
GENERATING A TEST ORACLE

FROM

PROGRAM DOCUMENT ATION

A Thesis

Submitted to the School of Graduate Studies

in partial fulfilment of the requirements

for the degree of

 Master of Engineering

McMaster University

© Copyright by Dennis Keith Peters, April, 1995

By
DENNIS PETERS, B. ENG.

ii

MASTER OF ENGINEERING(1995) McMASTER UNIVERSITY
(Computer)

TITLE: Generating a Test Oracle From Program Documentation

AUTHOR: Dennis Keith Peters, B. Eng. (Memorial University of Newfoundland)

SUPERVISOR: Dr. David L. Parnas

NUMBER OF PAGES: xii, 97

iii

Abstract

Software testing involves execution of a program under test using some fault

revealing input data and examination of the output to determine success or failure. A fun-

damental assumption of this testing is that there is some mechanism, anoracle, that will

determine whether or not the results of a test execution are correct. In practice, this is often

done by comparing the output, either automatically or manually, to some pre-calculated,

presumably correct, output [39]. However, if the program is formally documented it is

possible to use the specification to determine the success or failure of a test execution, as

in [1], for example. This thesis discusses the development of a prototype tool that auto-

matically generates a test oracle from formal program documentation.

In [25], [27] and [28] Parnas et al. advocate the use of a relational model for doc-

umenting the intended behaviour of programs. In this method, tabular expressions are

used to improve readability so that formal documentation can replace conventional docu-

mentation. Relations are described by giving their characteristic predicate in terms of the

values of concrete program variables. This documentation method has the advantage that

the characteristic predicate can be used as a test oracle—it must be evaluated for each test

execution (input and output) to assign pass or fail. This form of documentation is used for

generating an oracle.

The design of a test oracle and a tool that can be used to generate an oracle are

discussed in this thesis.

iv

Acknowledgements

I would like to express my sincere appreciation for the assistance and guidance

of Dr. David L. Parnas in the preparation of this thesis.

Thoughtful comments from Dr. Jeffery I. Zucker and Dr. Arne Maus have helped

to clarify the ideas expressed in this work. The efforts of Brian Smith and Jonathan

Bosloy, both of Newbridge Networks Corporation, made it possible for me validate my

methods using industrial software. Ruth Abraham and Doris Burns both helped to improve

the quality of this work through their careful proofreading and constructive criticism.

Finally, I gratefully acknowledge the financial assistance received from the Natu-

ral Sciences and Engineering Research Council (NSERC) and the Telecommunications

Research Institute of Ontario (TRIO).

v

Table of Contents

Abstract...iii

Acknowledgements..iv

Table of Contents...v

List of Figures...ix

List of Tables..x

List of Acronyms..xi

1 Intr oduction..1
1.1 Purpose...2

1.2 Scope..3

1.3 Related Work ...4

1.4 Outline of This Thesis..6

2 Notation and Terminology...7
2.1 Predicate Logic..7

2.1.1 Notational Conveniences...8
2.1.2 Quantified Expressions..8
2.1.3 Inductively Defined Predicates..9

2.2 Tabular Expressions...10
2.2.1 Syntax of Grids and Tables..10
2.2.2 Semantics of Tables...11
2.2.3 Expressions..12

2.3 Relational Specification...12
2.3.1 Limited Domain Relations...13

2.4 Program Variables and State Descriptions...14
2.4.1 Before and After Value..15

2.5 Functional Testing..15

2.6 Test Oracle...16

2.7 Test Harness...17

3 Program Documentation Method...19
3.1 Primitives...19

vi

3.1.1 Data Types...20
3.1.2 Primitive Functions..20
3.1.3 Primitive Predicates...20

3.2 Documentation Components..21
3.2.1 Constants..21
3.2.2 Variables...21
3.2.3 Program Specifications..22
3.2.4 Auxiliary Predicate Definitions...22
3.2.5 Auxiliary Function Definitions..23
3.2.6 Inductively Defined Predicate Definitions.....................................23
3.2.7 User Definitions...23

3.3 Sample Program Documentation...24

4 Oracle Design...25
4.1 Programming Language...25

4.2 Interface...25

4.3 Internal Design Overview..27
4.3.1 Expression Implementation...28

4.4 Scalar Expressions...29
4.4.1 Logical Operators..29
4.4.2 Primitive Relations..30
4.4.3 Inductively Defined Predicates..30
4.4.4 Quantification...32

4.5 Tabular Expressions...33

4.6 Auxiliary Predicates and Functions...34

4.7 Compilation and Execution...35

5 Test Oracle Generator Design...37
5.1 Requirements...37

5.1.1 Assumptions...37
5.1.2 User Interface...37
5.1.3 Input Format..38
5.1.4 Anticipated Changes..38

5.2 Module Decomposition..39
5.2.1 User Interface (TOG_main.c)..39
5.2.2 Specification Interface...40

5.2.2.1Specification File (TOG_spec.c)..40
5.2.2.2Constants (TOG_const.c)...43
5.2.2.3Variables (TOG_vars.c)...44
5.2.2.4Applications (TOG_applic.c)...44
5.2.2.5Inductively Defined Predicates (TOG_indPred.c).............45

vii

5.2.2.6Table Holder (libtblhold.a)...46
5.2.3 Oracle Generation..46

5.2.3.1Oracle Structure (TOG_oracle.c).......................................46
5.2.3.2Expression (TOG_expn.c)...46
5.2.3.3Code (TOG_code.c)...47
5.2.3.4Context (TOG_context.c)..49
5.2.3.5Procedures (TOG_procedures.c)..50

5.2.4 Output..50
5.2.4.1File Output (TOG_output.c)..51
5.2.4.2Line Buffer (TOG_line.c)..51

5.2.5 Utility Module..52
5.2.5.1Id Table (idTable.c)..52
5.2.5.2Name Table (nameTable.c)..52

5.2.6 Status Reporting...53
5.2.6.1Error Token (TOG_error.c)..53
5.2.6.2Message Logging (sw_error.c) ..53

5.3 Algorithm Overview..54
5.3.1 Expression Coding...54

6 Trial Application ..55
6.1 Program Overview...55

6.2 Test Procedure..55

6.3 Testing Results...56

6.4 Discussion..58
6.4.1 Specification Faults..58
6.4.2 Test Harness Construction...59
6.4.3 Non-Testable Properties...59
6.4.4 Oracle Generation..60

7 Discussion and Conclusion..63
7.1 Applications for This Work ...63

7.2 Limitations of the Method...64

7.3 Future Work ...66

7.4 Conclusions..68

Appendix A - Hash Module Documentation..71
A.1 Introduction..72

A.2 Internal Design Documentation...72
A.2.1 Informal Description...72
A.2.2 User Definitions..73

A.2.2.1 Constants..73

viii

A.2.2.2 Data Structures...73
A.2.2.3 Hash Tables..73

A.2.3 Program Functions..74
A.2.3.1 HashAdd...74
A.2.3.2 HashRemove...75
A.2.3.3 HashFind...76

A.2.4 Auxiliary Predicate Definitions..76
A.2.5 Auxiliary Function Definitions...78

A.3 Hash Module Code..79
A.3.1 hash.c..79
A.3.2 hash.h..85
A.3.3 stuff.h ..86

Appendix B - TOG Input File Format ..89
B.1 Format Description..90

B.1.1 Constants...90
B.1.2 Variables...90
B.1.3 Program Specification...91
B.1.4 Auxiliary Predicate Definitions..91
B.1.5 Auxiliary Function Definitions...91
B.1.6 Inductively Defined Predicate Definitions...................................92
B.1.7 Built-in Functions...92
B.1.8 User Definitions..92

B.2 Formal Grammar..93

References...95

ix

List of Figur es

FIGURE 1 - Sample Test Harness Flowchart...36
FIGURE 2 - First Level Decomposition Module Uses Relation....................................40

x

List of Tables

TABLE 1 - Find Program Specification...24
TABLE 2 - Oracle Access Programs..27
TABLE 3 - Logical Operator Conversions...29
TABLE 4 - Module Uses Relation..41
TABLE 5 - Specification File Module Access Programs...42
TABLE 6 - Constants Module Access Programs..44
TABLE 7 - Variables Module Access Programs..44
TABLE 8 - Applications Module Access Programs...45
TABLE 9 - Inductively Defined Predicates Module Access Programs........................45
TABLE 10 - Oracle Structure Module Access Program...46
TABLE 11 - Expression Module Access Program...47
TABLE 12 - Code Module Access Programs...47
TABLE 13 - Context Module Access Programs...49
TABLE 14 - Procedures Module Access Programs..50
TABLE 15 - File Output Module Access Programs...51
TABLE 16 - Line Buffer Module Access Programs...51
TABLE 17 - Id Table Module Access Programs..52
TABLE 18 - Name Table Module Access Programs..52
TABLE 19 - Error Token Module Access Programs..53
TABLE 20 - Message Logging Module Access Programs...54
TABLE 21 - Test Suite Descriptions..57
TABLE 22 - Summary of Hash Module Test Results...57
TABLE 23 - HashAdd Program Description..74
TABLE 24 - HashRemove Program Description...75
TABLE 25 - HashFind Program Description...76
TABLE 26 - Formal Grammar Symbols...94

xi

List of Acr onyms

ADT Abstract Data Type
ANSI American National Standards Institute
ASCII American Standard Code for Information Interchange
FSM Finite State Machine
IDP Inductively Defined Predicate
PUT Program Under Test
TH Table Holder
TES Test Execution Summary
TOG Test Oracle Generator
TTS Table Tool System

xii

1

1 Intr oduction

As software becomes pervasive in our society, its correct behaviour becomes

increasingly critical to the safety and well-being of people and businesses. Consequently,

there is an increasing need for the application of strict engineering discipline to the devel-

opment of software systems. The Software Engineering Research Group at McMaster

University seeks to address this need by developing techniques and tools to facilitate the

production of software design documentation that is 1) clear enough to be read and under-

stood by both ‘domain experts’ and programmers with a minimum of special training, 2)

complete and precise enough to allow thorough analysis, both manually and mechanically

and 3) suitable for use as a specification from which to produce an acceptable program.

The use of tabular expressions to represent relations [29], and hence program specifica-

tions, is one of the cornerstones of these techniques.

Experience with producing tabular expressions for program documentation has

shown that existing documentation tools are not well suited to this purpose—the creation

and editing of tables is a time consuming process and more time is spent concentrating on

the format of the table than on its content. To help overcome this problem, a set of compu-

ter programs is being developed, which together are known as the Table Tool System

(TTS). (For a list of acronyms used in this thesis see page xi.) This system will provide

one set of tools for editing the content of such documentation and another set for editing

its format. Other tools in the system will be used to analyse the documentation for various

purposes. This work describes a TTS tool which is used in the analysis of program docu-

mentation for the purpose of software testing.

2

1.1 Purpose

Although it is well known that “program testing can be a very effective way to

show the presence of bugs (faults), but it is hopelessly inadequate for showing their

absence”[7], it is widely agreed that testing is an important step in the software develop-

ment process. It has also been observed that such testing is time consuming and costly—as

much as 50% of the development costs for a project can be attributed to testing—and is

itself error prone [20], [33], [36]. It seems natural, therefore, that any set of tools intended

to improve the software development process will include tools to aid testing.

One fundamental assumption, known as theoracle assumption, of software test-

ing research and practice is that there is some mechanism, anoracle, that will determine if

the output from a program is correct [39]. In many cases this mechanism is a manual com-

parison of the test output with some, previously determined, ‘expected output’, which can

be time consuming, tedious and error prone. There are also many cases where it is very

difficult to determine the expected output, e.g. where the properties of the desired result

are known, but not its value, as may frequently be the case in numerical calculations.

If a program has been formally specified, it should be possible to use the specifi-

cation as an oracle, so the expected output need not be given by the user. This is particu-

larly useful if the formal documentation is of a form that can be read and understood by

both domain experts and programmers. Such documentation can be reviewed by the

domain experts to ensure that the specified behaviour is correct and then used to commu-

nicate their intentions to the programmers. Generating an oracle from this documentation

allows us to ensure that the documentation and program are consistent.

The purpose of this work is to develop a prototype automated Test Oracle Gener-

ator (TOG) tool that, given a relational program specification [25] using tabular expres-

3

sions [29], will produce a program that will act as an oracle. This oracle program will take

as input an input, output pair from the program under test and will returntrue if the pair

satisfies the relation described by the specification, orfalse if it does not.

1.2 Scope

Testing is defined by the IEEE as

“The process of exercising or evaluating a system or system component by manual
or automated means to verify that it satisfies specified requirements or to identify
differences between expected and actual results.”[2]

In this thesis, only testing that consists of exercising executable components of

the software system is considered. Testing is a possible method ofverification of software

components, but the latter term is not used in this thesis since its meaning is more broad.

Neither the selection of appropriate tests for a component nor the effectiveness of those

tests is discussed, as these issues are not relevant to the oracle generation problem. Read-

ers are referred to [40] for a discussion of some of these other issues and a good survey of

the relevant literature.

Since the documentation used in this work uses “before/after specifications” (see

[31]), it is only suitable for specifying, and hence generating oracles for, programs for

which the behaviour of interest can be described in terms of the program initial and final

states, i.e., the program must terminate and it must be possible to determine the success or

failure of an execution from its initial and final states. Only such terminating programs are

considered in this work. If a program is intended not to terminate, some terminating sub-

programs (e.g. the body of an infinite loop) could be documented and tested using these

methods.

4

Although the methods discussed in this work are applicable to programs written

in a wide variety of programming languages, the prototype tool developed to illustrate

these techniques is only suitable for those written in ‘C’.

1.3 Related Work

Much of the research aimed at reducing the cost and improving the effectiveness

of software testing has concentrated on the judicious selection of test cases [11], [12],

[20], [21], while other effort has gone into developing tools that either help generate,

maintain and track the testing documentation (e.g. test plans, test cases, expected output or

stub and driver routines) or execute tests in simulated environments [5], [14], [22], [23],

[36]. Both of these areas of research are complimentary to, but quite distinct from, the

work described in this thesis.

Several authors have described tools which can be used to compare the results of

a test with some pre-defined ‘correct’ data. In [22], Panzl describes three systems that ver-

ify the values of program variables against test cases described using a formal test lan-

guage. Another system, described by Hamlet in [14], tests a program using a list of input,

output pairs which have been supplied as part of the program code. All of these systems

require that the user provide the expected output, which may be difficult to obtain. Also,

they can only compare for equality of expected and actual output, and hence relational

specifications, which may accept more than one possible output for a given input, cannot

be used. For example, the program specified in Table1 on page24 is required to indicate

the location of the value of x in the array B, if one exists. If that value occurs in B in more

than one place, then it is sufficient that the program indicate any one of these. Systems

such as those described by Panzl or Hamlet would consider some of these occurrences to

be invalid.

5

The latter limitation is partially overcome by the “program testing assistant”

described by Chapman in [5]. This system allows the user to specify ‘success criteria’ (e.g.

equal, set-equal, isomorphic, etc.) which are used when comparing actual and expected

output. This system, however, must record the input and output from previous executions

of the program to be used as test cases, so it is only useful if the user at one time had a ver-

sion of the program that was considered to be correct.

Other systems, such as ANNA [18] and APP [35], allow program code to be

annotated with assertions which are evaluated as the code is executed. If these assertions

are sufficiently detailed and correctly placed so as to form a specification of the program,

which is not the intention of APP, then they can be used as an oracle. However, since the

annotations used in these systems are written as specially denoted comments in the pro-

gram source code, they do not lend themselves well to analysis or review separate from

the implementation, such as by non-programmer “domain experts”. Such analysis is one

of the intended purposes of the documentation techniques presented in this thesis, so it is

important that the documentation be distinct from the program.

In [37], Stocks and Carrington discuss deriving ‘oracle templates’, which

describe a set of acceptable outputs for a given set of test cases, from model-based specifi-

cations (i.e. those that model the system as a finite state machine with transitions) using

the Z notation. In [34], Richardson et al. advocate the derivation of oracles from formal

models and specifications. Both papers suggest that the oracle could be automatically gen-

erated, but neither discusses the problems of actually producing an oracle procedure.

Other authors have discussed producing oracles for abstract data types (ADTs)

that are specified using algebraic specifications, e.g. [1],[4], [10] or ‘trace’ specifications

[38]. These specification techniques address a different problem from those used in this

6

work in that they are required to document the intended properties of an ADT which is

implemented by a group of programs, whereas the techniques used in this work are used to

describe the effect of a single program on some concrete data structure. The oracle prob-

lem is, therefore, different as well—ADT oracles must check that the specified ADT prop-

erties hold, whereas program oracles need only check that the data structure has been

modified in the specified manner.

1.4 Outline of This Thesis

Chapter 2 defines the terminology that is used in this thesis. Chapter 3 describes

the content and format of the type of program specification to be used for generating a test

oracle and Chapter 4 discusses the design of the oracle itself. The design of the Test Oracle

Generator is discussed in Chapter 5, and Chapter 6 presents the results of these methods

when applied to the testing of some code from an industrial application. Chapter 7 dis-

cusses the applications and limitations of this work and draws some conclusions.

7

2 Notation and Terminology

The notation and terminology used in this thesis is defined in this section.

2.1 Predicate Logic

The predicate logic used in this work is based on that described in [30], which

differs from traditional logic in that it allows the use of partial functions but ensures that

all predicates are total. Axioms and rules of inference for similar logics are discussed in

[6] and [9]. The following terminology is adopted from [30].

Function application
A function application is a function name together with its actual arguments,

which are terms. The usual notation will be used for denoting function applications

(i.e. ‘f(x)’, ‘G(x, y, z)’, ‘x+5’, etc.).

Term
A term is a constant, a variable or a function application.

Primitive r elation
A small set of relations (e.g. <, >, =, etc.) are defined as beingprimitive

relations. The value of a primitive relation is defined in the usual way with the

addition that it isfalse, by definition, if one or more of its argument terms is a function

application with argument values outside the function’s domain. For example, if F and

G are functions and the value of x is not in the domain of F then “F(x) > G(x)”, “F(x)

< G(x)” and “F(x) = G(x)” are allfalse (assuming that ‘>’, ‘<’ and ‘=’ are primitive

relations). Note that “F(x) = F(x)”, which in many other logics is equivalent totrue by

the “axiom of reflexivity”, is alsofalse in the case where x is not in the domain of F.

8

Note also that this set of primitive relations does not normally include the nega-

tion of other primitive relations. For example, ‘≠’ is not defined as a primitive relation

since the value of “f1(x) ≠ f2(x)” is not the same as “¬(f1(x) = f2(x))”—the latter istrue

where x is outside the domain of either f1 or f2, whereas the former would befalse (if ‘ ≠’

is defined as a primitive).

Predicate expression
A predicate expression is either a primitive relation or a string of the form

(∀x, P), (P), P∧Q, P∨Q or¬P, where P and Q represent predicate expressions and x is

a variable, known as theindex variable of the quantification, which is said to bebound

within the predicate expression in which it occurs (i.e. inside the outer-most pair of

parentheses). These predicates are defined in the usual way as described in [30].

2.1.1 Notational Conveniences

The following equivalencies allow expressions to be written in the customary

manner:

(P ⇒ Q) ≡ ((¬P) ∨ Q) (EQ 1)

(∃x,P)≡ (¬(∀x,¬P)) (EQ 2)

2.1.2 Quantified Expressions

For oracle generation, quantification must be restricted to a finite set, which is

characterized by an inductively defined predicate (see below) so that it can be automati-

cally generated. This is accomplished by permitting only the following forms of quantified

expressions, where P(x) is an inductively defined predicate and Q(x) is any predicate

expression of a permitted form:

Universal: (∀x, P(x)⇒Q(x))

Existential: (∃x, P(x)∧Q(x))

9

2.1.3 Inductively Defined Predicates

An inductively definedpredicate (IDP), P, on <type> is defined as the character-

istic predicate of a set, S, which is formed in the following way. Given a triple, {I, G, Q},

where:

I is an enumerated finite set of elements of <type>,

G is a function, G: <type>→ <type>,

Q is a predicate on <type>, and

∀x∈I, (∃m, ((∀j, (0 < j < m⇒ Gj(x) ∈ dom(G)))∧ ¬Q(Gm(x)))). (EQ 3)

S is the least set formed by the following rules:

1. all elements of I are in S

2. ∀x∈S [Q(x)⇒ G(x)∈S].

This least set can be constructed by the following inductive steps:

1. S0 = I

2. Sn+1 = Sn ∪ {G(x) | x∈Sn ∧ Q(x)}.1

It can be proven that∃N, SN+1 = SN. (In fact, we can take N = the largest element

from the set {m |∃x∈I, [(∀j, [0 < j < m⇒ (Gj(x) ∈ dom(G)∧ Q(Gj(x)))]) ∧ ¬Q(Gm(x))]},

i.e. the set of m’s from EQ3, above.) Thus S = SN and S is finite.

A predicate, P(x), is inductively defined by providing appropriate definitions for

I, G and Q. For example, the characteristic predicate of the set of integers from MIN to

MAX, inclusive, is inductively defined by: I≡ {MIN}, G(x) ≡ x+1 and Q(x)≡ x < MAX.

Note that P(x) is equivalent to

(x∈I ∨ (∃y, (P(y)∧ Q(y) ∧ (x = G(y))))).

1. Note that an efficient algorithm for constructing this set would only consider the elements of Sn that are
not in Sn-1 at each step.

10

2.2 Tabular Expressions

In [29], Parnas describes a method for representing mathematical functions and

relations using multi-dimensional tables calledtabular expressions. These are equivalent

to, but often easier to read and understand than, expressions written in a more traditional

manner. Tabular expressions are particularly well suited to describing conditional relations

of the forms that frequently occur in program specifications. This sub-section gives a brief

summary of [29].

A tabular expression is constructed recursively from conventional (scalar)

expressions and grids. Ascalar expression is either a term or a predicate expression as

described in Section2.1.

2.2.1 Syntax of Grids and Tables

A grid, G, ofdimensionality (i.e. the number of dimensions) dim(G), is an

indexed set such that the index set is a set of dim(G)-tuples which are the Cartesian prod-

uct of the sets:

{1, 2, …, len1(G)}, {1, 2, …, len2(G)}, …, {1, 2, …, lendim(G)(G)},

where leni(G) is the length of G in its ith dimension.shape(G) is a tuple of length dim(G)

whose ith element is leni(G). GI denotes the element (cell) of G with index I, where I is a

member of the index set of G.

If I is an n-tuple, “Ij” (for 1 ≤ j ≤ n) denotes the jth element of I and “I|j” denotes

the (n-1)-tuple formed by removing the jth element from I.

A table, T, consists of a main grid, G, and coordinate header grids, C1, C2, …,

Cdim(G) such that shape(Ci) = leni(G). In the remainder of this thesis coordinate header

11

grids will be referred to as header grids or simply headers. Ci,j denotes the jth element of

Ci.

Note also that dim(T) = dim(G), leni(T) = leni(G) and TI = GI

2.2.2 Semantics of Tables

In this thesis, a table is classified as being either anormal,inverted or vector

table.

A normal table contains predicate expressions in all of the cells of the header

grids. For a normal table, T, theselected cell is a cell of the main grid with index, I, such

that the value of the conjunction of for 1 ≤ i ≤ dim(T) istrue. If no such cell exists

then there is no selected cell. If more than one such cell exists then the table is not well

defined.

An inverted table, T, contains predicate expressions in the cells of C1, C3, …,

Cdim(T) as well as in the cells of the main grid, G. The selected cell of T is a cell of C2 with

index, I2, such that the conjunction of for i = 1, 3, 4, …, dim(T) and GI is true. If no

such cell exists then there is no selected cell. If more than one such cell exists then the

table is not well defined.

Normal and inverted tables can be eitherfunction or predicate tables. A function

table contains a term in all cells that could be the selected cell (i.e. cells of the main grid

for normal tables or cells of C2 for inverted tables). A predicate table contains predicate

expressions in all cells that could be the selected cell.

The value of the function described by a function table is the value of the term in

the selected cell, if such a cell exists, otherwise it is undefined. The value of the predicate

Ci I i,

Ci I i,

12

expression described by a predicate table is the value of the predicate expression in the

selected cell, if such a cell exists, otherwise it isfalse.

A vector table contains predicate expressions in the cells of C2, C3, …, Cdim(T)

and strings of the form “xi |” or “xi =”, where xi is a variable, in C1. The selected cells of T

are the cells of the main grid with any index, I, such that the value of the conjunction of

 for 2 ≤ i ≤ dim(T) istrue. Note that these cells will form a column of the main grid—

they will have I1 = 1, 2, …, len1(G). If no such cells exist then there are no selected cells.

In this work, a vector table is always interpreted as a predicate table. The value

of the table is the value of the conjunction of the expressions formed from the selected

cells in the following manner: for cells, GI, for which the corresponding C1 cell, , is

of the form “xi |” the expression is simply the predicate expression in GI. For cells for

which the corresponding C1 cell is of the form “xi =” the expression is the predicate

expression “xi = GI”. If there are no selected cells then the table value isfalse.

2.2.3 Expressions

A function table can be considered to be a function application and is thus a term

in the sense of [30], and a predicate table can be considered to be a predicate expression.

Any term or predicate expression is an expression and may appear as an element of a grid.

2.3 Relational Specification

As discussed in [8], [19] and [31], among others, a digital computer can be

viewed as a finite state machine (FSM)—it consists of a finite set of memory and bulk

storage locations and input and output registers, each of which is itself a finite state

machine. The state of a computer is the combination of the state of all of its component

FSMs.

Ci I i,

C1 I1,

13

For the purpose of discussing programs, the following terminology is adopted

from [28] and [31]: Anexecution is a (possibly infinite) sequence of states of the machine,

the first of which is known as itsinitial or starting state. If an execution is finite then it is

said to be aterminating execution, and the last state is known as itsfinal or stopping state.

A program, P, is a mechanism for establishing a pattern of state changes of the machine

and hence denotes a set of executions—the possible sequences of states established by that

program—sometimes called theexecutions of P.

Frequently, when specifying a program, the specifier does not want to restrict the

intermediate states that the machine might be in during execution (i.e. the algorithm used

by the program) but only requires that the stopping state be correct for each starting state.

In these cases only the initial and final states of terminating executions are of interest. A

pair of states that are the initial and final states of a terminating execution are referred to as

anexecution summary. Recalling that a binary relation is a set of pairs, clearly the set of

acceptable execution summaries for a program can be described using a relation.

2.3.1 Limited Domain Relations

In [25], [26], [28] and [31] Parnas et al. describes the use of Limited Domain

Relations (LD-relations) to specify programs. AnLD-relation, L, is a pair (RL, CL) where

RL is an ordinary relation and CL is a subset of the domain of RL, known as thecompe-

tence set. The domain and characteristic predicate of L are the domain and characteristic

predicate of RL.

An LD-relation, L, can be used to specify a program by letting RL be the set of

acceptable start state, stop state pairs (i.e. execution summaries) and CL be the set of start-

ing states for which the program must terminate. A program, P, is said tosatisfy a specifi-

cation, L, if and only if

14

• when started in any state, x, if P terminates, it does so in a state, y, such that
<x, y> is an element of RL, and

• for all starting states, x, in CL, P will always terminate.

Note that if a starting state x∉ domain(RL) then P cannot terminate such that P

satisfies L.

In the case of a deterministic program, RL is a function. In the case where CL is

the domain of RL (always for deterministic programs) CL need not be given.

In this thesis a program is assumed to be specified by an LD-relation, which is

referred to as thespecification relation. If the competence set is not given, it is assumed to

be the domain of RL.

2.4 Program Variables and State Descriptions

 As described in [19], a computer can be considered to be sub-divided into

smaller FSMs some of which are referred to asprogram variables. A type can be associ-

ated with each program variable to denote its number of possible states and the abstraction

used to describe these states. The suitably abstract description of the state of a program

variable is known as itsvalue. For example, if we say a program variable is of ANSI C

type int then it must have at least 216 possible states which are typically represented by

the integer numbers between -32766 and 32767.

In the context of documentation for a program or set of programs, however, only

a very small percentage of the possible program variables are typically relevant. The data

structure of a program or set of programs is defined as being the set of program variables

whose values affect, or are affected by the program(s) (i.e. the memory locations and reg-

isters that are used by the program). In this thesis, the termstate is assumed to refer to the

15

state of the data structure with respect to a particular program or set of programs. Astate

description is a tuple giving the value of each program variable in the data structure.

A program variable name is a string of characters used to represent a program

variable in a program text (i.e. code). Abusing the notation slightly, “the value of x”,

where “x” is a program variable name, is used to refer to the value, in some state, of the

program variable represented by x.

2.4.1 Before and After Value

The following convention for denoting the value of program variables before and

after a program is executed is adopted from [28] and [15]:

Let P be a program and xi, …, xk be the names of the program variables in

the data structure of P. Then

• “'x i” (to be read “xi before”) denotes the value of xi in the initial state of an
execution of P and

• “x i'” (to be read “xi after”) denotes the value of xi in the final state of an
execution of P.

For the purposes of interpretation of a specification, xi' and 'xi are different

terms.

2.5 Functional Testing

Functional testing of a program involves executing the program under test

(PUT) using some ‘test data’ and examining the output data to verify the program behav-

iour [16]. This work considers only functional testing, referred to simply astesting.

For the purpose of this work atest case, X, is a description of a starting state for

a program. Atest execution summary (TES) is a pair of state descriptions, <X, Y>, the first

16

of which is a test case and the second is a description of the state in which the program ter-

minated after having been started in X. A TES can be said topass with respect to a rela-

tional specification if the TES is an element of the specification relation, otherwise it is

said tofail with respect to that specification.

In [4], Bernot et al. discuss the need to develop a set of hypotheses, H, which

express the relationship between the pass or failure of a series of TESes and the correct-

ness of the program. In the case of a deterministic program and exhaustive testing (i.e.

every starting state is a test case), clearly H is ‘if all TESes pass then the program is cor-

rect, otherwise it is not’. In practice, however, exhaustive testing is rarely practical. Also,

in the case of non-deterministic programs, it is impossible to reach such conclusions since

any test case can describe the initial state of several different execution summaries.

As stated in Section1.2, the selection of a set of test cases is not considered in

this work. Since the hypothesis set is, in general, a function of these test cases, it will also

not be discussed. Interested readers are referred to [4] for a further discussion of this topic.

2.6 Test Oracle

In [16, p.43], Howden describes anoracle as a function which, given a program,

P, can determine, for each input, x, if the output from P is the same as the output from a

‘correct’ version of P.

Consistent with this, in the context of this work, anoracle is a program which,

given a TES, will determine if it passes or fails with respect to the specification from

which the oracle was derived by evaluating the characteristic predicate of the specification

relation—if it evaluates totrue, then that TES passes, otherwise it fails. Note that such an

oracle does not require the existence of a ‘correct’ version of P.

17

2.7 Test Harness

Practical program testing typically involves executing the PUT for many differ-

ent test cases and verifying the results using the test oracle. This can be done using a pro-

gram known as atest harness which may partially simulate the environment in which the

PUT is designed to be used, and may also perform such tasks as collecting statistics on the

number of failed tests, etc.

18

19

3 Program Documentation Method

The documentation which is the input to the TOG is design documentation for a

single program (procedure), i.e. it describes the intended behaviour of a program in terms

of its effect on the actual data structure. This is distinct frommodule interface documenta-

tion which describes the externally observable behaviour of a module without reference to

the data structure used in their implementation (see [27], [28] and [38]). (Amodule is a

group of programs which are designed and implemented as a single work assignment.

Typically they implement an abstract data type or encapsulate a design decision, e.g. algo-

rithm or external device interface.) This chapter describes the program documentation

method used in this work, which is based on that described in [28] and has the following

desirable properties.

• It is precise and formal.

• It is clear enough to be read and understood with a minimum of special
training.

• Reading a specification neither gives any details about, nor requires any
knowledge of, the algorithm used by the program specified.

It is assumed that this documentation is created using other TTS tools and is

stored in an appropriate format.

3.1 Primitives

Since specifications are written in terms of the values of the program variables in

the data structure, it is convenient to describe these variables and operations on them using

the notation of the programming language used for the implementation of the program

under test (PUT). This has the clear advantage that programmers and verifiers responsible

20

for reading the specifications will be familiar with the notation. It also makes it easier to

produce tools, such as the TOG, which interact with the specified program or its environ-

ment. For this reason, the primitives supported by the TOG are specific to the program-

ming language used. In this thesis, the programming language is C.

3.1.1 Data Types

Since, as discussed in Section2.4, the value of a program variable is understood

in the context of its type, the documentation must give the type of each program variable

in the data structure. Also, since functions defined in the documentation must be compared

with program variables, they too must be assigned a type. Those types which are sup-

ported by the programming language or defined (in the syntax of the programming lan-

guage) in the ‘user definitions’ section of the documentation are taken to be primitive.

3.1.2 Primitive Functions

Primitive functions are those functions that are assumed to be ‘built in’ to the

system and can be used without definition in specifications. Parnas et al. [28] define a

known program as “one that does not require a specification” (i.e. its specification is

assumed to be understood) and anavailable program as one that “exists in a project or sys-

tem library”. Programs that are available or are made available through declarations in the

‘user definitions’ section, are treated as primitive functions. Primitive functions are

assumed to be total (i.e. their domain is the cartesian product of their argument types).

3.1.3 Primitive Predicates

The usual primitive relations, =, >, <,≥ and ≤, are defined and used in the stand-

ard infix notation style for comparing terms of the same primitive type. Note that these

primitive relations are not defined for non-primitive (i.e. abstract) types, so expressions

21

such as “x' =myFunc('x)” (where x is a program variable of non-primitive type) are not

permitted. Auxiliary predicates may be defined to evaluate relations such as equality on

abstract data types.

3.2 Documentation Components

The documentation consists of: constants, variables, program specifications,

auxiliary predicate definitions, auxiliary function definitions, inductive predicate defini-

tions and user definitions. The manner in which these are represented to the user is an

implementation detail of the program documentation editing tools—examples given here

are for illustration purposes only. The documentation components are described below.

3.2.1 Constants

A constant is any string of symbols that is interpreted as a constant in the syntax

of the programming language. For example, in C the following strings are constants:13 ,

TRUE, 0x2b and“A Text String” .

3.2.2 Variables

In the documentation, strings of characters calledvariables (not aprogram vari-

able, which, as described in Section2.4, is a FSM) are used to represent either the value of

program variables in the initial state or final state of an execution, the value of expressions

passed as arguments in auxiliary or inductive definitions (i.e. formal arguments), or as

quantification indices. As mentioned in Section2.4.1, a program variable name, annotated

with a single quote (') either before or after, is a variable used to represent the value of that

program variable in the initial or final state, respectively. Variables which represent quan-

tification indices are considered to represent a value only where they are bound. A variable

that is the same as the name of the program specified by the specification is used to repre-

22

sent the value returned by the program (e.g. the value of the accumulator register in the

final state), if appropriate for the programming language.

All variables must have a type, which is as described in Section3.1.1. For this

prototype oracle generator, the type of a particular variable must be the same throughout

the program documentation. (i.e. The same quantification index variable cannot be used to

quantify over two different types in different parts of the documentation.)

3.2.3 Program Specifications

A (relational) program specification, as illustrated in Table1 on page24, con-

sists of three components: (1)Theprogram invocation gives the name and type of the pro-

gram and lists all of its actual argument program variables. (2)Theexternal variable list

lists all other program variables referred to (by annotated variables with the same name) in

the specification relation expression. (3)Thespecification relation defines the LD-relation

that specifies the behaviour of the program. It includes expressions that give the character-

istic predicates of the domain, competence set and relational components of the LD-rela-

tion. Note that, by default, if the competence set is not given then it is taken to be the same

as the domain of the specification relation.

3.2.4 Auxiliary Predicate Definitions

Auxiliary predicates can be defined so that complicated or frequently used predi-

cate expressions can be written more concisely in the documentation. The definition of an

auxiliary predicate consists of a name, a list of formal argument variables, and a predicate

expression written in terms of the formal arguments. When its name, together with a list of

actual arguments, is used in the documentation, it is evaluated by substituting the values

23

represented by the actual arguments for their corresponding formal arguments in the defi-

nition predicate expression and evaluating the resulting predicate expression.

3.2.5 Auxiliary Function Definitions

Auxiliary functions can be defined so that complicated or frequently used func-

tions can be written more concisely in the documentation. The definition of an auxiliary

function consists of a name, a type, a list of formal argument variables, a term expression

and an optional predicate expression, which gives the domain of the function, both written

in terms of the formal arguments. When the auxiliary function name, together with a list of

actual arguments, is used in the documentation it is evaluated by substituting the values

represented by the actual arguments for their corresponding formal arguments in the term

expression. If the definition contains a domain expression that does not evaluate totrue,

the value of the function is undefined, otherwise the value is that described by the expres-

sion.

3.2.6 Inductively Defined Predicate Definitions

An inductively defined predicate is an auxiliary predicate that is defined induc-

tively as described in Section2.1.3. Its definition consists of a name, a formal argument

variable and the definition components I, G, and Q. ‘I’ is a string which is an enumerated

set in the syntax of the programming language (an initial value for an array in the C lan-

guage) and ‘G’ and ‘Q’ are expressions in terms of the formal argument variable.

3.2.7 User Definitions

A user definition is a sequence of text in the syntax of the programming language

which is used to declare data structures, functions or symbols that are used in the docu-

mentation and are not primitive to the programming language. This is required so that the

24

basic symbols (e.g. constant names) and operators (e.g. structure element access) which

are used in the specification can be understood.

3.3 Sample Program Documentation

Table 1, which is adapted from an example used in [28], specifies a program

‘find’ which searches an integer array ‘B’ for a value given by ‘x’, returns its index in ‘j’

and, using a boolean variable ‘present’, indicates if a match was found.

Auxiliary Pr edicate Definitions

NC(int 'a[], int 'b, int a'[], int b')
 (∀i, bRange(i) ⇒ 'a[i] = a'[i]) ∧ ('b = b')

Inductively Defined Predicates (see Section2.1.3)

bRange(int i)
 I = {0}, G(i) = i+1, Q(i) = i<(N-1)

User Definitions
#include “defs.h”

#def ine N 10 /* Size of array to search */

TABLE 1 - Find Program Specification

void
find(int B[N], int x, int j, bool present)

external variables:

Dfind = true

Cfind = true

Rfind (,) =

(∃i, bRange(i) ∧
'B[i] = 'x)

(∀i, bRange(i) ⇒
¬('B[i] = 'x))

j' | 'B[j'] = 'x true

present' = TRUE FALSE ∧ NC('B, 'x, B', x')

=df

=df

25

4 Oracle Design

This chapter describes the interface and internal design of the oracle that will be

the output of the TOG. The design is illustrated using specific examples from an oracle

prototype, which was manually produced for the simple ‘find’ program specification given

in Section3.3.

4.1 Programming Language

The example programs to be tested (see Appendix A) are written using the C

programming language, and hence the primitives used in the specification are C style. To

simplify the oracle generation process and the interface to the test harness, the oracle is

implemented using C and C++. This decision should not be seen as a significant feature of

the design—if the intended application were different, the oracle design could be trans-

lated with little significant change.

4.2 Interface

The interface to the oracle is a set of three boolean valued programs:inRela-

tion , inCompSet andinDomain . initOracle is an initialization program which

should be called by the test harness once, before the first oracle program is called.

inRelation evaluates the characteristic predicate of the relational component

of the specification relation. It takes the value of the PUT data structure in the initial state

and final state (i.e. the TES) as arguments and can be called by the test harness to evaluate

TESes as necessary. It returnsTRUE if the TES passes, orFALSE otherwise.

26

inCompSet andinDomain evaluate the characteristic predicates of the com-

petence set and domain, respectively, specified for the specification relation. Their argu-

ments are those values from the start state of the TES which are required to evaluate the

characteristic predicates. They returnTRUE if the test case is in the set, orFALSE other-

wise. These two programs can be used to avoid executing the PUT using test cases for

which either there is no acceptable TES (i.e. the test case is not in the domain) or the PUT

may be non-terminating (i.e. the test case is not in the competence set).

An alternative interface design, similar to that used in [35], would be to use the

‘debug’ information supplied by a compiler to resolve references to the data structure, and

to embed code in the PUT to evaluate the oracle predicate at the appropriate points in the

execution. While this method seems to lend itself to an elegant test harness design, it is felt

that it may also be limiting, and will certainly make the job of the test oracle generator dif-

ficult. Also, since it involves modification of the PUT, it introduces the potential for errors

being avoided during testing which may appear in the ‘released’ version (i.e. without the

oracle code). If desired, the chosen interface design could be adapted for use in such a

manner by embedding calls to the oracle access programs at appropriate locations in the

PUT.

In a testing environment, it is often desirable to know in some sense why a test

execution fails, so that program (or specification) faults can be easily isolated. Since rela-

tional program specifications are used in this work, which may allow several correct stop-

ping states for a particular test case, it is not, in general, possible for an oracle to determine

why a TES has failed.

Table 2 gives the syntax of the interface to the prototype oracle access programs.

Each row in the table describes the interface to one of the access programs, which is

27

named in the first column. The second column gives the type of value returned by the pro-

gram and the subsequent columns give the formal names and types of the program argu-

ments, in the order that they appear. Note that, with the exception ofinitOracle , the

actual number and types of arguments for these access programs are specific to the partic-

ular PUT and specification (‘find’ in this case).

4.3 Internal Design Overview

The oracle can be viewed as a ‘compiled’ version of the specification in that it is

generated by translating the ‘source’ specification into an executable form (C code). Once

it has been ‘compiled’, it can be executed without reference to the specification from

which it was derived. One advantage of this design is that it allows the TOG to use optimi-

zation techniques to reduce the time required for oracle execution.

An alternative is to construct the oracle as an ‘interpreter’ which would represent

the specification by data and evaluate it directly for each TES. An advantage of this design

is that the oracle generation process is relatively simple, probably involving no code gen-

eration (the oracle programs are the same for any specification, only the data they use is

dependant on the specification). A disadvantage is that the oracle will need to interpret the

semantics of the documentation during evaluation, and so would probably be compara-

tively slow to execute. This is seen as a significant disadvantage since, in real applications

TABLE 2 - Oracle Access Programs

Name Value Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6
initOracle

inCompSet bool

inDomain bool

inRelation bool int B[] int x int B_p[] int x_p int j_p bool present_p

28

of this work, speed of oracle execution is much more important than oracle generation

simplicity.

4.3.1 Expression Implementation

Each of the oracle access programs (with the exception ofinitOracle) evalu-

ates a predicate expression which may be arbitrarily complex. Since any expression is

made up of one or more sub-expressions, the complexity is managed by decomposing

each expression into its constituent sub-expressions and implementing each sub-expres-

sion individually. In addition to the access programs, the oracle code consists of a set of

internal functions and objects, each of which implements a sub-expression and may call

other internal functions or object methods.

Since programming languages in general, and C in particular, support basic logi-

cal and relational operators (i.e. ∧, ∨, ¬, >, <, = etc.), these operators can be used to

directly implement some of the expressions. Using these operators it is possible to imple-

ment an entire expression as a single C statement by translating it into a purely scalar,

quantifier free expression (by expanding quantification to a series of conjunctions or dis-

junctions and translating tabular expressions into an equivalent disjunction of conjunc-

tions) but for all but the most trivial specification, the resulting C statement would be

many lines long. While this would undoubtedly result in an oracle that executes relatively

quickly, since there would be none of the overhead associated with loops or function calls,

it would require significant effort on the part of the TOG to do the translation and would

result in virtually incomprehensible oracle code. For this reason the oracle is implemented

using the C logical and relational operators only where they directly represent the opera-

tors in the specification (see Sections 4.4.1 and 4.4.2, below).

29

Another method of implementing expressions uses a class of C++ objects, with a

sub-class for each expression type. A particular expression is implemented by instantiat-

ing the appropriate objects, which contain references to their sub-expression objects. For

expression forms such as tabular expressions, which have complex semantics, this helps to

simplify the oracle generation process—the TOG need only translate the expression into

the appropriate object constructor. For forms with less complex semantics, however, the

gain in simplicity of the TOG does not warrant the overhead of a C++ object.

The code to implement each type of expression is described in the following sec-

tions.

4.4 Scalar Expressions

Scalar (i.e. non-tabular) expressions can be translated into equivalent C state-

ments as described below.

4.4.1 Logical Operators

Except when they are the root node of a quantified expression (see

Section4.4.4), logical operators can be directly translated to their C equivalents, as given

in Table 3. (P and Q are arbitrary predicate expressions.)

TABLE 3 - Logical Operator Conversions

Logical Operator C Equivalent
¬P !P

P ∨ Q P || Q

P ∧ Q P && Q

P ⇒ Q (!P) || Q

30

Thus the expression which is the definition of the auxiliary predicate NC (see

page 24) is implemented in the following procedure (nc_1 is a procedure which imple-

ments the quantified sub-expression):

static BOOL
nc(int p_a[N], int p_b, int a_p[N], int b_p)
{

return(nc_1(p_a, a_p) && (p_b == b_p));
}

4.4.2 Primitive Relations

Since the logic used in this work differs from most traditional logics in the defi-

nition of primitive relations, the standard programming language relational operators are

combined with information about the domain of partial functions. For example, the predi-

cate expression “guarded_B('B, j') = x”, whereguarded_B (defined in Section4.6) is a

partial function, is translated into the following code.

(guarded_B_domain(j_p) && (guarded_B(p_B, j_p) == x));

This translation relies on the fact that C expressions are evaluated from left to

right and evaluation stops as soon as the value of the expression is known. So, in the above

code, ifguarded_B_domain(j_p) returnsFALSE then the right hand side will not be

evaluated.

4.4.3 Inductively Defined Predicates

Since inductively defined predicates (IDPs) are intended to be used to character-

ize sets for quantification purposes, their implementation provides, in addition to the usual

predicate expression evaluation operator (i.e. is the predicatetrue or false for a given

value), a means to enumerate the set elements. An IDP is implemented in the form of an

31

(C++) object class which encapsulates the algorithm for determining the next element of

the set.

An array is used to represent the ‘I’ component of the IDP definition and two

procedures implement the expressions ‘G’ and ‘Q’. For example, the definition for

bRange(int i) (see Section3.3) is implemented using the following code.

static int bRange_I[] = { 0 };

static int
bRange_G(int i)
{

return(i+1);
}

static BOOL
bRange_Q(int i)
{

return(i < (N-1));
}

The IDP object classes have three methods: ‘() ’ (an operator method),f irst

andnext . The method ‘(e) ’ returns TRUE if e is in the set characterized by the IDP, or

FALSE otherwise.f irst, initializes the object’s internal variables and returns the first

element of the array representing I.next returns the ‘next’ element of the set, as

described by the following three cases.

1. If the most recently returned element, say e, is such that Q(e) istrue, then G(e) is
returned.

2. If Q(e) isfalse and there are more elements of I, then the next element of I is
returned.

3. Otherwise, then there are no further elements of the set so an element not in the set
is returned. (So the() operator will return FALSE.)

Thus the enumeration of the set that is characterized by an IDP can be accom-

plished using the following algorithm (where P is the IDP object).

32

e = P.f irst();
while (P(e)) {

process(e);
e = P.next();

}

When an inductively defined predicate is used in an expression, it can be imple-

mented by instantiating an object from the appropriate class, depending on the type of the

elements of the set, with the array and procedures corresponding to the IDP definition

passed as arguments to the instantiation function. This is illustrated by the objectbRange

of typeIndPred_int which is used in the quantification example below.

4.4.4 Quantification

Quantifier expressions are implemented using loops that call the appropriate pro-

cedures to enumerate the elements of the set characterized by the IDP (see Section4.4.3,

above). The root node of the quantification expression (i.e. the ‘∧’ for existential or ‘⇒’

for universal) is not implemented as described in Section4.4.1, but is effected by evaluat-

ing its right child expression for only those elements which make the left child expression

true (i.e. the elements of the set characterized by the IDP). To ensure that evaluation is as

fast as possible, the loops are designed to terminate as soon as the result of the quantifica-

tion is known (i.e. the first positive instance for existential quantification, and the first neg-

ative instance for universal quantification). Of course, quantification over a large set is

inherently a lengthy process.

The quantification “(∃i, bRange(i) ∧ 'B[i] = 'x)”, which is in the first cell of the

column header of the table on page 24, is implemented as follows.

33

static BOOL
table_H2_2_1(int p_B[N], int p_x)
{

IndPred_int bRange(bRange_I, 1,
bRange_G,
bRange_Q);

int i;
BOOL result = TRUE;

i = bRange.f irst();
while (bRange(i) && result) {

result = !(p_B[i] == p_x);
i = bRange.next();

}
return(!result);

}

4.5 Tabular Expressions

Tabular expressions are implemented by instantiating an object of one of several

classes of (C++) table objects which implement the various types of tabular expressions

(normal, inverted and vector). These table objects encapsulate all knowledge of the

semantics of tabular expressions, so the TOG need not have this knowledge and is hence

less complicated. The expression in each cell of the table is implemented as a procedure

(C function) and a pointer to each of these procedures is stored by the table object. In an

attempt to make tabular expression evaluation faster, the table objects evaluate cell expres-

sions as few times as possible and preferentially choose the most recently used cells to

evaluate first (if test cases are such that successive cases select the same cell then this will

make a test suite run faster).

Table objects have two methods which are used to evaluate the expression:

f indCell determines if the values of the arguments are in the domain of the table (by

determining if a selected cell or cells exist), andvalue evaluates the table, returning the

value in aCELL data structure which is a union of all of the basic data types in C (includ-

ing void *).

34

An alternative implementation for a tabular expression is to translate it into an

equivalent scalar expression and then implement the scalar expression as described in the

previous section. This option has the disadvantages that it requires that the TOG have the

ability to perform the translation, and it does not allow the above optimizations made pos-

sible by the table object design.

4.6 Auxiliary Predicates and Functions

As mentioned in Section3.2.4 and Section3.2.5, auxiliary predicates and func-

tions are expressions which are either complicated or used repeatedly. An appropriately

typed procedure is used to implement each auxiliary predicate or function definition, with

the expression, implemented as described above, forming the body of the procedure. For

auxiliary functions for which a domain expression is given, a procedure is produced to

implement that expression as well. For example, consider an auxiliary function defined as

follows:

int guarded_B(int b[], int i)
 b[i]

domain: 0 ≤ i < N

This is implemented by the following procedures:

static int
guarded_B(int b[], int i)
{

return(b[i]);
}

static BOOL
guarded_B_domain(int i)
{

return((0 <= i) && (i < N));
}

=df

35

Appropriate calls to these procedures are used in the code that implements

expressions using the auxiliary predicate or function.

4.7 Compilation and Execution

The oracle consists of three groups of code: that generated by the TOG, inoutFi-

le.cc (whereoutFile is the output file name specified by the user, as described in

Section5.1.2), and the two sets of object classes, in indPred.cc and Table.cc, which are not

generated by the TOG but are used by the TOG generated code. As is the norm for C++

programs, each source file has a corresponding ‘include’ file with the file name extension

“.h”.

To use the oracle, a test harness program, which calls the oracle procedures and

the PUT and reports the results, must be written. It should include the oracle header file

(outFile.h) which declares the oracle procedure prototypes. The test harness and the oracle

code must be compiled and linked to produce an executable program. Figure1 is a flow-

chart of a possible test harness design and Section7.1 discusses some other possible

designs in further detail.

36

Start

Input
test case

inCompSet

FailPass

Execute
Program

Reject

inRelation

true

false

true false

initOracle

FIGURE 1 - Sample Test Harness Flowchart

37

5 Test Oracle Generator Design

This chapter briefly describes the requirements and design of the prototype TOG.

5.1 Requirements

To reiterate, the requirements of the TOG are that it accept a program specifica-

tion in the form described in Chapter 3 and produce the code for an executable test oracle

such as that described in Chapter 4.

5.1.1 Assumptions

It is assumed that the mathematical expressions used in the specifications have

been input and saved using the table holder module (see Section5.2.2.6). This assumption

affects the Specification File and Expression modules, which are described in

Section5.2.2.1 and Section5.2.3.2, respectively.

The oracle code is constructed using two sets of object classes: Tabular expres-

sions (normTable , invTable andvecTable) and IDPs (IndPred_<type>)

implemented in Table.cc and indPred.cc, respectively. These are assumed to be present

and correct. This assumption affects the Code module which is described in

Section5.2.3.3.

5.1.2 User Interface

The user interface to the TOG is a ‘command line interface’ similar to that of

many compilers. This has the advantage that it can be invoked by standard tools such as

‘make’. The command line syntax is as follows:

38

tog [-lerrlevel] [-h] [-o outFile] [specFile]

 Options:

-lerrlevel Set the message logging level to errlevel whereerrlevel is one ofD, I , W

or S (Debug, Info, Warning, Serious). Only messages with seriousness

equal to or greater thanerrlevel will be written to the log file (TOG_log-

file). The defaulterrlevel is W.

-h Output a help message (and do nothing).

-o outFile UseoutFile as the base name for the oracle output. The filesoutFile.cc and

outFile.h are produced. The default name isoracle.

specFile Generate the oracle from the specification inspecFile. If no file name is

given then input is read from standard input.

5.1.3 Input Format

The input to the TOG is in the form of a specification file which contains the

information as described in Chapter 3. The file consists of a sequence of items, each of

which define either a constant, variable, auxiliary predicate, auxiliary function, induc-

tively defined predicate or the program relation. The last item in the file is the user defini-

tions text. The format of the specification file is described in detail in Appendix B.

5.1.4 Anticipated Changes

It is expected that the following items are likely to change within the useful life

of the TOG.

• Specification file format

• Oracle programming (output) language

• Oracle design

39

• User interface

5.2 Module Decomposition

The TOG is implemented by a set ofmodules, each of which encapsulates a set

of design decisions. Several of the modules can be further sub-divided into sub-modules

which encapsulate more specific design decisions. The benefits of this encapsulation are

twofold: the design is easier to understand because of this separation of concerns, and it is

easier to change the TOG since the decisions affected by the change are likely to be iso-

lated

For the purpose of illustrating the system design, theModule Uses Relation is

used. Module A is said touse Module B if some programs in Module A rely on the correct

behaviour of some programs in Module B to accomplish their task.1 Figure2 illustrates

the Module Uses Relation for the TOG for the first level module decomposition. Table 4

gives the Module Uses relation for the sub-modules.

5.2.1 User Interface (TOG_main.c)

The User Interface module acts as the main controlling module for the TOG. It

encapsulates the interpretation of command line arguments and the sequence of invocation

of other modules. It uses the Specification interface module to read the specification from

the file, the Output module to initialize the output files and Oracle Generation module to

produce the oracle code.

1. Note that the module uses relation is derived from the program uses relation discussed in [24].

40

5.2.2 Specification Interface

The Specification Interface module is responsible for providing access to the

PUT specification information. It is sub-divided into the following sub-modules.

5.2.2.1 Specification File (TOG_spec.c)

This module extracts the specification from a file and stores it in the appropriate

information storage modules, described below, for retrieval by the Oracle Generation

module. It encapsulates the specification file format and the algorithm for reading it. The

information about the auxiliary predicates, and functions and inductively defined predi-

FIGURE 2 - First Level Decomposition Module Uses Relation

Specification Interface

User Interface

Output

Status Reporting

Oracle Generation

Utility

Module A

Module B

Module A uses Module B

Key

41

TABLE 4 - Module Uses Relation

Module Level Uses
User Interface 7 Oracle Structure

Expression

Specification File

Output

Status Token

Message Logging

Oracle Structure 6 Expression

Code

Context

Specification File

Output

Line Buffer

Status Token

Message Logging

Expression 5 Code

Applications

Table Holder

Line Buffer

Status Token

Message Logging

Code 4 Context

Procedures

Constants

Variables

Applications

Inductively Defined Predicates

Procedures

Line Buffer

Status Token

Message Logging

Specification File 3 Constants

Variables

Applications

Inductively Defined Predicates

Table Holder

Status Token

Message Logging

42

cates used in the specification are stored in lists which can be enumerated using the mod-

ule access programs.

Context 3 Procedures

Name Table

Status Token

Message Logging

Constants 2 Status Token

Message Logging

Variables 2 Id Table

Status Token

Message Logging

Applications 2 Id Table

Status Token

Message Logging

Inductively Defined Predicates2 Id Table

Status Token

Message Logging

Procedures 2 File Output

Status Token

Line Buffer

Message Logging

Id Table 1 Message Logging

Name Table 1 Message Logging

Output 1 Message Logging

Line Buffer

TABLE 5 - Specification File Module Access Programs

Name Type Arguments Description
TOG_specOpen void FILE * Read the specification from the file.

TOG_specGetCompSet Expn Return the competence set expression for
the specification relation.

TOG_specGetCSArgs int Id **ids Return the argument Ids for the competence
set expression.

TOG_specGetRelation Expn Return the relation expression for the
specification relation.

TOG_specGetRelArgs int Id **ids Return the argument Ids for the relation
expression.

TABLE 4 - Module Uses Relation

Module Level Uses

43

5.2.2.2 Constants (TOG_const.c)

The representation (name) of every constant used in the specification is stored

using this module. It encapsulates the data structure used for storing this information.

TOG_specGetDomain Expn Return the domain expression for the
specification relation.

TOG_specGetDomArgs int Id **ids Return the argument Ids for the domain
expression.

TOG_specNextAuxPred bool Make the ‘next’ auxiliary predicate current.
If there are no more return BOOL_FALSE

TOG_specGetAuxPredId Id Return the Id of the current auxiliary
predicate.

TOG_specGetAuxPredDef Expn Return the definition of the current auxiliary
predicate.

TOG_specGetAuxPredArgs int Id **ids Return the argument Ids for the current
auxiliary predicate.

TOG_specNextAuxFunc bool Make the ‘next’ auxiliary function current.
If there are no more return BOOL_FALSE

TOG_specGetAuxFuncId Id Return the Id of the current auxiliary
function.

TOG_specGetAuxFuncDef Expn Return the definition of the current auxiliary
function.

TOG_specGetAuxFuncDomainId Return the Id of the domain predicate of the
current auxiliary function.

TOG_specGetAuxFuncType char * Return the type of the current auxiliary
function.

TOG_specGetAuxFuncArgs int Id **ids Return the argument Ids for the current
auxiliary predicate.

TOG_specNextIndPred bool Make the ‘next’ inductively defined
predicate current. If there are no more return
BOOL_FALSE

TOG_specGetIndPredId Id Return the Id of the current inductively
defined predicate.

TOG_specGetIndPredI int char **i Return the ‘I’ component of the current
inductively defined predicate.

TOG_specGetIndPredG Id Return the Id of the ‘G’ component of the
current inductively defined predicate.

TOG_specGetIndPredQ Id Return the Id of the ‘Q’ component of the
current inductively defined predicate.

TOG_specGetUserDef char* Return the user definitions text.

TABLE 5 - Specification File Module Access Programs

Name Type Arguments Description

44

5.2.2.3 Variables (TOG_vars.c)

The name and type of each variable used in the specification is stored using this

module. It encapsulates the data structure used for storing this information. The idTable

module is used to implement efficient storage with fast retrieval of the information.

5.2.2.4 Applications (TOG_applic.c)

An application is any function or predicate used in the specification including

both those defined in the specification (i.e. auxiliary functions and predicates) and those

which are defined in the oracle programming language. Theform of an application is an

array of arity + 1 strings which are used with the argument expressions to construct the

code which evaluates the application invocation. The name, arity, form and domain predi-

cate Id of an application used in the specification is stored using the Applications module.

It encapsulates the data structure used for storing this information. The idTable module is

used to store the information.

TABLE 6 - Constants Module Access Programs

Name Type Arguments Description
TOG_constInit Initialize the module internal data structure.

TOG_constLoad bool FILE * Load a table of constant names from the file.

TOG_constDelete Id Delete a constant from the table.

TOG_constGetName char * Id

char *buf

Write the name of the constant with the
given Id into buf.

TABLE 7 - Variables Module Access Programs

Name Type Arguments Description
TOG_varsInit Initialize the module internal data structure.

TOG_varsLoad bool FILE * Load a table of variable names and types
from the file.

TOG_varsDelete Id Delete a variable from the table.

TOG_varsGetName char * Id

char *buf

Write the name of the variable with the
given Id into buf.

TOG_varsGetType char * Id

char *buf

Write the type of the variable with the given
Id into buf.

45

5.2.2.5 Inductively Defined Predicates (TOG_indPred.c)

Theinstantiation of an IDP is a string which is used in the oracle code to declare

an instance of the IDP. The name, type and instantiation information for an IDP used in the

specification is stored using the Inductively Defined Predicate module. It encapsulates the

data structure used for storing this information. The idTable module is used to store the

information.

TABLE 8 - Applications Module Access Programs

Name Type Arguments Description
TOG_appInit Initialize the module internal data structure.

TOG_appAdd Id

char *name

int arity

Add an application to the module.

TOG_appDelete Id Delete a application from the table.

TOG_appSetForm Id

int num

char *form

Set the ‘num’th form string for the
application with the given Id.

TOG_appGetForm char * Id

int num

Return a pointer to the ‘num’th form string
for an application.

TOG_appSetDomain Id

Id domain

Set the Id of the domain predicate for the
application.

TOG_appGetDomain Id Id Return the Id of the domain predicate for the
application.

TOG_appGetArity int Id Return the arity of the application.

TOG_appGetName char * Id Return the name of the application.

TABLE 9 - Inductively Defined Predicates Module Access Programs

Name Type Arguments Description
TOG_indPredInit Initialize the module internal data structure.

TOG_indPredAdd Id

char *name

char *type

Add an IDP to the module.

TOG_indPredDelete Id Remove an IDP from the module.

TOG_indPredSetInstantiation Id

char *inst

Set the instantiation of the IDP.

TOG_indPredGetInstantiation char * Id Return the instantiation of the IDP.

46

5.2.2.6 Table Holder (libtblhold.a)

The components of a specification that are mathematical expressions are stored

using the Table Holder module, which is not a TOG module, but is the central module of

the TTS. This module is described in further detail in [17].

5.2.3 Oracle Generation

The Oracle Generation module is responsible for converting the specification

into the oracle implementation. It is sub-divided into the following sub-modules.

5.2.3.1 Oracle Structure (TOG_oracle.c)

The structure of the oracle (i.e. the procedures and their names) and the algo-

rithm for constructing this structure is encapsulated by this module. It retrieves the compo-

nents of the specification from the Specification Interface module and uses the other

Oracle Generation sub-modules to construct the oracle.

5.2.3.2 Expression (TOG_expn.c)

Mathematical expressions are decomposed into their component sub-expressions

by this module. It encapsulates the interface to the Table Holder module and the algorithm

for constructing procedures to implement expressions. The Code module is used to con-

vert expressions into code.

TOG_indPredGetType char * Id Return the type of the IDP.

TOG_indPredGetName char * Id Return the name of the IDP.

TABLE 10 - Oracle Structure Module Access Program

Name Type Arguments Description
TOG_oracle Construct the oracle.

TABLE 9 - Inductively Defined Predicates Module Access Programs

Name Type Arguments Description

47

5.2.3.3 Code (TOG_code.c)

The knowledge of the syntax of the oracle programming language (C for this

prototype) is encapsulated by this module. It converts the components of an expression

into C code and combines them to form the oracle procedures, objects and statements.

TABLE 11 - Expression Module Access Program

Name Type Arguments Description
TOG_expn TOG_Line Expn

Path

TOG_Line buf

TOG_Cntxt parent

Translate the sub-expression at
‘Path’ and return the code to
evaluate it in buf.

TABLE 12 - Code Module Access Programs

Name Type Arguments Description
TOG_codeConst char * Id id

char * buf

TOG_Cntxt cntxt

Write the code for the constant into
buf.

TOG_codeVar char * Id id

char * buf

TOG_Cntxt cntxt

Write the code for the variable into
buf.

TOG_codeQLE Id quant_id

Id var_id

Id ind_pred_id

TOG_Line exp

TOG_Cntxt quant_proc

Write the code to evaluate the
quantification on the expression
given in exp. The code is the body
of quant_proc.

TOG_codeApplic TOG_Line Id id

int arity

TOG_Line args[]

TOG_Line line

TOG_Cntxt cntxt

Write, into line, the code to
evaluate the given application with
the given arguments.

TOG_codeNewTable TOG_Cntxt int num_dims

int shape[]

TOG_TableType

Write the code to instantiate a table
object.

TOG_codeTableCell TOG_Cntxt table

TOG_Cntxt cell

TOG_TableValueType vT

TOG_Line expn

Construct a function for a table
cell.

48

TOG_codeTableSetHeader TOG_Cntxt table

TOG_Cntxt cell

int header

int cell_num

Write the code in ‘initOracle’ to
initialize the header functions of a
table.

TOG_codeTableSetMain TOG_Cntxt table

TOG_Cntxt cell

char *index

int num_dims

int cell_num[]

Write the code in ‘initOracle’ to
initialize the main grid functions of
a table

TOG_codeNewPrivateProcTOG_Cntxt TOG_Cntxt parent

char *name

char *type

Create a new function internal to
the oracle.

TOG_codeNewPublicProc TOG_Cntxt TOG_Cntxt parent

char *name

char *type

Create a new function which is an
access program to the oracle.

TOG_codeNewIndPred TOG_Cntxt Id

char *i

int num

char * g_name

char * q_name

Construct the context for an
inductively defined predicate
object.

TOG_codeAddIndPred Id id

TOG_Cntxt cntxt

Write the code to instantiate an
inductively defined predicate
object.

TOG_codeAddQuantVar Id id

TOG_Cntxt cntxt

Add a variable to the context for
use in quantification.

TOG_codeMakeHeading TOG_Cntxt cntxt Construct the code which forms the
function heading.

TOG_codeMakePrototype TOG_Line TOG_Cntxt cntxt

TOG_Line buf

Write a prototype for the context in
buf.

TOG_codeConstructCall TOG_Line TOG_Cntxt caller

TOG_Cntxt callee

TOG_Line buf

Construct the code for ‘caller’ to
call ‘callee’.

TOG_codeTableValue TOG_Line TOG_Cntxt caller

TOG_Cntxt table

TOG_TableValueType
type

TOG_Line buf

Construct an invocation of the table
‘value’ method.

TOG_codeComment TOG_Line char *text

TOG_Line line

Write the text as a comment.

TABLE 12 - Code Module Access Programs

Name Type Arguments Description

49

5.2.3.4 Context (TOG_context.c)

A context (TOG_Cntxt) is an ADT which represents a procedure in the oracle

code and the collection of variables known within that procedure. It contains a list of argu-

ments and internal variables, the name and type of the procedure and a TOG_Proc which

contains the statements which make up the procedure. The Context module is used to

manage knowledge of contexts and to avoid conflicts between variable names.

TOG_codeProcValue TOG_Cntxt

TOG_Line val

Write the code so that the cntxt
returns ‘val’.

TOG_codeAddIndexDecl char * int num_dim Declare a variable ‘index’ in
‘initOracle’.

TOG_codeSetInitCntxt TOG_Cntxt init Set the ‘initOracle’ context.

TOG_codeCellElement char * TOG_TableValueType
type

Translate the table value type into
its name.

TABLE 13 - Context Module Access Programs

Name Type Arguments Description
TOG_cntxtInit Initialize the module internal data structure.

TOG_cntxtCleanUp Destroy all contexts.

TOG_cntxtCreate TOG_Cntxt TOG_Cntxt

char *name

Create a new context.

TOG_cntxtDestroy TOG_Cntxt Destroy a context.

TOG_cntxtGetName char * TOG_Cntxt

char *buf

Return the name of the context.

TOG_cntxtSetType TOG_Cntxt

char *type

Set the type of the context.

TOG_cntxtGetType char * TOG_Cntxt Return the type of the context.

TOG_cntxtGetVar char * TOG_Cntxt

Id id

char *buf

Return the name of a variable within a
context.

TOG_cntxtAddVar TOG_Cntxt

Id id

char *name

bool isArg

Add a variable to the context.

TABLE 12 - Code Module Access Programs

Name Type Arguments Description

50

5.2.3.5 Procedures (TOG_procedures.c)

A procedure (TOG_Proc) is an ADT which represents the lines of text that form

the source code for a function. The Procedures module encapsulates the data structure for

storing these lines of text. The output module is used to write the text to the disk.

5.2.4 Output

The Output module encapsulates text manipulation algorithms and data struc-

tures and the file system. It is sub-divided into the following sub-modules.

TOG_cntxtRemoveVar TOG_Cntxt

Id id

Remove a variable from the context.

TOG_cntxtGetCode TOG_Proc TOG_Cntxt Return the procedure for the context.

TOG_cntxtGetFirstArg Id TOG_Cntxt Return the first argument to the context.

TOG_cntxtGetNextArg Id TOG_Cntxt Return the next argutment to the context.

TOG_cntxtOutput TOG_Cntxt Output the procedure for the context using
the output module.

TOG_cntxtAddTmpVar char * TOG_Cntxt

char *name

Add a temporary variable to the context.

TABLE 14 - Procedures Module Access Programs

Name Type Arguments Description
TOG_procInit Initialize the module data structure.

TOG_procCreate TOG_Proc Create a new procedure.

TOG_procDestroy TOG_Proc Destroy a procedure.

TOG_procOutput TOG_Proc Write the procedure to the output file.

TOG_procAddHeading TOG_Proc

TOG_Line text

Add text to the procedure heading.

TOG_procAddDeclaration TOG_Proc

TOG_Line text

Add text to the procedure declarations.

TOG_procAddBody TOG_Proc

TOG_Line text

Add text to the body of the procedure.

TOG_procAddClosing TOG_Proc

TOG_Line text

Add text to the procedure closing.

TABLE 13 - Context Module Access Programs

Name Type Arguments Description

51

5.2.4.1 File Output (TOG_output.c)

The interface to the file system for writing the oracle source code files is encap-

sulated in the File Output module.

5.2.4.2 Line Buffer (TOG_line.c)

A line (TOG_Line) is an ADT which represents a sequence of arbitrary length

strings of text. The Line Buffer module encapsulates the data structure for storing lines

and provides access programs for their manipulation.

TABLE 15 - File Output Module Access Programs

Name Type Arguments Description
TOG_outInit char *outname Initialize the module data structure. Open

the appropriate output files.

TOG_outInclude TOG_Line Write text to the header file.

TOG_outTop TOG_Line Write text to the top of the code file.

TOG_outBody TOG_Line Write text to the body of the code file.

TOG_outClose Close all files.

TABLE 16 - Line Buffer Module Access Programs

Name Type Arguments Description
TOG_lineInit Initialize the module data structure.

TOG_lineInsert TOG_Line TOG_Line

char *text

Insert text at the begining of the line.

TOG_lineAppend TOG_Line TOG_Line

char *text

Append the text to the end of the line.

TOG_linePack TOG_Line TOG_Line

int width

Pack the line into strings of less than width
characters.

TOG_lineGetText char * TOG_Line

char *

Return a buffer containing all of the text in
the line.

TOG_lineDestroy TOG_Line Destroy a line.

TOG_lineJoin TOG_Line TOG_Line ln1

TOG_Line ln2

Append ln2 to the end of ln1.

52

5.2.5 Utility Module

The TOG uses the following general purpose modules to store and manipulate

data that can be referenced by integer or text keys.

5.2.5.1 Id Table (idTable.c)

The Id Table module facilitates the efficient storage and fast retrieval of a set of

arbitrary data structures keyed by an integer identifier.

5.2.5.2 Name Table (nameTable.c)

The Name Table module facilitates the efficient storage and fast retrieval of a set

of names (character strings) and their integer identifiers. Elements in the set can be

retrieved quickly using either a name or an identifier as a key.

TABLE 17 - Id Table Module Access Programs

Name Type Arguments Description
IDTab_create IDTab int size

int dsSize

Create a table to store up to size items each
of dsSize bytes

IDTab_destroy IDTab Destroy a table.

IDTab_insert bool IDTab

int id

void *dat

Add an item to a table.

IDTab_remove bool IDTab

int id

Remove an item from a table.

IDTab_find void * IDTab

int id

Retrieve an item from a table.

TABLE 18 - Name Table Module Access Programs

Name Type Arguments Description
nameTableCreate NameTable int size Create a name table for up to size elements.

nameTableDestroy NameTable Destroy a name table.

nameTableAdd bool NameTable

char *name

int id

Add an element to the name table.

nameTableDelete bool NameTable

char *name

Delete the named element from the table.

53

5.2.6 Status Reporting

The Status Reporting module is used by all modules of the TOG for the purpose

of monitoring and reporting the status of other modules.

5.2.6.1 Error Token (TOG_error.c)

A status token is used to communicate success or failure status information

between modules and between programs within the same module. This token is accessed

through the Error Token module.

5.2.6.2 Message Logging (sw_error.c)

To communicate information to the user for the purpose of debugging either the

TOG or a specification, a log file is used. The Message Logging module provides an inter-

face to this log file.

nameTableDeleteIndex bool NameTable

int id

Delete the identified element from the table.

nameTableGetIndex int NameTable

char *name

Return the id of the named element.

nameTableGetName char * NameTable

int id

Return the name of the identified element.

nameTableGetFirstIndex int NameTable Return the id of the first element in the table.

nameTableGetNextIndex int NameTable Return the id of the next element in the
table, or NAME_NOT_FOUND if there are
no more.

TABLE 19 - Err or Token Module Access Programs

Name Type Arguments Description
TOG_errSet TOG_Token Set the current error status.

TOG_errGet TOG_Token Return the current error status.

TOG_errGetStr char * TOG_Token Return a descriptive string corresponding to
the given error status.

TABLE 18 - Name Table Module Access Programs

Name Type Arguments Description

54

5.3 Algorithm Overview

The algorithm for generating an oracle used by the TOG consists of the follow-

ing steps:

1. Initialization: open files, initialize data structures.

2. Read Specification from file.

3. Create oracle program contexts.

4. Code Auxiliary Definitions: Create a C function for each, code the expres-
sion.

5. Code oracle programs: inDomain, inCompSet, inRelation.

6. Write and close files.

7. Free data structures.

5.3.1 Expression Coding

The mathematical expressions used in auxiliary definitions or in the specification

relation are translated into code in the following manner: The expression syntax tree is tra-

versed using a depth-first (i.e. innermost sub-expressions first) traversal and each sub-

expression is implemented in turn as described in Chapter 4. The code that gives the value

of each sub-expression is written into a buffer (TOG_Line) which is used to construct the

code for the ‘parent’ expression. This process continues until the root expression has been

implemented and the resulting code is used as the body of the procedure in the oracle.

TABLE 20 - Message Logging Module Access Programs

Name Type Arguments Description
SW_error int level

char *format

<arguments>

Log a message to the logfile at the given
error level. ‘format’ is a printf style format
string and <arguments> are the arguments
for it.

SW_errorInit int level

char *fileName

Open the named file as the logfile. Messages
of level below ‘level’ are ignored.

SW_errorClose Close the logfile.

55

6 Trial Application

In order to evaluate the practicality and effectiveness of the methods described in

this thesis, and to gain an appreciation of their strengths and weaknesses, the methods

were used to test some programs that are used in a commercial network management

application.1 This chapter gives a brief description of the programs to be tested and dis-

cusses the testing procedures, results of the testing and the lessons learned from this trial.

6.1 Program Overview

The programs to be tested together implement a module (hereafter known as the

hash module) used to store elements (data structures) for quick retrieval using an integer

key. This is achieved using two hash tables, referred to as table A and table B. Three of the

module’s access programs are tested:HashAdd , which adds an element to one of the

tables,HashFind , which retrieves an element from one of the tables without changing

the table, andHashRemove, which removes an element from one of the tables. Complete

specifications and source code of these programs are given in Appendix A.

6.2 Test Procedure

As discussed in Chapter 3, the methods described in this thesis are intended for

testing individual programs, not modules. The methods described in [38] and [40] would

be useful for testing the externally observable behaviour of this module. To effectively test

the hash module using the methods described in this thesis, three oracle programs, one for

each access program, are used with a single test harness.

1. Provided by Newbridge Networks Corp., Kanata, Ontario.

56

The input to the test harness is a series of commands, each of which instruct it to

either add, remove, or find an element in one of the two tables. Each command, together

with the state of the hash module before the command is executed, forms a test case for

one of the programs. The test case is only executed if it is in the competence set of the pro-

gram, as determined by the appropriateinCompSet program. The TES made up of the

test case together with the description of the state of the hash module following execution

and the values returned by the program, is passed to the appropriateinRelation pro-

gram to determine pass or failure of the test.

Since the hash module is part of a commercial software system, it has previously

been carefully inspected and tested, so it is expected that no errors will be detected by fur-

ther testing. To verify that the testing procedures does, in fact, detect errors when they

occur, it is necessary to introduce some errors into the hash module. This is done by mak-

ing small changes to the hash module code so as to slightly alter its behaviour such that it

no longer satisfies its specification. Each modified version of the hash module (presuma-

bly containing only one coding fault) is tested separately using the same set of test harness

commands.

6.3 Testing Results

Test suites for testing the hash module were generated randomly using a simple

program based on the C language uniform distribution random number generator (rand).

The tests were approximately uniformly distributed between the two tables. Table 21 sum-

marizes the test suites and Table 22 summarizes the results of the testing.

As can be seen from the information in Table 22 for tests 3 through 8, the testing

procedures were successful in detecting all of the errors inserted in the code. The large

number of rejected test cases in tests 5 and 7 are due to the fact that the code modifications

57

introduced for these tests were such that the integrity of the data structure was not main-

tained correctly, and thus the tests cases were not in the competence set of the programs.

Since the test harness copies the entire data structure before each command is

executed, and the time required to do this depends on the number of elements in the hash

tables, the time required to execute a suite of tests is dependent on the size to which the

tables grow and hence the ratio of ‘add’ to ‘remove’ commands in the suite. (Since ‘find’

commands do not change the size of the table, their frequency is not relevant to this analy-

sis.) Test #1, which used test suite A in which the frequency of ‘add’ commands is approx-

imately equal to that of ‘remove’ commands, took an elapsed time of about two and a half

minutes1 (approx. 15 ms per command). On the other hand, test #2, which used test suite

TABLE 21 - Test Suite Descriptions

Number of commands

Suite Add Remove Find Total
A 3303 3363 3334 10000

B 4984 2516 2500 10000

C 489 256 246 1000

TABLE 22 - Summary of Hash Module Test Results

#
Test
Suite Code Modifications Passed Failed Rejected

1 A Unmodified 10000 0 0

2 B Unmodified 10000 0 0

3 C Neglect to append existing list to added item in
HashAdd (line 182)

881 119 0

4 C Neglect to append added item to existing list in
HashAdd (line 183)

511 489 0

5 C Neglect to set ‘identifier’ in HashAdd (line 181) 3 6 991

6 C Always return NULL fromHashRemove 737 263 0

7 C Neglect to re-join list when element removed in
HashRemove (line 233)

29 14 957

8 C Use wrong size to calculate hash index for table B
(line 123)

746 254 0

58

B in which the frequency of ‘add’ commands was about twice that of ‘remove’ com-

mands, required an elapsed time of about five and a half minutes (approx. 34 ms per com-

mand). Both of these times are considered to be quite acceptable, especially considering

how long it would take to manually verify the results of 10 000 test executions.

6.4 Discussion

As was the intention, the process of using these methods to test commercial soft-

ware brought to light some of the difficulties of using these methods in a realistic software

development situation. These difficulties are discussed in this section.

6.4.1 Specification Faults

One of the recognized dangers of using a formal specification to derive an oracle

for testing software is that the oracle is only as good as the specification from which it was

derived. On several occasions during preliminary testing of this module, it was thought

that a fault had been discovered. On closer examination, however, it was realized that the

fault was actually a fault in the specification, not the implementation of the hash module

itself. Of course, if there is no specification, then there is no hope of generating an oracle.

Careful inspection is an obvious method of removing faults from the specifica-

tion. However, if an oracle is generated from the specification, then other fault detection

methods are possible. Experience has shown that inspection of the oracle code itself is a

useful way of detecting faults in the specification—the structure of the code mirrors that of

the specification. Also, it is possible to test the specification by executing the oracle with a

TES for which the results are known (e.g. from a previous ‘correct’ version of the PUT or

a TES that has been manually produced or checked).

1. All times are elapsed time running under OSF/1 V2.0 on a lightly loaded DEC Alpha.

59

6.4.2 Test Harness Construction

Since theinRelation programs in general take both starting and stopping

state descriptions as arguments, the value of the data structure in the starting state is cop-

ied to other variables by the test harness before executing the PUT. Such a test harness is

based on the design of the data structure, and the data structure must be exported from the

PUT so that it can be accessed by the test harness.

In the case of the hash module, the data structure is complex enough that copying

it is itself a potentially error prone activity and, in fact, in preliminary testing some errors

were found in that portion of the test harness code. In addition, the programhash_get-

Tables was required (an addition to the hash module) so that the data structure could be

exported.

An alternative design is to have the hash module access programs directly invoke

the test harness, which could copy the data structure and call the oracle programs as neces-

sary. This implementation would likely involve more changes to the hash module code

than that described above, and hence it is more likely to adversely affect the behaviour of

the module. (The module that is tested should be as close as possible to the module that

will be used in the real system.)

6.4.3 Non-Testable Properties

There is a class of properties which are impossible or impractical to test using an

oracle generated using these methods. Two such properties are illustrated by the hash

module: the requirement that a program should call another program some number of

times, such as forHashOperateOnNext ; and properties of the data structure that are

not retained when the data structure is copied, such as the value of the ‘sanityCheck ’

field.

60

One of the arguments toHashOperateOnNext is a pointer to a program

which is to be called byHashOperateOnNext for some subset of the elements in the

hash table. It is not possible to give a relational specification ofHashOperateOnNext ,

since its effect on the data structure and even the set of elements upon which it will act are

not known without knowledge of the program which is its argument. It is, therefore, only

possible to specify the program in conjunction with the program which is to be passed as

its argument. Also, since the TES does not normally include information about which pro-

grams were called during the execution of the PUT, the oracle can only check the effect on

the data structure of calling the given program, not that it was actually called the correct

number of times. A potential solution to this problem is discussed in Section7.2.

ThesanityCheck field in thehashStruct data structure is used as a fault

detection mechanism by this module, and presumably others in the system. The value of

sanityCheck is set to be equal to the location in memory of the instance of the data

structure (i.e. it is a pointer to itself). Unfortunately, if this data structure is copied to a new

location in memory (i.e. so that it can be used as part of the start state in the TES) the value

of sanityCheck will no longer have the desired property since its location in memory

has changed, so it is not possible to ascertain the correctness of this value from a copy. For

this reason the integrity of this field cannot be checked byinRelation for ‘before’ val-

ues of the data structure (this is overcome by the use of the‘sane’ auxiliary predicate only

when referring to ‘after’ values).

6.4.4 Oracle Generation

When using these methods to test multiple programs with a single test harness,

some of the assumptions made in the design of the oracle are not valid. Two such invalid

assumptions are illustrated through the testing of the access programs of the hash module:

61

1) that it is sufficient to choose fixed names for the oracle access programs, and 2) that the

auxiliary predicates and functions should be implemented by procedures internal to the

oracle.

All oracles produced by the TOG have access programs with the same names

(initOracle , inRelation , inCompSet andinDomain), so a name conflict

results if more than one oracle is accessed by the same test harness. In the case of the hash

module this was avoided by prefacing the name of each oracle program with the name of

the hash module program for which it is the oracle. For example, theinRelation pro-

gram forHashAdd is calledhashAdd_inRelation . For this prototype, the renaming

is done using a script controlled stream editor, but clearly support for different oracle pro-

gram names could be added as an option for future versions of the TOG.

A large percentage of the auxiliary predicates defined in the hash module specifi-

cation are used by more than one of the program specifications, so there is a fairly large

amount of code duplication between the oracle code files. This duplication could be

avoided by producing an additional code file which contains the auxiliary function and

predicate implementations, and having each oracle use those programs as necessary.

62

63

7 Discussion and Conclusion

This chapter discusses potential applications for the TOG and some of the limita-

tions of the methods.

7.1 Applications for This Work

This work is applicable to the same problems as is any methodology that pro-

duces an executable test oracle. The most obvious of these is in the ‘unit testing’ phase of

software development during which small, relatively independent, components of the soft-

ware, or ‘units’, are tested independently. A test harness, such as that illustrated in

Figure1 on page36, can be used to invoke a PUT for some set of test cases. Calls to the

oracle functions determine if each test case passed or failed, and these results are reported

so that the PUT can be corrected.

Another possible application for an executable oracle isin-situ testing: The code

for a software system can be modified by adding calls to the oracle programs for certain

critical components, so that failures of these components during system operation (e.g.

during system testing or beta trials) are reliably detected and reported. The behaviour of

the resulting program is similar to that of those developed using the methods described in

[18] or [35]. Forin-situ testing, no test harness need be constructed since the PUT is called

as usual by the system.

In [1], Antoy and Hamlet describe another way of using executable oracles to

which this work can be adapted. Their specifications, and hence their oracles, are some-

what different from those used in this work in that they use algebraic specifications of

ADTs and require that the user provide a ‘representation mapping’ to map from the con-

64

crete data structure to the abstract specification. Their oracles thus test that properties

expressed in the specification hold in the abstract sense. Since relational program specifi-

cations, as used in this work, are in terms of the concrete data structure, no representation

mapping is needed—the oracle tests that the concrete data structure is modified in the pre-

scribed manner. To use oracles as generated by the TOG to create a self-checking ADT

similar to Antoy and Hamlet’s requires that a set of oracle programs be generated for each

access program for the ADT (we assume that an ADT consists of a set of access programs

that operate on a common data structure). Calls to these oracle programs can then be

embedded in the ADT code in the manner described in [1].

A further application of this work—that of enforced documentation consist-

ency—derives from the fact that the oracle is generated directly from the program docu-

mentation. It has been noted that one of the factors that reduces the value of program

documentation is the fact that it cannot be relied upon to be accurate (i.e. consistent with

the code) since programmers can easily modify the code without updating the documenta-

tion. If a TOG generated test oracle is always used to test a program before it is released,

then we are assured that the documentation is consistent with the code. A correct program

will only pass the tests if the documentation is accurate.

7.2 Limitations of the Method

As with any program documentation technique, relational program documenta-

tion is not ideally suited for all types of programs and hence it is difficult to apply this

work in some cases. One class of programs that is difficult to document using this method

are those that manipulate the data structure in a manner other than simply changing the

value of variables. Examples of this include dynamic memory allocation (i.e. increasing

the size of the data structure), input and output, and process control. It is difficult to

65

express the characteristics of the stop state for these programs since relational operators to

represent such characteristics as “is a valid block of memory on the heap” do not exist, in

general. Some of these problems are being addressed by Brian Bauer in his M.Eng. thesis

[3].

Programs for which there is a requirement on the intermediate states that the

computer may be in during execution, such as “if condition C is true then call procedure

x” or “don’t call x more than n times” (as for the Dutch National Flag example discussed

in [28]), are also difficult to document using these methods. This is because the specifica-

tions used in this work are relations which contain only the start state and stop state, and

do not allow any restrictions on the intermediate states. Even if these can be formally

specified, a TES does not include information that can be used to determine intermediate

states, so the oracle can not determine if such a program meets the specification. One,

somewhat artificial, solution to this problem is to add to the data structure information

which represents the relevant information about the intermediate states (e.g. the number of

times ‘x’ was called). Using that solution, it is difficult to state in a relational specification,

and hence to test, that the added data structure elements actually represent the intended

information.

It is also possible to write a specification for which the oracle will not terminate

or will only terminate after an unreasonable amount of time. Non-termination can be

caused by either a non-terminating recursion in an auxiliary definition, errors in the defini-

tion of an inductively defined predicate or a non-terminating ‘primitive’ (i.e. defined in the

programming language) function. Slow termination can be caused, for example, by quan-

tification over large sets. For example, consider the well known ‘shortest path problem’

for which a specification is given in [32]. An oracle based on this specification enumerates

all possible paths through the directed graph to ensure that there is no valid path with a

66

smaller path weight—an O(n!) calculation. The responsibility for avoiding such non-ter-

minating or slowly-terminating oracles rests with the user (i.e. specifier/verifier). Non-ter-

mination can only be avoided by careful definition of auxiliary predicates/functions and

judicious use of well tested/verified primitive functions. For problems such as the shortest

path problem, it is not practical to test the whole program against the specification for

large graphs, but it may be practical to test some sub-programs called by it and then to use

other techniques to verify the top level code.

It is also possible for the PUT to be a non-terminating program in some cases.

Since the oracle programs can only be used either before the PUT is invoked or after it has

terminated, there is no means for these functions to detect that the PUT has not terminated

(or has exceeded some reasonable time limit). This responsibility must rest with the test

harness. Note, however, that the oracle programs do provide a means of detecting test

cases for which the PUT should not terminate (i.e. those not in the domain of the program

relation) or may not terminate (i.e. those in the domain but not in the competence set)

throughinDomain andinCompSet , respectively.

Finally, in some cases it may be possible to document a program using the meth-

ods used in this thesis in such a manner as to make it impossible to generate an executable

oracle from the documentation. For example, an oracle cannot be generated for programs

with a data structure that includes items for which the state (value) cannot be determined

by the oracle programs (e.g. the computer display). In these cases, some other form of ora-

cle or additional test equipment (e.g. terminal simulator) are necessary.

7.3 Future Work

As described in Chapter 6, the TOG has been tested and evaluated using some

small programs which has shown that the methods are viable in these cases. More experi-

67

ence with applying it to a wide variety of industrial software applications would allow us

to draw more general conclusions about the viability and usefulness of the methods. Sug-

gestions for improvements in the TOG and oracle designs would undoubtedly result from

that work.

Experience has shown that there are some auxiliary predicates and functions, or

forms of auxiliary predicates and functions, that frequently appear in specifications of the

form used in this work. For example, it is often the case that a specification states that

some set of variables are not changed—denoted by the auxiliary predicate ‘NC’ in [28]. In

this work the specific form of this predicate must be specified in the documentation (see

the definition for NC given in Section3.3 on page24). It would be convenient if this defi-

nition could be produced automatically from a shorthand notation as used in [28].

It has been suggested that, in cases where the specification relation is a function,

(i.e. it contains only one stopping state for any given starting state), it would be possible

for the oracle to output a description of the correct stopping state for each test case and

allow the test harness to determine if the program is in the right state. It is not, in general,

possible to automatically generate such an oracle from specifications of the form used in

this work, even if they are functional. (e.g. Consider a specification for a program to solve

a system of n linear equations in n unknowns—the specification is functional but an oracle

that outputs the correct stopping state could not be generated automatically.) It may be

possible to automatically generate such oracles for some limited set of specifications but

that would require significant modifications to this work.

The TOG design was chosen carefully to allow the programming language used

in the oracle to be changed easily, but only C has been used in this prototype. A more

broadly applicable TOG would allow the user to choose among several popular program-

68

ming languages to facilitate interfacing with PUTs written in these languages. This could

be accomplished by providing several Code sub-modules and having the Oracle Genera-

tion module select the appropriate one according to the user’s request.

Finally, the TTS is envisioned as a set of interworking tools for documenting

software. As the tools in this system mature, there will be opportunities to integrate related

tools so that they appear seamless to the user. For example, the TOG could be invoked as a

menu item from a tool for editing program documentation. This would require modifying

or replacing the User Interface and possibly the Specification Interface modules of the

TOG.

7.4 Conclusions

The development and application of the TOG prototype has shown that it is fea-

sible to automatically generate executable test oracles from relational program documen-

tation. The experience of applying these methods to industrial software has shown,

however, that there are some limitations to these methods:

• The documentation used to generate the oracle is almost as complicated as the
PUT and needs to be checked carefully.

• Certain classes of program behaviour cannot easily be documented and tested
using these methods.

• A suitable test harness may be a non-trivial program, which must also be
checked carefully.

Despite these limitations the availability of an executable oracle has the follow-

ing benefits for the software testing process:

• faster test analysis, hence reduced cost, and

• reliable failure detection, hence increased value.

69

In addition, because the oracle is generated directly from the program documen-

tation, which can be ensured to be consistent with the program as described in Section7.1,

the value and usefulness of this documentation is greatly increased.

70

71

Appendix A - Hash Module Documentation

72

A.1 Intr oduction

This appendix gives the complete specifications and code for a small module

taken from a network management application developed by Newbridge Networks Corpo-

ration of Kanata, Ontario1. The specifications were developed by the author using the

source code and an informal module description provided by the module designers as a

guide. The specifications are used to generate an oracle and test the code as described in

Chapter 6.

A.2 Internal Design Documentation

A.2.1 Informal Description

The module implements a collection of hash tables which are used for storing

user data objects for quick retrieval. The data object contains a numeric key value which is

used to locate it in a table. Each table is constructed using a fixed length array of pointers

to the beginning of a linked list of data objects. Since each list is allowed to grow indefi-

nitely, the number of elements in each table is not bounded. A simple hashing algorithm is

used to calculate in which list an element is stored and each list is sorted in increasing

order.

1. The code and design of this module are proprietary property of Newbridge Networks Corporation and are
used here by permission. This information may not be copied or used in any manner without explicit written
permission from Newbridge Networks Corp.

73

A.2.2 User Definitions

A.2.2.1 Constants

The following constants define the size of the hash table arrays and are parame-

ters to the program function specifications, below. Both constants must be powers of 2 (i.e.

2n).

#def ine A_HASH_SIZE (1 << 10) /* 1024 for A hash table */
#def ine B_HASH_SIZE (1 << 4) /* 16 for B hash table */

The following constants are used to indicate which table is to be used by an

access program.

#def ine HASH_A 1 /* A structures */
#def ine HASH_B 2 /* B structures */

A.2.2.2 Data Structures

The following structure is used to contain a single element of the user’s data.

struct hashStruct {
struct hashStruct *sanityCheck;

/* can be used to help detect corruption */
unsigned int identif ier; /* the external key */
struct hashStruct *hashNext; /* ptr to next elem in list */
int data; 1

};

A.2.2.3 Hash Tables

There are two tables implemented by this module, they are statically allocated as

follows.

static struct hashStruct *AHashArray[A_HASH_SIZE];
/* A hash table */

static struct hashStruct *BHashArray[B_HASH_SIZE];
/* B hash table */

1. Any user data could be defined here, a simple integer is used for testing.

74

A.2.3 Program Functions

A.2.3.1 HashAdd

TABLE 23 - HashAdd Program Description

unsigned int
HashAdd(unsigned int theTable, unsigned int theId, struct hashStruct *thePtr)

external
variables:

struct hashStruct *AHashArray[]
struct hashStruct *BHashArray[]

CHashAdd = ('theTable = HASH_A∨ 'theTable = HASH_B)∧
(∀i, ALists(i) ⇒ sorted('AHashArray[i]))∧
(∀i, BLists(i) ⇒ sorted('BHashArray[i]))

RHashAdd = (('theTable = HASH_A∨ 'theTable = HASH_B)∧
(∀i, ALists(i) ⇒ sorted('AHashArray[i]))∧
(∀i, BLists(i) ⇒ sorted('BHashArray[i])))⇒

'theTable = HASH_A∧

inTable('AHashArray,
A_HASH_SIZE, 'theId) ¬inTable('AHashArray, A_HASH_SIZE, 'theId)

HashAdd = FAIL SUCCESS

AHashArray[]' | Aequal('AHashArray[],

 AHashArray'[])

sane(AHashArray'[hash('theId, A_HASH_SIZE)])∧
insertedA('AHashArray[], AHashArray'[], 'theId, 'thePtr)

BHashArray[]' | Bequal('BHashArray[],
BHashArray'[])

Bequal('BHashArray[], BHashArray'[])

'theTable = HASH_B∧

inTable('BHashArray,
B_HASH_SIZE, theId) ¬inTable('BHashArray, B_HASH_SIZE, theId)

HashAdd = FAIL SUCCESS

AHashArray[]' | Aequal('AHashArray[],

 AHashArray'[])

Aequal('AHashArray[], AHashArray'[])

BHashArray[]' | Bequal('BHashArray[],
BHashArray'[])

sane(BHashArray'[hash(theId, B_HASH_SIZE)])∧
insertedB('BHashArray[], BHashArray'[], 'theId, 'thePtr)

75

A.2.3.2 HashRemove

TABLE 24 - HashRemove Program Description

struct hashStruct*
HashRemove(unsigned int theTable, unsigned int theId)

external variables: struct hashStruct *AHashArray[]
struct hashStruct *BHashArray[]

CHashRemove = ('theTable = HASH_A∨ 'theTable = HASH_B)∧
(∀i, ALists(i) ⇒ sorted('AHashArray[i]))∧
(∀i, BLists(i) ⇒ sorted('BHashArray[i]))

RHashRemove = (('theTable = HASH_A∨ 'theTable = HASH_B)∧
(∀i, ALists(i) ⇒ sorted('AHashArray[i]))∧
(∀i, BLists(i) ⇒ sorted('BHashArray[i])))⇒

'theTable = HASH_A∧

¬inTable('AHashArray[],
 A_HASH_SIZE, 'theId) inTable('AHashArray[], A_HASH_SIZE, 'theId)

HashRemove | HashRemove = NULL sameData(HashRemove, findElem('AHashArray[hash('theId,
A_HASH_SIZE)], 'theId))

AHashArray'[] | Aequal('AHashArray[],
AHashArray'[])

sane(AHashArray'[hash('theId, A_HASH_SIZE)])∧
deletedA('AHashArray[], AHashArray'[], 'theId)

BHashArray'[] | Bequal('BHashArray[],
BHashArray'[])

Bequal('BHashArray[], BHashArray'[])

'theTable = HASH_B∧

¬inTable('BHashArray[],
 B_HASH_SIZE, theId) inTable('BHashArray[], B_HASH_SIZE, theId)

HashRemove | HashRemove = NULL sameData(HashRemove, findElem('BHashArray[hash('theId,
B_HASH_SIZE)], 'theId))

AHashArray'[] | Aequal('AHashArray[],
AHashArray'[])

Aequal('AHashArray[], AHashArray'[])

BHashArray'[] | Bequal('BHashArray[],
BHashArray'[])

sane(BHashArray'[hash('theId, B_HASH_SIZE)])∧
deletedB('BHashArray[], BHashArray'[], 'theId)

76

A.2.3.3 HashFind

A.2.4 Auxiliary Predicate Definitions

ALists(unsigned int i)
 inductiveDef[{0}, i+1, i < (A_HASH_SIZE-1)]

BLists(unsigned int i)
 inductiveDef[{0}, i+1, i < (B_HASH_SIZE-1)]

Aequal(struct hashStruct * before[], struct hashStruct * after[], unsigned int Id)
(∀i, ALists(i) ⇒ (listEqual(before[i], after[i]))

Bequal(struct hashStruct * before[], struct hashStruct * after[], unsigned int Id)
(∀i, BLists(i) ⇒ (listEqual(before[i], after[i]))

TABLE 25 - HashFind Program Description

struct hashStruct*
HashFind(unsigned int theTable, unsigned int theId)

external
variables: struct hashStruct *AHashArray[]

struct hashStruct *BHashArray[]

CHashFind = (theTable = HASH_A∨ theTable = HASH_B)∧
(∀i, ALists(i) ⇒ sorted('AHashArray[i]))∧
(∀i, BLists(i) ⇒ sorted('BHashArray[i]))

RHashFind = Aequal('AHashArray[], AHashArray'[])∧
Bequal('BHashArray[], BHashArray'[])∧
(('theTable = HASH_A∨ 'theTable = HASH_B)∧
(∀i, ALists(i) ⇒ sorted('AHashArray[i]))∧
(∀i, BLists(i) ⇒ sorted('BHashArray[i])))⇒

'theTable = HASH_A 'theTable = HASH_B

HashFind | sameData(HashFind,
findElem('AHashArray[hash('theId,

A_HASH_SIZE)], 'theId)

sameData(HashFind,
findElem('BHashArray[hash('theId,

B_HASH_SIZE)], 'theId)

=df

=df

=df

=df

77

deletedA(struct hashStruct * before[], struct hashStruct * after[], unsigned int Id)
(∀i, ALists(i) ⇒ ((¬(hash(Id, A_HASH_SIZE) = i)∧ listEqual(before[i], after[i]))∨
deletedList(before[i], after[i], Id)))

deletedB(struct hashStruct * before[], struct hashStruct * after[], unsigned int Id)
(∀i, BLists(i) ⇒ ((¬(hash(Id, B_HASH_SIZE) = i)∧ listEqual(before[i], after[i]))∨
deletedList(before[i], after[i], Id)))

deletedList(struct hashStruct *before, struct hashStruct *after, unsigned int Id)
¬(before = NULL)∧

inList(struct hashStruct *list, unsigned int Id)
¬(list = NULL) ∧ (list->identifier = Id∨ inList(list->hashNext, Id))

insertedA(struct hashStruct * before[], struct hashStruct * after[], unsigned int Id,
struct hashStruct *ptr)

(∀i, ALists(i) ⇒ ((¬(hash(Id, A_HASH_SIZE) = i)∧ listEqual(before[i], after[i]))∨
insertedList(before[i], after[i], Id, ptr)))

insertedB(struct hashStruct * before[], struct hashStruct * after[], unsigned int Id,
 struct hashStruct *ptr)

(∀i, BLists(i) ⇒ ((¬(hash(Id, B_HASH_SIZE) = i)∧ listEqual(before[i], after[i]))∨
insertedList(before[i], after[i], Id, ptr)

insertedList(struct hashStruct *before, struct hashStruct *after, unsigned int Id,
struct hashStruct *ptr)

¬(after = NULL)∧

inTable(struct hashStruct *table[], unsigned int size, unsigned int Id)
inList(table[hash(Id, size)], Id)

before->identifier = Id ¬(before->identifier = Id)

listEqual(before->hashNext, after) sameData(before, after)∧
deletedList(before->hashNext, after->hashNext, Id)

after->identifier = Id ¬(after->identifier = Id)

after = ptr∧
after->data = ptr->data∧
listEqual(before, after->hashNext)

sameData(before, after)∧
insertedList(before->hashNext, after->hashNext,
Id, ptr)

=df

=df

=df

=df

=df

=df

=df

=df

78

listEqual(struct hashStruct *left, struct hashStruct *right)

sameData(struct hashStruct * left, struct hashStruct *right)
(left = NULL ∧ right = NULL) ∨ (¬(left = NULL ∨ right = NULL) ∧

(left->identifier = right->identifier) ∧ (left->data = right->data))

sane(struct hashStruct * list)
(list = NULL) ∨ ((list = list->sanityCheck) ∧ ¬(list->hashNext = NULL)⇒
((list->identifier < list->hashNext->identifier)∧ sane(list->hashNext)))

sorted(struct hashStruct * list)
(list = NULL) ∨ (¬(list->hashNext = NULL)⇒
((list->identifier < list->hashNext-> identifier)∧ sorted(list->hashNext)))

A.2.5 Auxiliary Function Definitions

struct hashStruct * findElem(struct hashStruct *list, unsigned int Id)

left = NULL ¬(left = NULL)

right = NULL true false

¬(right = NULL) false sameData(left, right) ∧
listEqual(left->hashNext, right->hashNext)

list = NULL
¬(list = NULL) ∧
(list->identifier = Id)

¬(list = NULL) ∧
¬(list->identifier = Id)

NULL list findElem(list->hashNext, Id)

=df

=df

=df

=df

=df

79

A.3 Hash Module Code

A.3.1 hash.c

/**
 * $RCSf ile: hash.c,v $ $Revision: 1.5 $
 * $Date: 1994/12/19 19:24:33 $
 * $State: Exp $
 *
 * Example code.
 *
 **/

/**
 * REVISION HISTORY
 *
 * $Log: hash.c,v $
 * Revision 1.5 1994/12/19 19:24:33 peters
 * Added hash_getTable.
 *
 * Revision 1.4 1994/12/15 20:23:47 peters
 * Made ANSI compatible.
 *
 * Revision 1.3 1993/11/05 20:54:19 peters
 * Changed AAA to A and BBB to B.
 *
 * Revision 1.2 1993/09/03 19:02:12 peters
 * Reformated to improve readability.
 *
 * Revision 1.1 1993/09/03 18:10:43 peters
 * Initial revision
 *
 *
 **/

/**

 File: hash.c

 Contents:
 This f ile provides routines that hash a 32-bit unsigned external ID in
 order to f ind the element within some data structures. New structure types
 can be added by def ining a new HASH_XXX constant and adding a new case
 statement to the routines.

 This f ile contains the following exported routines:
 HashAdd
 HashFind
 HashRemove
 HashOperateOnNext

 This f ile contains the following local routines:
 DoFind

80

 Copyright 1991,1992,1993 Newbridge Networks Corporation.
**/

#include <stdlib.h>
#include “sw_error.h”
#include “stuff.h”
#include “hash.h”

/* The following structure must be a valid overlay for the f irst part */
/* of the structure to be hashed. */

struct hashStruct {
 struct hashStruct *sanityCheck; /* can be used to help detect corruption */
 unsigned int identif ier; /* the external key */
 struct hashStruct *hashNext; /* ptr to next structure in hash list */
};

/* The following arrays are used to hold the actual hash tables. They are */
/* NOT sized to hold the maximum number of expected elements but instead are */
/* sized to hold the number of elements for the “average” use of the */
/* structures.*/
/* It must be ensured that in the largest expected use of the structures, */
/* the linear scanning required to handle overf lows will not be greater */
/* than is desired. To provide for a simple and cheap hash function, the */
/* size of the arrays MUST be a power of two. Note that it is trivial to */
/* remove this restriction if ever required. */

#def ine A_HASH_SIZE (1 << 10) /* 1024 for A hash table */
#def ine B_HASH_SIZE (1 << 4) /* 16 for B hash table */

static struct hashStruct *AHashArray[A_HASH_SIZE]; /* A hash table */
static struct hashStruct *BHashArray[B_HASH_SIZE]; /* B hash table */

/* Now def ine the hash function itself. We know that the hash module will */
/* be used for structures whose identif iers are assigned in increasing order */
/* starting from 1, i.e. 1, 2, 3, ... Thus, a trival hash function is to */
/* AND the external ID with (XXX_HASH_SIZE - 1). This will provide hash */
/* indexes of 1, 2, 3, ..., and then wrap around to 0, 1, 2, ... etc. */
/* Thus, the array will get f illed up, and then wrap around and overf low */
/* will start. Of course, by then some of the hash entries could have */
/* been freed up. */

#def ine HASH_FUNC(id,size) ((id) & ((size) - 1))

/*
 */
/**

 Routine: DoFind

 Description:
 Searches for the specif ied external id. TRUE is returned if the
 id was found in the hash table, and FALSE otherwise. In addition,
 a pointer to the hashNext f ield of the preceeding item is returned.
 Note that if there is no preceeding item, then the pointer points

81

 to the hash table array entry, i.e. to the head of the linked list.

**/
static unsigned int
DoFind(register unsigned int theTable, /* which hash table is being used */

register unsigned int theId, /* the external id to be hashed */
register struct hashStruct ***trailPtr)/* trailing ptr for searching */

{
 register struct hashStruct **hashArrayPtr; /* ptr into hash array */
 register struct hashStruct *curPtr; /* ptr to current item */
 register int loopCount; /* count for inf inite check */

 switch (theTable) {
 case HASH_A:
 hashArrayPtr = &AHashArray[HASH_FUNC(theId, A_HASH_SIZE)];
 break;
 case HASH_B:
 hashArrayPtr = &BHashArray[HASH_FUNC(theId, B_HASH_SIZE)];
 break;
 }

 trailPtr = hashArrayPtr; / ptr to hashNext f ield of preceeding item */

 /* If the hash entry if free, then then item does not exist yet. */
 if ((curPtr = *hashArrayPtr) == NULL)
 return(FALSE);

 /* We have a collision for the hash index, so now we have to search */
 /* and try to f ind the item. When the search terminates, trailPtr */
 /* points to the hashNext pointer of the previous item. If the item */
 /* was not found, then trailPtr points to the hashNext pointer of what */
 /* should be the previous item. */

 /* We know that curPtr cannot be NULL to start, so use a do while loop. */
 /* Make sure that we do not loop inf initely (which could happen if the */
 /* linked list has been corrupted). */
 loopCount = MAX_HASH_LOOP;
 do {
 SanityCheck(curPtr);
 CheckInf initeLoop(loopCount);
 if (theId <= curPtr->identif ier)
 return(theId == curPtr->identif ier); /* return TRUE if item found */
 trailPtr = &curPtr->hashNext; / point to hashNext of new prev

item */
 curPtr = curPtr->hashNext; /* point to next item in list */
 } while (curPtr != NULL);

 return(FALSE); /* if we are at the end of list then item not found */
} /*DoFind */

/*
 */
/**

82

 Routine: HashAdd

 Description:
 Adds the specif ied id and block of storage to the hash table. It
 is an error to add an an item to the hash table if it already exists.

**/
unsigned int /* returns SUCCESS or FAILURE */
HashAdd(register unsigned int theTable, /* which hash table is being used */

register unsigned int theId, /* the external id to be added */
register unsigned int *thePtr) /* pointer to the item to be added */

{
 register struct hashStruct *itemPtr; /* ptr to item being added */
 struct hashStruct **trailPtr; /* ptr to next ptr of previous item */

 if (DoFind(theTable, theId, &trailPtr)) {
 SW_error(ERR_SERIOUS, “Attempt to add existing external id %u”, theId);
 return(FAIL);
 }

 /* The item was not found, so insert it into the list. */
 itemPtr = (struct hashStruct *)thePtr;
 itemPtr->identif ier = theId;
 itemPtr->hashNext = *trailPtr; /* item’s next is the previous’ next */
 trailPtr = itemPtr; / previous’ next is now the new item */

 return(SUCCESS);
}/* HashAdd */

/*
 */
/**

 Routine: HashFind

 Description:
 Returns the address of the item with the specif ied id. If no item
 currently exists with the id, then NULL is returned.

**/
unsigned int * /* return address of item with external id */
HashFind(register unsigned int theTable, /* which hash table is being used */

 register unsigned int theId) /*the external id to be found */
{
 struct hashStruct **trailPtr; /* ptr to next ptr of previous item */

 if (DoFind(theTable, theId, &trailPtr))
 return((unsigned int *)*trailPtr);
 else
 return(NULL);
}/* HashFind */

/*
 */
/**

83

 Routine: HashRemove

 Description:
 Removes the item from the hash table with the specif ied id. It is
 an error try to remove something which does not exist in the hash
 table. The storage of the item itself is NOT freed. This is the
 responsibility of the caller. The address of the removed item
 is returned, or NULL if the item could not be found.

**/
unsigned int * /* return address of item with external id */
HashRemove(register unsigned int theTable, /* which hash table is being used */

 register unsigned int theId) /*the external id to be deleted */
{
 register struct hashStruct *itemPtr; /* ptr to item being deleted */
 struct hashStruct **trailPtr; /* ptr to next ptr of previous item */

 if (DoFind(theTable, theId, &trailPtr)) {
 /* Remove the item from the linked list and return address of item. */
 itemPtr = *trailPtr;
 trailPtr = itemPtr->hashNext; / previous’ next is now item’s next */
 return((unsigned int *)itemPtr);
 } else {
 SW_error(ERR_SERIOUS, “Attempt to remove non-existant external id %u”,
 theId);
 return(NULL);
 }
}/* HashRemove */

/*
 */
/**

 Routine: HashOperateOnNext

 Description:
 Calls the passed in function with the pointers found in the specif ied
 hash table. Will keep calling the specif ied function until that
 function returns something other than SUCCESS.
 Note that theId that is passed in is used as a place holder within the
 hash table, and does not mean that all ids > theId will be operated on.

**/
unsigned int * /* return address of item with external id */
HashOperateOnNext(
 register unsigned int theTable, /* which hash table is being used */
 register unsigned int theId, /* seed value to f ind the next item */
 int (*callActionFunc)(unsigned int *),/* the funnction to be called */
 int *rc) /* the return code of the called routine */
{
 struct hashStruct **trailPtr; /* ptr to next ptr of previous

 item */
 register struct hashStruct *curPtr; /* ptr to current item */
 register int loopCount; /* count for inf inite check */

84

 register unsigned int hashIndex; /* the index of the hash array */
 register unsigned int startIndex; /* starting hashIndex */
 register unsigned int hashSize; /* size of hash table being used */

 curPtr = NULL;

 switch (theTable) {
 case HASH_A:
 hashSize = A_HASH_SIZE;
 break;
 case HASH_B:
 hashSize = B_HASH_SIZE;
 break;
 default:
 return(NULL);
 }

 startIndex = HASH_FUNC(theId, hashSize);

 if (DoFind(theTable, theId, &trailPtr))
 curPtr = (*trailPtr)->hashNext; /* point to next item in list */
 else
 curPtr = *trailPtr;

 /* Make sure that we do not loop inf initely (which could happen if the */
 /* linked list has been corrupted). */
 loopCount = MAX_HASH_LOOP;

 for (hashIndex = startIndex; hashIndex < hashSize; hashIndex++){
 if (hashIndex != startIndex) { /* f irst pass may have curPtr already set */
 switch (theTable) {
 case HASH_A:
 curPtr = AHashArray[hashIndex];
 break;
 case HASH_B:
 curPtr = BHashArray[hashIndex];
 break;
 }
 }
 /* We know that curPtr could be NULL to start, so use a while loop. */
 while (curPtr != NULL) {
 SanityCheck(curPtr);
 CheckInf initeLoop(loopCount);
 *rc = (*callActionFunc)((unsigned int *)curPtr);
 if (*rc != SUCCESS)
 return((unsigned int *)curPtr); /* address to pointer of current item */
 curPtr = curPtr->hashNext; /* point to next item in list */
 }
 }
 return(NULL);
}/* HashOperateOnNext */

#ifdef TEST
/***
 Routine: hash_getTable

85

 Description: Only included when the ‘TEST’ macro is def ined. This routine
 exports the addresses of the tables so that they can be copied for
 testing purposes.

**/
void
hash_getTables(void **tableA, int *sizeA, void **tableB, int *sizeB)
{
 *tableA = (void *)AHashArray;
 *sizeA = A_HASH_SIZE;
 *tableB = (void *)BHashArray;
 *sizeB = B_HASH_SIZE;
}

#endif

A.3.2 hash.h

/**
 * $RCSf ile: hash.h,v $ $Revision: 1.3 $
 * $Date: 1994/12/19 19:32:50 $
 * $State: Exp $
 *
 * Include f ile for example source hash.c
 *
 **/

/**
 * REVISION HISTORY
 *
 * $Log: hash.h,v $
 * Revision 1.3 1994/12/19 19:32:50 peters
 * Use ANSI protyping. Added hash_getTables().
 *
 * Revision 1.2 1993/11/05 20:55:37 peters
 * Changed AAA to A and BBB to B.
 *
 * Revision 1.1 1993/09/03 18:14:31 peters
 * Initial revision
 *
 *
 **/

/**

 File: hash.h

 Description:
 This f ile contains the declarations of extern variables and routines
 which are needed for users of the hash module.

86

 Copyright 1991,1992,1993 Newbridge Networks Corporation.

**/

/* The following def initions indicate which hash table is being accessed */
#def ine HASH_A 1 /* A structures */
#def ine HASH_B 2 /* B structures */

extern unsigned int HashAdd(unsigned int theTable, unsigned int theId,
unsigned int *thePtr);

extern unsigned int * HashFind(unsigned int theTable, unsigned int theId);
extern unsigned int * HashRemove(unsigned int theTable, unsigned int theId);
extern unsigned int * HashOperateOnNext(unsigned int theTable,

unsigned int theId, int (*callActionFunc)(unsigned int *), int *rc);
#ifdef TEST
extern void hash_getTables(void **tableA, int *sizeA, void **tableB, int
*sizeB);
#endif

A.3.3 stuff.h

/**
 * $RCSf ile: stuff.h,v $ $Revision: 1.3 $
 * $Date: 1994/12/19 19:36:44 $
 * $State: Exp $
 *
 * Include f ile for util.c
 *
 **/

/**
 * REVISION HISTORY
 *
 * $Log: stuff.h,v $
 * Revision 1.3 1994/12/19 19:36:44 peters
 * Removed uneeded def ines of NULL, TRUE & FALSE.
 *
 * Revision 1.2 1994/12/19 19:34:02 peters
 * Def ine ERR_SERIOUS & MemoryPanic()
 *
 * Revision 1.1 1993/09/03 18:16:37 peters
 * Initial revision
 *
 *
 **/

#def ine SUCCESS 1
#def ine FAIL 0

#def ine ERR_SERIOUS SW_SERIOUS

#def ine MAX_HASH_LOOP 100000

87

#def ine CHECK_FAILURE 1
#def ine INFINITE_LOOP 2

#def ine SanityCheck(ptr) \
 if ((ptr) != (ptr)->sanityCheck) \
 { MemoryPanic(CHECK_FAILURE); }

#def ine CheckInf initeLoop(theCount) \
 if (--(theCount) == 0) \
 { MemoryPanic(INFINITE_LOOP); }

#def ine MemoryPanic(code) printf(“Memory Panic: %d”, code); exit(code)

88

89

Appendix B - TOG Input File Format

90

B.1 Format Description

The TOG input file is a text file containing the complete specification for a pro-

gram including all of the components described in Section3.2. The components are iden-

tified by a single integer and can be arranged in any order in the file with the exception that

the user definitions must be the last component. All expressions are in the format output

by theExpnSave access program of the Table Holder module, and can thus be input

using theExpnLoad access program. The following sections describe the format of each

component type.

B.1.1 Constants

All constant names must be defined in a single table in the file. The beginning of

the table is identified by the number 1 on a line by itself. The first line of the table is a

number indicating the number of lines to follow. Each subsequent line is a number which

is the symbol Id followed by a period (“.”) and the symbol name.

B.1.2 Variables

All variable names and types are defined in two adjacent tables in the file. The

beginning of the first table is identified by the number 2 on a line by itself. The first table

gives the Id and name for each variable in the same format as used for constants. The sec-

ond table begins on the line immediately following the last line of the name table and

gives the Id and type of each variable in the same format. The type of a variable is repre-

sented by the string of characters that would form its declaration in the C programming

language, with the two character combination “%s” being a place-holder for the variable

name. It is an error for the name and type tables to not contain the same set of Ids.

91

B.1.3 Program Specification

The beginning of the program specification is indicated by the number 6 on a line

by itself. It is followed by the arity and formal argument Id list for the characteristic pred-

icate of the competence set, and then by the expression which is that characteristic predi-

cate. Following that is the arity, formal argument Id list and expression for the

characteristic predicate of the domain of the specification relation and finally the arity, for-

mal argument Id list and expression for the characteristic predicate of relational compo-

nent of the specification relation. It is an error for a specification file to contain more than

one program specification.

B.1.4 Auxiliary Predicate Definitions

The beginning of an auxiliary predicate definition is indicated by the number 3.

It is followed by the Id, name, arity and formal argument Id list. The expression that is the

definition of the predicate begins on the following line and is in a form that can be read by

the Table Holder.

B.1.5 Auxiliary Function Definitions

The beginning of an auxiliary function definition is indicated by the number 4.

The first line of the definition has the Id, name, and type of the auxiliary function. On the

next line the first number is the arity of the function and it is followed by the Id of each of

the formal arguments and finally the Id of the characteristic predicate of the function

domain, or -1 for a total function. The auxiliary function definition expression begins on

the next line.

92

B.1.6 Inductively Defined Predicate Definitions

The number 5 identifies the beginning of an IDP definition. It is followed by the

Id and name of the IDP and the type of its argument. The next line contains the definition

of the ‘I’ set which is a number (the cardinality of the set) and a string which is used to ini-

tialize an array to represent that set. The next line contains the Id of the G function (an

auxiliary function) and that of the Q predicate (an auxiliary predicate).

B.1.7 Built-in Functions

The number 8 on a line by itself identifies the beginning of a built-in function

declaration. This describes the method for generating code to invoke a function that is part

of the programming language. The description consists of the Id, name and arity of the

function followed by a list of arity+1 strings, each on a separate line, which, when written

surrounding the actual argument representations, will invoke the function.

B.1.8 User Definitions

The number 7 identifies the beginning of the user definitions text. All of the text

following it in the file is taken to be the user definitions text and is output to the beginning

of the oracle code file (oracle.cc).

93

B.2 Formal Grammar

<spec> ::= <item_list> <user_def>

<item_list> ::= <item> | <item> <item_list>

<item> ::= <const_table> | <var_table> | <aux_pred> | <aux_func>
| <builtin_func> | <ind_pred> | <prog_relation>

<const_table> ::= 1 CR1 <num> CR <const_list>

<const_list> ::= <const> | <const> <const_list>

<const> ::= <id> . <name> CR

<var_table> ::= 2 CR <num> CR <var_name_list> <num> CR <var_type_list>

<var_name_list> ::= <var_name> | <var_name> <var_name_list>

<var_name> ::= <id> . <name> CR

<var_type_list> ::= <var_type> | <var_type> <var_name_list>

<var_type> ::= <id> . <type> CR

<aux_pred> ::= 3 <id> <name> <arg_list> CR <expn>

<aux_func> ::= 4 <id> <name> <type> CR <arg_list> <id> CR <expn>

<builtin_func> ::= 8 CR <id> <name> <num> CR <form_list> CR

<form_list> ::= <form> | <form> CR <form_list>

<ind_pred> ::= 5 <id> <name> <type> CR <num> <I> CR <id> <id>

<prog_relation> ::= 6 CR <arg_list> CR <expn> <arg_list> CR <expn>
<arg_list> CR <expn>

<user_def> ::= 7 <text>

<arg_list> ::= <num> <args>

<args> := <id> | <id> <args>

1. CR represents the new-line character.

94

TABLE 26 - Formal Grammar Symbols

Symbol Format Interpretation

<expn>
As produced by the Table

Holder
An expression.

<form> Any characters.
The ith form is the text to precede the
ith argument to the built in function.

<I> A C array initialization.
The elements of the ‘I’ component of

the IDP.

<id> An integer. A object identifier.

<name> Alphanumeric characters. The name of an object.

<num> A natural number. The number of elements to follow.

<text> Any characters. The user definitions text.

<type> A C type. The type of the variable or function.

95

References

1. Antoy, S. & Hamlet, R., “Self-Checking against Formal Specifications”,Proceedings
of the Fourth International Conference on Computing and Information (ICCI), (May
1992), pp. 355-360.

2. ANSI/IEEE, “IEEE Standard Glossary of Software Engineering Terminology”,ANSI/
IEEE Std. 729-1983, American National Standards Institute, Institute of Electrical and
Electronics Engineers, 1983.

3. Bauer, B. J., “Precise Documentation of ‘Real’ Programs, Masters Thesis Proposal”,
Communications Research Laboratory, McMaster University, September 1994. Pri-
vate communication.

4. Bernot, G., Gaudel M. C. & Marre, B., “Software Testing Based on Formal Specifica-
tions: A Theory and a Tool”, Software Engineering Journal, Vol. 6, pp. 387-405.

5. Chapman, D., “A Program Testing Assistant”,Communications of the ACM, Vol. 25,
No. 9 (September 1982), pp. 625-634.

6. Cheng, J. H. & Jones, C. B., “On the Usability of Logics Which Handle Partial Func-
tions”, Proceedings of the Third Refinement Workshop, Morgan, C. & Woodstock, J.
(editors), Heidelberg, Germany: Springer-Verlag, 1990.

7. Dijkstra, E. W., “The Humble Programmer”,Communications of the ACM, Vol. 15,
No. 10 (October 1972), pp. 859-866.

8. Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, Inc., 1976.

9. Farmer, W. F., “A Partial Functions Version of Church’s Simple Theory of Types”,
Journal of Symbolic Logic, Vol. 55, No. 3, (September 1990), pp. 1269-1290.

10.Gannon, J., McMullin, P. & Hamlet, R., “Data-Abstraction Implementation, Specifica-
tion, and Testing”,ACM Transactions on Programming Languages and Systems, Vol.
3, No. 3 (July 1981), pp. 211-223.

11. Goodenough, J. B. & Gerhart, S. L., “Toward a Theory of Test Data Selection”,IEEE
Transactions on Software Engineering, Vol. SE-1, No. 2 (June 1975), pp. 156-173.

12.Gelperin, D. & Hetzel, B., “The Growth of Software Testing”,Communications of the
ACM, Vol. 31, No. 6 (June 1988), pp. 687-695.

13.Gries, D.,The Science of Programming, Springer-Verlag, 1981.

14.Hamlet, R. G., “Testing Programs with the Aid of a Compiler”,IEEE Transactions on
Software Engineering, Vol. SE-3, No. 4 (July 1977), pp. 279-290.

15.Hehner, E. C. R., “Predicative Programming Part 1”,Communications of the ACM,
Vol. 27, No. 2 (February 1984), pp. 134-143.

16.Howden, W. E.,Functional Program Testing & Analysis, McGraw-Hill Book Compa-

96

ny, 1987.

17.Krasnor, C. & Parnas, D.L., “The Table Tool System: The Table Holder”,CRL Report
No. 300, Telecommunications Research Institute of Ontario (TRIO), May 1995.

18.Luckham, D.C., von Henke, F.W., Krieg-Brückner, B. & Owe, O.,ANNA A Language
for Annotating Ada Programs Reference Manual, Lecture Notes in Computer Science
260, Goos, G. & Hartmanis, J. (editors), Springer-Verlag, 1987.

19.Mills, H. D., “Function Semantics for Sequential Programs”,Proceedings of the IFIP
Congress 1980, North Holland 1980, pp. 241-250.

20.Myers, G. J.,The Art of Software Testing, John Wiley & Sons, 1979.

21.Ostrand, T. J. & Balcer, M. J., “The Category-Partition Method for Specifying and
Generating Functional Tests”, Communications of the ACM, Vol. 31, No. 6 (June
1988), pp. 676-686.

22.Panzl, D. J., “Automatic Software Test Drivers”,Computer, April 1978, pp. 44-50.

23.Panzl, D. J., “A Language for Specifying Software Tests”,AFIPS National Computer
Conference Proceedings, Vol. 47 (1978), pp. 609-619.

24.Parnas, D. L., “On a ‘Buzzword’: Hierarchical Structure”,Proceedings of the IFIP
Congress 1974, North Holland 1974, pp. 336-339.

25.Parnas, D. L., “A Generalized Control Structure and Its Formal Definition”,Communi-
cations of the ACM, Vol. 26, No. 8 (August 1983), pp. 572-581.

26.Parnas, D. L. & Wadge, W. W., “Less Restrictive Constructs for Structured Programs”,
Technical Report 86-186, Queen’s University, C&IS, Telecommunications Research
Institute of Ontario (TRIO), October 1986, 16 pgs.

27.Parnas, D.L. & Madey, J., “Functional Documentation for Computer Systems Engi-
neering (Version 2)”, CRL Report No. 237, Telecommunications Research Institute of
Ontario (TRIO), September 1991, 14 pgs.

28.Parnas, D. L., Madey, J. & Iglewski, M., “Precise Documentation of Well-Structured
Programs”,IEEE Transactions on Software Engineering, Vol. 20, No. 12 (December,
1994), pp. 948-976.

29.Parnas, D. L., “Tabular Representation of Relations”,CRL Report No. 260, Telecom-
munications Research Institute of Ontario (TRIO), November 1992, 17 pgs.

30.Parnas, D. L., “Predicate Logic for Software Engineering”,IEEE Transactions on
Software Engineering, Vol. 19, No. 9 (September 1993), pp. 856-862.

31.Parnas, D. L., “Mathematical Description and Specification of Software”,Proceedings
of IFIP World Congress 1994, Vol. I (August 1994), pp. 354-359.

32.Peters, D. K., “Shortest Path Algorithm - Formal Program Documentation”,CRL Re-
port No. 280, Telecommunications Research Institute of Ontario (TRIO), February
1994, 11 pgs.

97

33.Pressman, R. S., Software Engineering A Practitioner’s Approach, Third edition, Mc-
Graw-Hill Book Company, 1992.

34.Richardson, D.J., Aha, S.L. & O’Malley, T.O., “Specification-based Test Oracles for
Reactive Systems”,Proceedings of the 1992 International Conference on Software
Engineering (ICSE), (May 1992), pp. 105-118.

35.Rosenblum, D. S., “A Practical Approach to Programming With Assertions”,IEEE
Transactions on Software Engineering, Vol. 21, No. 1 (January 1995), pp. 19-31.

36.Schach, S. R.,Software Engineering, Aksen Associates Inc., 1990.

37.Stocks, P. & Carrington, D., “Test Template Framework: A specification-based testing
case study”, Proceedings of the 1993 International Symposium on Software Testing
and Analysis (ISSTA), (June 1993), pp. 11-18.

38.Wang, Y., Specifying and Simulating the Externally Observable Behavior of Modules,
Ph.D. Thesis, Department of Computing and Information Science, Queen’s University,
Kingston, Ontario, Canada (August 1994), 130 pgs.

39.Weyuker, E. J., “On Testing Non-testable Programs”,The Computer Journal, Vol. 25,
No. 4 (1982), pp. 465-470.

40.Woit, D. M., Operational Profile Specification, Test Case Generation, and Reliability
Estimation for Modules, Ph.D. Thesis, Department of Computing and Information Sci-
ence, Queen’s University, Kingston, Ontario, Canada (February 1994), 77 pgs.

