEject Causes the card to be ejected

cardConfiscate Causes the card to be confiscated

inforRetreive Acquires the card information to determine

whether the card is valid

5. Sample Applications 70

Environmental Variables
Name Description Value Set

mt time Real
mcardInSlot True if a card is inserted on the input slot Boolean
mcardInReader True if the card is in the card reader slot Boolean
cgraspCard State of card grasping mechanism. When true the mecha-

nism operates so as to move the card from the input slot

to the reader position so that it is ready to be read

Boolean

creadCard State of card reading mechanism. When true the mecha-

nism operates so as to read the card information

Boolean

cconfiscateCard State of card confiscating mechanism. When true the

mechanism operates so as to confiscate the card from the

reader position to the confiscating box

Boolean

cejectCard State of card ejecting mechanism. When true the mecha-

nism operates so as to move the card from the the reader

position to the input slot so that it is ready to be taken

by the user when the transaction is finished

Boolean

Mode Class ClcardReading

Modes : MdReady, MdGrasping, MdcardReady, MdReading, MdConfiscating, MdEjecting

Initial Mode : MdReady

Transition Relation :

5. Sample Applications 71

pT : H1 ∧G(H2)

rT : H3

Decision m
ca

rd
In

S
lo

t

m
ca

rd
In

R
ea

de
r

i
n
f
o
r
R
e
t
r
e
i
v
e

c
a
r
d
E
j
e
c
t

c
a
r
d
C
o
n
f
i
s
c
a
t
e

S
in

ce
(@

T
(M

d
C
on

fi
sc

at
in

g))
≥

C
C
O

N
F
IS

C
A
T

IN
G

T
IM

E

New Mode

MdReady @T ∗ ∗ ∗ ∗ ∗ MdGrasping
MdGrasping t @T ∗ ∗ ∗ ∗ MdcardReady
MdcardReady ∗ t ∗ ∗ @T ∗ MdConfiscating

∗ t ∗ @T ∗ ∗ MdEjecting

∗ t @T ∗ ∗ ∗ MdReading
MdReading ∗ t @F ∗ ∗ ∗ MdcardReady
MdEjecting @F ∗ ∗ ∗ ∗ ∗ MdReady
MdConfiscating f f ∗ ∗ t @T MdReady

5. Sample Applications 72

Controlled Value Functions
cgraspCard

|

pT : H1

rT : H2 | G
Vector

cgraspCard

MdReady false
MdGrasping ∧ Since(@T (mcardInSlot)) ≤ CGRASPING TIME true
MdGrasping ∧ Since(@T (mcardInSlot)) > CGRASPING TIME false

MdcardReady false
MdReading false

MdConfiscating false
MdEjecting false

creadCard

|

pT : H1

rT : H2 | G
Vector

creadCard

MdReady false
MdGrasping false

MdReading ∧ Since(@T (mcardInReader)) > CSCANTIME true
MdReading ∧ Since(@T (mcardInReader)) ≤ CSCANTIME false

MdcardReady true
MdConfiscating false

MdEjecting false

cconfiscateCard
df
= MdConfiscating

i.e., cconfiscateCard is true if and only if the card reader is in MdConfiscating.

5. Sample Applications 73

cejectCard

|

pT : H1

rT : H2 | G
Vector

cejectCard

MdReady false
MdGrasping false

MdcardReady false
MdReading false

MdConfiscating false
MdEjecting ∧ Since(@T

(
MdEjecting

)
) < CEJECTING TIME true

MdEjecting ∧ Since(@T
(

MdEjecting
)
) ≥ CEJECTING TIME false

Constants

Name Description Range

CGRASPING TIME Maximal allowed grasping time (s) (0, 5)
CSCANTIME Maximal allowed scan time (s) (0, 20)
CCONFISCATING TIME Maximal allowed confiscate time (s) (0, 5)
CEJECTING TIME Maximal allowed ejectign time (s) (0, 5)

5.4.2 KeyboardAdaptor

The KeyboardAdapter collects the customer’s input, e.g., password number or trans-

action requests. When a button is pressed, the corresponding event is generated to be

processed by the ATM system. The application (ATM) software acquires the pressed

key by calling the access program read, which returns a string in the keyList. keyList

is a list of string which represents the key pressed by the customer. The string of

keys in the list is in the same order as the user input. The software empties the

keyList by calling clear. We assume that when a key is pressed, the other keys on

the keyboard are locked before that key is released. For example, if “1” is pressed,

the ATM software will not respond any other keys until “1” is released.

We are using tabular expression to describe the change of keyList when the access

programs are called. The notation 8l and l′ are used to denote the value of l immedi-

ately before and after the access program execution, respectively. head(keyList) and

5. Sample Applications 74

tail(keyList) represent the first element in the sequence keyList and the sequence

with the head removed, respectively.

In the behavior section for mkeyPressed(x : String), we are using another form

of notation here in that we are treating a monitored variable as if it were an access

program. This is a reasonable extension, since the change of mkeyPressed(x : String)

will cause the change of keyList.

Access Programs

Name Descriptions Parameter Type

keyRead Reads a key from the keyList String

clear Empties the keyList

State Variables

keyList : sequence of String

State Invariant

none

Environmental Quantities

Variables Description Value Set

mkeyPressed(x : String) True if and only if the key labeled with x is pressed Boolean

Behavior

clear()

|

pT : H1

rT : H2 G

Vector

true

keyList′ = �

5. Sample Applications 75

keyRead()

|

pT : H1

rT : H2 G

Vector

true

keyList′ = tail(8keyList)

value = head(8keyList)

mkeyPressed(x)

|

pT : H1

rT : H2 G

Vector

true

keyList′ = 8keyList.x

5.5 Discussion

The technique is used to specify the interface modules of two systems — a robot arm

control system and an Automated Teller Machine (ATM). Although the IMS of two

systems are subtly different, the skeleton of the specification remains the same —

specifying the interface module behavior in terms of mode classes, events, conditions,

and terms.

In the IMS of the robot arm control system, the specification is composed of Ac-

cess Program table, Environmental Quantities table, Mode Transition Relation table,

Conditions function, Controlled Value Functions table, Constants table and Environ-

mental Constraint functions. When describing callback functions in Section 5.3 and

KeboardAdaptor in Section 5.4.2, we introduce state variables to assist the specifica-

tion, together with assumptions and access program semantics when necessary. The

specification is written using tabular expressions, which makes it more easily under-

stood. For example, we use mode transition relation table to describe the behavior

of the modes in the mode class. We also use direct definition to define modes directly

in the case of where the current mode is a simple function of recent events, as illus-

trated in Section 5.3.4. Such a various expression of specification illustrates the wide

flexibility of the technique.

In Section 5.4.2, we use a monitored variable as if it were an access program. Since

5. Sample Applications 76

the change of parameter variables relates to the change of the monitored variable, we

treat the monitored variable as an access program. This is an extension from SCR

method.

Chapter 6

Conclusions

This work has demonstrated that practical interface modules can be clearly specified

in a notation that is concise, precise and readable. We have presented examples for

two applications — a robot arm control system and an ATM banking machine to show

how the SCR requirements model can be extended to specify Interface Modules.

6.1 Contributions

The main contributions of this work are as follows.

• It extends the SCR method for use in module specification.

– It introduces the use of access programs as conditions.

– It identifies and discusses public variables as another approach to accessing

the interface modules from system software modules.

– It introduces the use of parameterized modes to specify a set of modes by

parameter values.

• It describes the callback functions in the user interface.

• It applies these techniques in specifying interface modules.

77

6. Conclusions 78

6.2 Applicability of This Work

The specification techniques presented in Chapter 4 are suitable for systems with

a combination of software and hardware components, such as embedded systems.

The interface modules of these systems interact with both the environment and the

system software modules that access interface modules by calling the access programs

or changing the public variables. Access programs and public variables form the

interface between the interface modules and system software modules. Such systems

are widely used in process control and industrial automation applications, where they

are often safety critical.

Interface modules, such as described in this work, are particular modules that

are examples of hybrid systems. By specifying the interface by access programs,

public variables, and callbacks, this application provides a complete description of

the module interface. As discussed in Section 4.5, the technique can also apply in

software modules specifications.

Interface module specifications, as described in this work, can provide the com-

plete, unambiguous module behavior to the developers. Also, combined with other

module specifications, interface module specifications can be used to analyze and ver-

ify that the design satisfies the system requirements. Thus, faults relative to interface

modules can be found as well some faults in the system in the early stages. The

reliability is increased and the cost of maintenance for the project can be reduced by

well-specified documentation.

6.3 Limitations of the Method

The techniques in this work are limited to specifying interface modules in a single

threaded environment. As we discussed in Section 4.4 and Section 4.5, the concur-

rency issue is neglected by assuming that an IM acts as a “monitor”. Only one thread

can be executing any of the access programs at a given instance. However, concur-

rency issues can only be avoided as long as no access program blocks waiting for an

external event. If an IM were intended to be used in a multi-threaded environment

and not restricted in this way, some other way is needed to denote the possibility

that more than one thread could be exceting an access program at one time. The

6. Conclusions 79

enhancement of the concurrent application of the technique would be our future work.

The ability to specify the user interface is limited. As a part of the IM, the user

interface has not been fully specified. In the examples in chapter 5, the user interface

is specified in Section 5.1.1 and Section 5.3. In Section 5.3, a small, but functionally

complete part of java.awt.Component is specified as an example of our specification

on callback functions.

6.4 Future Work

The most significant weakness of the technique is that it does not provide the complete

solution for the concurrency issues. As discussed in Chapter 4, we assume that the

IM acts as a “monitor”, so only one process can be executing an access program at

a time. Thus the concurrency issues can be neglected in this way. If an IM were not

restricted in this way, and it were applied in the multi-threaded environment, then

some extensions to the techniques may be needed to deal with the possibility that

more than one thread could be executing an access program at one time.

Some other further investigations could focus on:

• Developing a new tool to analyze modules. As a part of system documentation,

an interface module specification needs to be analyzed to check if it meets

the system requirement. The evaluation of generalized tabular expressions in

software documentation is discussed in [1] and the table evaluation algorithms

have been developed. Although the technique in this work is SCR-style based,

the technique is different from the original SCR method in some notations

(i.e., modes and mode classes). Thus the developed tool-set for specifying and

analyzing requirements documents is based on the NRL version of the SCR

approach [31] and such tools can not be directly applied in this work. Therefore,

a new tool is needed to realize the analysis of modules.

• Specifying the interface modules for software systems. The techniques used

in this work provide interface module specifications for real-time systems by

specifying the module interface. They express module interface by using access

programs as conditions and public variables as another access method. They

6. Conclusions 80

are most suitable to systems with interfaces that interact with both the environ-

ment and system software modules, i.e., embedded systems. To get more general

applications, further application of the interface module specification will focus

on the specification of broader interface modules (e.g., human-machine inter-

face) that will further illustrate the usefulness and may allow us to draw more

conclusions on specifying real-time systems.

• Application in the code checking. The demand of code checking has risen in re-

cent years. However, the explicit and efficient solution is still on the way, leaving

it a tough task. M. Chechik and J. Gannon developed a tentative approach to

fill the blank of automatic verification of requirements implementation [15]. To

show that an implementation is consistent with its requirement, the appearance

of the events that cause state changes is checked in both requirement and the

implementation correspondingly. A tool is built to verify the implementation

(source code) with tokens (or annotations) inserted to track the state changes

so that the state changes can be recognized if they occur. Referring to this

approach, the technique of specification could be applied in checking the mode

changes. Therefore the practicality and effectiveness of the specification would

be improved.

• Generating a test oracle for module behavior checking. The module specification

could be used to generate an oracle to verify if the module behavior is consistent

with the specification. In [58], D. Peters developed a generator of monitors to

observe the consistency of the behavior of the target system versus the system

requirement. As a part of system design, a module could be viewed as a target

system; and thus its behavior could be controlled and inspected by an oracle.

6.5 Conclusions

This work has provided a technique of Interface Module Specification, an area that

attracted little attention. The technique presented in this work is an extension of

the System Requirements Documentation technique presented in [58], which is based

on the SCR method. An IM is specified as a “sub-system” that interacts with both

the external environment and other software modules in the larger system. The IM

6. Conclusions 81

specification provides for both continuous and discrete quantities in hybrid systems.

The interface quantities are modeled as functions of time and the behavior is described

in terms of conditions, events and mode classes. This technique facilitates concise and

formal description of the module behavior, including tolerance and delays.

Interface Modules are modules that encapsulate input or output device hardware

and the related software, so that the application software can be written without

specific knowledge of the particular devices used. Replacing or modifying an interface

device will only lead to changes in the IM, rather than changing the other modules in

the whole system. In real-time and embedded systems, an IM will often relate real-

valued external quantities (e.g., time, positions in space) with discrete valued software

quantities. An IM specification must therefore use a combination of notations and

formalism.

Based on features of the IM, the technique in this work specifies the module in-

terface of IM by using access programs as conditions and public variables as another

method for system software modules to access the IM. Parameterized modes are in-

troduced to specify the IM. In addition, the solution includes specifying callback

functions in the user interface. These three factors form the interface of IM as dis-

cussed in Chapter 4 and illustrated in Chapter 5 in the example applications. The

use of events and mode classes provides a foundation for concise descriptions of the

required behavior. Since events are instants, we can express real-time aspects of the

behavior using simple constraints on the time elapsed between events. Application of

these techniques to the specification of other interface modules will further illustrate

their usefulness and may allow us to draw more conclusions on specifying real-time

systems.

Bibliography

[1] Ruth F. Abraham, Evaluating Generalized Tabular Expressions in Software Doc-

umentation, M. Eng. thesis, McMaster University, Dept. of Electrical and Com-

puter Engineering, Hamilton, ON, February 1997, Also printed as 346.

[2] T. A. Alspaugh, S. R. Faulk, K. Heninger Britton, R. Alan Parker, D. L. Parnas,

and J. E. Shore, Software Requirements for the A-7E Aircraft, Tech. Report

NRL/FR/5546-92-9194, Naval Research Lab., Washington DC, 1992.

[3] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, Hybrid Automata: an

Algorithmic Approach to the Specification and Verification of Hybrid Systems,

Hybrid Systems (R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, eds.),

Lecture Notes in Computer Science, no. 736, Springer-Verlag, October 1993,

pp. 209–229.

[4] R. Alur and D.L. Dill, Automata for Modeling Real-time Systems, ICALP90:

Automata, Languages, and Programming, Lecture Notes in Computer Science

443 (1990), 322–335.

[5] R. Alur and T. A. Henzinger, Real-time Logics: Complexity and Expressiveness,

Information and Computation 104 (1993), no. 1, 35–77.

[6] R. Alur and T.A. Henzinger, A Really Temporal Logic, In Proceedings of the

30th Annual Symposium on Foundations of Computer Science (1989), 164–169.

[7] James Armstrong and Leonor Barroca, Specification and Verification of Reac-

tive System Behavior: The Railroad Crossing Example, Real-Time Systems 10

(1996), 143–178.

82

BIBLIOGRAPHY 83

[8] Joanne M. Atlee and M. A. Buckley, Logic-Model Semantics for SCR Software

Requirements, Proc. Int’l Symp. Software Testing and Analysis (ISSTA ’96),

ACM SIGSOFT Software Engineering Notes, vol. 21, no. 3, May 1996, pp. 280–

292.

[9] Joanne M. Atlee and John Gannon, Analyzing Timing Requirements, Proc. Int’l

Symp. Software Testing and Analysis (ISSTA ’93), ACM SIGSOFT Software

Engeering Notes, vol. 18, no. 3, June 1993, pp. 117–127.

[10] M. Ben-Ari, Z. Manna, and A. Pnueli, The Temporal Logic of Branching Time,

Proc. of the 8th Annual Symposium on Principles of Programming Languages

(1981), 164–176.

[11] R. Bharadwaj and C. L. Heitmeyer, Applying the SCR Requirements Specifica-

tion Method to Practical Systems: A Case Study, Proc. Software Engineering

Workshop, NASA Goddard Space Flight Center, 1996.

[12] P. Du Bois, The Albert II Language: On the Design and the Use of a Formal

Specification Language for Requirements Analysis, Ph.D. thesis, Computer Sci-

ence Department, University of Namur, Belgium, September 1995.

[13] P. Du Bois, E. Dubois, and J-M. Zeippen, On the Use of a Formal RE Language:

The Generalized Railroad Crossing Problem, Proc. Int’l Symp. Requirements

Eng. (RE ’97), IEEE Computer Society Press, January 1997, pp. 128–139.

[14] Kathryn Heninger Britton, R. Alan Parker, and David L. Parnas, A Procedure

for Designing Abstract Interfaces for Device Interface Modules, Proc. Int’l Conf.

Software Eng. (ICSE), 1981, pp. 195–204.

[15] Marsha Chechik and John Gannon, Automatic Analysis of Consistency between

Requirements and Designs, IEEE Software 27 (2001), no. 7, 651–672.

[16] Yoonsik Cheon and Gary T. Leavens, The Larch/Smalltalk Interface Specifica-

tion Language, ACM Transactions on Software Engineering and Methodology

(TOSEM) 3 (1994), 221–153.

BIBLIOGRAPHY 84

[17] E.M. Clarke, E.A. Emerson, and A.P. Sistla, Automatic Verification of Finite-

State Concurrent Systems using Temporal-Logic Specifications, ACM Transac-

tions on Programming Languages and Systems 8(2) (1986), 244–263.

[18] D.L. Dill, Timing Assumptions and Verification of Finite-State Concurrent Sys-

tems, CAV 89: Automatic Verification Methods for Finite-state Systems, Lecture

Notes in Computer Science 407 (1989), 197–212.

[19] D.Ron, Temporal Verification of Communication Protocols, Master’s thesis, The

Weizmann Institute of Science, Rehovot, Israel, 1984.

[20] E. A. Emerson, Temporal and Modal Logic, Handbook of Theoretical Computer

Science (J. van Leeuwen, ed.), vol. B: Formal Models and Semantics, Elsevier

Science, 1990, pp. 995–1072.

[21] Stuart R. Faulk, Specifying Concurrent Events in SCR Requirements, Proc. Int’l

Software Cost Reduction Workshop (Ottawa, Ontario), February 1996.

[22] John Fitzgerald and Peter Gorm Larsen (eds.), Modelling Systems: Practical

Tools and Techniques in Software Development, Cambridge University Press,

1998.

[23] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, On the Temporal Analysis of Fair-

ness, Proc. of 7th Annual Symposium on Principles of Programming Languages

(1980), 163–173.

[24] Hassan Gomaa, Designing Concurrent, Distributed, and Real-Time Applications

with UML, Addison-Wesley, 2000.

[25] D. Harel, Statecharts: A Visual Formalism for Complex Systems, Science of

Computer Programming 8 (1987), 231–274.

[26] David Harel and Michal Politi, Modeling Reactive Systems with Statecharts : the

STATEMATE Approach, New York ; Montreal : McGraw-Hill, c1998, 1998.

[27] E. Harel, Temporal Analysis of Real-Time Systems, Master’s thesis, The Weiz-

mann Institute of Science, Rehovot, Israel, 1988.

BIBLIOGRAPHY 85

[28] E. Harel, O. Linchtenstein, and A. Pnueli, Explicit-Clock Temporal Logic, In Pro-

ceedings of the Fifth Annual Symposium on Logic in Computer Sceince (1990),

402–413.

[29] M. P. E. Heimdahl and N. G. Leveson, Completeness and consistency in hi-

erarchical state-based requirements, IEEE Software 22 (1996), no. 6, 363–377,

reprinted from ICSE96.

[30] C. L. Heitmeyer, Requirements Specifications for Hybrid Systems, Hybrid systems

III: verification and control (New York, NY, USA) (Rajeev Alur, Thomas A.

Henzinger, and Eduardo D. Sontag, eds.), Lecture Notes in Computer Science,

no. 1066, Springer-Verlag, 1996, pp. 304–314.

[31] Constance L. Heitmeyer, A. Bull, C. Gasarch, and Bruce G. Labaw, SCR*:

A Toolset for Specifying and Analyzing Requirements, Proc. Conf. Computer

Assurance (COMPASS) (Gaithersburg, MD), National Institute of Standards

and Technology, June 1995, pp. 109–122.

[32] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw, Automated

Consistency Checking of Requirements Specifications, ACM Trans. Software Eng.

and Methodology 5 (1996), no. 3, 231–261.

[33] K. Heninger, R. Parker, and D. Parnas, A Procedure for Designing Abstract

Interfaces for Device Interface Modules, Software fundamentals: collected papers

by David L. Parnas (2001), 295–314.

[34] Katherine L. Heninger, Specifying Software Requirements for Complex Systems:

New Techniques and their Application, IEEE Software SE-6 (1980), no. 1, 2–13.

[35] Katherine L. Heninger, David Lorge Parnas, John E. Shore, and J. Kallander,

Software Requirements for the A-7E Aircraft, Tech. Report MR 3876, Naval

Research Laboratory, 1978.

[36] T.A. Henzinger, Z. Manna, and A. Pnueli, Temporal Methodologies for Real-

Time Systems, In Proceedings of the 18th Annual Symposium on Principles of

Programming Languages (1991), 353–366.

BIBLIOGRAPHY 86

[37] Daniel Hoffman and Paul Strooper, Software Design, Automated Testing, and

Maintenance: A Practical Approach, International Thomson Computer Press,

1995.

[38] International Telecommunication Union, Geneva, Specification and Description

Language, SDL, 1992, Recommendation Z.100.

[39] A. Jackson and D. Hoffman, Inspecting Module Interface Specifications, Software

Testing, Verification and Reliability 4 (1994), no. 2, 101–117.

[40] Jonathan Jacky, The Way of Z: Practical Programming with Formal Methods,

Cambridge University Press, 1997.

[41] F. Jahanian and A. K. Mok, Modechart: A Specification Language for Real-Time

Systems, IEEE Software 20 (1994), no. 12, 933–947.

[42] Farnam Jahanian and Aloysius K. Mok, Safety Analysis of Timing Properties in

Real-Time Systems, IEEE Software SE-12 (1986), no. 9, 890–904.

[43] Ryszard Janicki, David Lorge Parnas, and Jeffery Zucker, Tabular Represen-

tations in Relational Documents, Relational Methods in Computer Science—

Advances in Computing Science (C. Brink, W. Kahl, and G. Schmidt, eds.),

Springer Wien, New York, 1997, pp. 184–196.

[44] Ryszard Janicki and Emil Sekerinski, Foundations of the Trace Assertion Method

of Module Interface Specification, IEEE Software 27 (2001), no. 7, 577–598.

[45] James Kirby, Jr., Example NRL/SCR Software Requirements for an Automobile

Cruise Control and Monitoring System, Tech. Report TR-87-07, Wang Institute

of Graduate Studies, July 1987.

[46] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese, Requirements

Specification for Process-Control Systems, IEEE Software 20 (1994), no. 9.

[47] N. Lynch and F. Vaandrager, Forward and Backward Simulations-Part II:

Timing-Based Systems, Information and Computation 128 (1996), no. 1, 1–25.

BIBLIOGRAPHY 87

[48] N.A. Lynch and H. Attiya, Using Mappings to Prove Timing Properties, In Pro-

ceedings of the Ninth Annual Symposium on Principles of Distributed Computing

(1990), 265–280.

[49] Nancy Lynch, Roberto Segala, and Frits Vaandrager, Hybrid I/O Automata Re-

visited, Hybrid Systems: Computation and Control, Fourth International Work-

shop (Maria Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, eds.),

Lecture Notes in Computer Science, no. 2034, Springer-Verlag, March 2001.

[50] D. Mandrioli, A. Morzenti, M. Pezzè, P. San Pietro, and S. Silva, A Petri Net

and Logic Approach to the Specification and Verification of Real-Time Systems,

Formal Methods for Real-Time Computing (Constance L. Heitmeyer and Dino

Mandrioli, eds.), Trends in Software, no. 5, John Wiley and Sons, 1996, pp. 135–

166.

[51] Theodore S. Norvell, On Trace Specifications, CRL Report 305, Communications

Research Laboratory, Hamilton, Ontario, Canada, March 1995.

[52] J. S. Ostroff, Temporal Logic for Real-Time Systems, John Wiley & Sons Inc.,

1989.

[53] D. Parnas, Tabular representation of relations, CRL Report 260, Communica-

tions Research Laboratory, Hamilton, Ontario, Canada, November 1992.

[54] David L. Parnas, Use of Abstract Interfaces in the Development of Software for

Embedded Computer Systems, Naval Research Laboratory (1977), no. 8047, NRL

Report.

[55] David Lorge Parnas, On the Criteria to be Used in Decomposing Systems into

Modules, Communications of the ACM (1972), 1053–1058.

[56] David Lorge Parnas and Jan Madey, Functional Documentation for Computer

Systems, Science of Computer Programming 25 (1995), no. 1, 41–61.

[57] David Lorge Parnas and Yabo Wang, The Trace Assertion Method of Module

Interface Specification, Tech. Report TR89-261, Queen’s University, Telecom-

munications Research Institute of Ontario (TRIO), October 1989.

BIBLIOGRAPHY 88

[58] Dennis K. Peters, Deriving Real-Time Monitors from System Requirements Doc-

umentation, Ph.D. thesis, McMaster University, Hamilton ON, January 2000.

[59] A. Pnueli, The Temporal Logic of Programs, Proc. of 18th Annual Symposium

on Fundations of Computer Science (1977), 46–57.

[60] A. Pnueli and W.-P. de Roever, Rendez-vous with Ada: A Proof-Theoretical

View, In Proceedings of the SIGPLAN AdaTEC Conference on Ada (1982),

129–137.

[61] A. Pnueli and E. Harel, Applications of Temporal Logic to the Specification of

Real-Time Systems, Formal Techniques in Real-time and Fault-tolerant Systems,

Lecture Notes in Computer Science 331 (1988), 84–98.

[62] Rational Software Inc., et al , UML summary, version 1.1 ed., September 1997.

[63] A. P. Ravn, H. Rischel, and K. M. Hansen, Specifying and Verifying Requirements

of Real-Time Systems, IEEE Software 19 (1993), no. 1, 41–55.

[64] S. Sankar and R. Hayes, Specifying and Testing Software Components using ADL,

Tech. Report SMLI TR-94-23, Sun Microsystems Laboratories, Inc., Mountain

View, California, April 1994.

[65] Sriram Sankar, Introducing Formal Methods to Software Engineers through

OMG’s CORBA Environment and Interface Definition Language, Proceedings

of the 5th International Conference on Algebraic Methodology and Software

Technology (1996).

[66] Arcot Sowmya and S. Ramesh, Extending Statecharts with Temporal Logic, IEEE

Software 24 (1998), no. 3, 216–231.

[67] E. W. Thompson and R. F. Bridge, A Module Interface Specification Language,

Proceedings of the 12th conference on Design Automation (1975), 42 – 49.

[68] A. John van Schouwen, The A-7 Requirements Model: Re-examination for Real-

Time Systems and an Application to Monitoring Systems, Tech. Report TR 90-

276, Queen’s University, Kingston, Ontario, 1990, also printed as 242.

BIBLIOGRAPHY 89

[69] A. John van Schouwen, David Lorge Parnas, and Jan Madey, Documentation of

Requirements for Computer Systems, Proc. Int’l Symp. Requirements Eng. (RE

’93), IEEE, January 1993, pp. 198–207.

[70] Sreenivasa Viswanadha and Deepak Kapur, IBDL: A Language for Interface

Behavior Specification and Testing, Proceedings of the 4th USENIX Conference

on Object-Oriented Technologies and Systems(COOTS) (1998).

[71] G. H. Weiss, R. Hohendorf, A. Wassyng, B.Quigley, and M. R. Borsch, Verifi-

cation of the Shutdown System Software at the Darlington Nuclear Generating

Station, Int’l Conf. Control & Instrumentation in Nuclear Installations (Glasgow,

United Kingdom), no. 4.3, Institution of Nuclear Engineers, May 1990.

[72] Jeannette M. Wing, Writing Larch Interface Language Specification, ACM

Transactions on Programming Languages and Systems (TOPLAS) 9 (1987), 1–

24.

