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Abstract

Software testing involves execution of a program under test using some fault
revealing input data and examination of the output to determine success or failure. A fun-
damental assumption of this testing is that there is some mechanisracknthat will
determine whether or not the results of a test execution are correct. In practice, this is often
done by comparing the output, either automatically or manualgome pre-calculated,
presumably correct, output [39]. Howeyvéithe program is formally documented it is
possible to use the specification to determine the success or failure of a test execution, as
in [1], for example. This thesis discusses the development of a prototype tool that auto-

matically generates a test oracle from formal program documentation.

In [25], [27] and [28] Parnas et al. advocate the use of a relational model for doc-
umenting the intended behaviour of programs. In this method, tabular expressions are
used to improve readability so that formal documentation can replace conventional docu-
mentation. Relations are described by giving their characteristic predicate in terms of the
values of concrete program variables. This documentation method has the advantage that
the characteristic predicate can be used as a test oracle—it must be evaluated for each test
execution (input and output) to assign pass or fail. This form of documentation is used for

generating an oracle.

The design of a test oracle and a tool that can be used to generate an oracle are

discussed in this thesis.
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1 Introduction

As software becomes pervasive in our socigtycorrect behaviour becomes
increasingly critical to the safety and well-being of people and businesses. Consequently
there is an increasing need for the application of strict engineering discipline to the devel-
opment of software systems. The Software Engineering Research Group at McMaster
University seeks to address this need by developing techniques and tools to facilitate the
production of software design documentation that is 1) clear enough to be read and under-
stood by both ‘domain experts’ and programmers with a minimum of special training, 2)
complete and precise enough to allow thorough analysis, both manually and mechanically
and 3) suitable for use as a specification from which to produce an acceptable program.
The use of tabular expressions to represent relations [29], and hence program specifica-

tions, is one of the cornerstones of these techniques.

Experience with producing tabular expressions for program documentation has
shown that existing documentation tools are not well suited to this purpose—the creation
and editing of tables is a time consuming process and more time is spent concentrating on
the format of the table than on its contert HElp overcome this problem, a set of compu-
ter programs is being developed, which together are known aahleTol System
(TTS). (For a list of acronyms used in this thesis see page xi.) This system will provide
one set of tools for editing the content of such documentation and another set for editing
its format. Other tools in the system will be used to analyse the documentation for various
purposes. This work describes a TTS tool which is used in the analysis of program docu-

mentation for the purpose of software testing.



1.1 Purpose

Although it is well known that “program testing can be a vefgotive way to
show the presence of bugs (faults), but it is hopelessly inadequate for showing their
absence’[7], it is widely agreed that testing is an important step in the software develop-
ment process. It has also been observed that such testing is time consuming and costly—as
much as 50% of the development costs for a project can be attributed to testing—and is
itself error prone [20], [33], [36]. It seems natural, therefore, that any set of tools intended

to improve the software development process will include tools to aid testing.

One fundamental assumption, known asaitaele assumptigrof software test-
ing research and practice is that there is some mechanismaca that will determine if
the output from a program is correct [39]. In many cases this mechanism is a manual com-
parison of the test output with some, previously determined, ‘expected output’, which can
be time consuming, tedious and error prone. There are also many cases where it is very
difficult to determine the expected output, e.g. where the properties of the desired result

are known, but not its value, as may frequently be the case in numerical calculations.

If a program has been formally specified, it should be possible to use the specifi-
cation as an oracle, so the expected output need not be given by tAdisserparticu-
larly useful if the formal documentation is of a form that can be read and understood by
both domain experts and programmers. Such documentation can be reviewed by the
domain experts to ensure that the specified behaviour is correct and then used to commu-
nicate their intentions to the programmers. Generating an oracle from this documentation

allows us to ensure that the documentation and program are consistent.

The purpose of this work is to develop a prototype automasdOracle Gener-

ator (TOG) tool that, given a relational program specification [25] using tabular expres-



sions [29], will produce a program that will act as an oracle. This oracle program will take
as input an input, output pair from the program under test and will teagif the pair

satisfies the relation described by the specificatiofalsg if it does not.

1.2 Scope

Testingis defined by the IEEE as

“The process of exercising or evaluating a system or system component by manual
or automated means to verify that it satisfies specified requirements or to identify
differences between expected and actual results.”[2]

In this thesis, only testing that consists of exercising executable components of
the software system is consideredsfing is a possible methodwadrificationof software
components, but the latter term is not used in this thesis since its meaning is more broad.
Neither the selection of appropriate tests for a component norféleefness of those
tests is discussed, as these issues are not relevant to the oracle generation problem. Read-
ers are referred to [40] for a discussion of some of these other issues and a good survey of

the relevant literature.

Since the documentation used in this work uses “before/after specifications” (see
[31]), it is only suitable for specifying, and hence generating oraclgsrtmyrams for
which the behaviour of interest can be described in terms of the program initial and final
states, i.e., the program must terminate and it must be possible to determine the success or
failure of an execution from its initial and final states. Only such terminating programs are
considered in this work. If a program is intended not to terminate, some terminating sub-
programs (e.g. the body of an infinite loop) could be documented and tested using these

methods.



Although the methods discussed in this work are applicable to programs written
in a wide variety of programming languages, the prototype tool developed to illustrate

these techniques is only suitable for those written in ‘C’.

1.3 Related Wrk

Much of the research aimed at reducing the cost and improvingeicé\afness
of software testing has concentrated on the judicious selection of test ddsg]1
[20], [21], while other &brt has gone into developing tools that either help generate,
maintain and track the testing documentation (e.g. test plans, test cases, expected output or
stub and driver routines) or execute tests in simulated environments [5], [14], [22], [23],
[36]. Both of these areas of research are complimentary to, but quite distinct from, the

work described in this thesis.

Several authors have described tools which can be used to compare the results of
a test with some pre-defined ‘correct’ data. In [22], Panzl describes three systems that ver-
ify the values of program variables against test cases described using a formal test lan-
guage. Another system, described by Hamlet in [14], tests a program using a list of input,
output pairs which have been supplied as part of the program code. All of these systems
require that the user provide the expected output, which mayfioailtito obtain. Also,
they can only compare for equality of expected and actual output, and hence relational
specifications, which may accept more than one possible output for a given input, cannot
be used. For example, the program specifiecblell on page4 is required to indicate
the location of the value of x in the array B, if one exists. If that value occurs in B in more
than one place, then it is fiafent that the program indicate any one of these. Systems
such as those described by Panzl or Hamlet would consider some of these occurrences to

be invalid.



The latter limitation is partially overcome by the “program testing assistant”
described by Chapman in [5]. This system allows the user to specify ‘success criteria’ (e.g.
equal, set-equal, isomorphic, etc.) which are used when comparing actual and expected
output. This system, howevenust record the input and output from previous executions
of the program to be used as test cases, so it is only useful if the user at one time had a ver-

sion of the program that was considered to be correct.

Other systems, such as ANNA [18] and APP [35], allow program code to be
annotated with assertions which are evaluated as the code is executed. If these assertions
are suficiently detailed and correctly placed so as to form a specification of the program,
which is not the intention of AREhen they can be used as an oracle. Howsireze the
annotations used in these systems are written as specially denoted comments in the pro-
gram source code, they do not lend themselves well to analysis or review separate from
the implementation, such as by non-programmer “domain experts”. Such analysis is one
of the intended purposes of the documentation techniques presented in this thesis, so it is

important that the documentation be distinct from the program.

In [37], Stocks and Carrington discuss deriving ‘oracle templates’, which
describe a set of acceptable outputs for a given set of test cases, from model-based specifi-
cations (i.e. those that model the system as a finite state machine with transitions) using
the Z notation. In [34], Richardson et al. advocate the derivation of oracles from formal
models and specifications. Both papers suggest that the oracle could be automatically gen-

erated, but neither discusses the problems of actually producing an oracle procedure.

Other authors have discussed producing oracles for abstract data typs$ (ADT
that are specified using algebraic specifications, e.g. [1],[4], [10] or ‘trace’ specifications

[38]. These specification techniques addressfardiit problem from those used in this



work in that they are required to document the intended properties of an ADT which is
implemented by a group of programs, whereas the techniques used in this work are used to
describe the &ct of a single program on some concrete data structure. The oracle prob-
lem is, therefore, diérent as well—ADT oracles must check that the specified ADT prop-
erties hold, whereas program oracles need only check that the data structure has been

modified in the specified manner

1.4 Outline of This Thesis

Chapter 2 defines the terminology that is used in this thesis. Chapter 3 describes
the content and format of the type of program specification to be used for generating a test
oracle and Chapter 4 discusses the design of the oracle itself. The desigresf (headle
Generator is discussed in Chapter 5, and Chapter 6 presents the results of these methods
when applied to the testing of some code from an industrial application. Chapter 7 dis-

cusses the applications and limitations of this work and draws some conclusions.



2 Notation and Terminology

The notation and terminology used in this thesis is defined in this section.

2.1 Predicate Logic

The predicate logic used in this work is based on that described in [30], which
differs from traditional logic in that it allows the use of partial functions but ensures that
all predicates are total. Axioms and rules of inference for similar logics are discussed in

[6] and [9]. The following terminology is adopted from [30].

Function application
A function applicatioris a function name together with its actugjusments,

which are terms. The usual notation will be used for denoting function applications
(i.e. 'f(x), ‘G(x, y, 2), ‘x+5’, etc.).

Term
A termis a constant, a variable or a function application.

Primitive r elation
A small set of relations (e.g. <, >, =, etc.) are defined as peimgive

relations The value of a primitive relation is defined in the usual way with the
addition that it igalse, by definition, if one or more of itsgument terms is a function
application with agument values outside the functisfomain. For example, if F and
G are functions and the value of x is not in the domain of F then “F(x) > G(x)", “F(x)
< G(x)” and “F(x) = G(x)” are alfalse (assuming that *>’, ‘<’ and ‘=" are primitive
relations). Note that “F(x) = F(x)”, which in many other logics is equivalemutby

the “axiom of reflexivity”, is alsdalse in the case where x is not in the domain.of F



Note also that this set of primitive relations does not normally include the nega-
tion of other primitive relations. For example&; is not defined as a primitive relation
since the value of 4{x) # fo(x)” is not the same as-(f;(x) = fo(x))"—the latter istrue
where X is outside the domain of eithgof f,, whereas the former would balse (if * 2’
is defined as a primitive).
Predicate expession
A predicate expssionis either a primitive relation or a string of the form
(Ox, P), (P), PIQ, PIQ or-P, where P and Q represent predicate expressions and X is
a variable, known as thedex variableof the quantification, which is said to beund
within the predicate expression in which it occurs (i.e. inside the-ost pair of

parentheses). These predicates are defined in the usual way as described in [30].

2.1.1 Notational Conveniences

The following equivalencies allow expressions to be written in the customary

manner:

(PO Q=(-P)UQ) (EQ 1)
(x,P)= (=(0x,~P)) (EQ 2)

2.1.2 Quantified Expessions

For oracle generation, quantification must be restricted to a finite set, which is
characterized by an inductively defined predicate (see below) so that it can be automati-
cally generated. This is accomplished by permitting only the following forms of quantified
expressions, where P(x) is an inductively defined predicate and Q(x) is any predicate

expression of a permitted form:

Universal: (Ox, P(x)J Q(x))
Existential: ((x, P(xX)0JQ(X))



2.1.3 Inductively Defined Pedicates

An inductively definegredicate(IDP), P on <type> is defined as the character-
istic predicate of a set, S, which is formed in the following.\&yen a triple, {I, G, Q},
where:
| is an enumerated finite set of elements of <type>,

G is a function, G: <type> <type>,
Q is a predicate on <type>, and

Ox0l, (O, (D), (0 < j <m0 G(x) O dom(G))T-~QGM(x))). (EQ 3)

S is the least set formed by the following rules:

1. all elements of | are in S
2. 0xOS [Q(x) O G(x)TS].
This least set can be constructed by the following inductive steps:
1.$=1
2. S41= S 0{GK) | xOS, DQE)}*
It can be proven thalN, Sy+1 = Sy. (In fact, we can take N = the ¢gst element
from the set {m [XOI, [(Tj, [0 <j<mO (Gi(x) 0 dom(G)O Q(d(x)))]) O-Q(G™(X))1,
i.e. the set of ng' from EQ3, above.) Thus S 5Fand S is finite.

A predicate, P(x), is inductively defined by providing appropriate definitions for
I, G and Q. For example, the characteristic predicate of the set of integers from MIN to

MAX, inclusive, is inductively defined by:3 {MIN}, G(x) =x+1 and Q(XE x < MAX.

Note that P(X) is equivalent to

(xON O(@y, (P DQ(Y) U (x = G(Y))))-

1. Note that an &€ient algorithm for constructing this set would only consider the elemenistioatSare
notin §,.; at each step.
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2.2 Tabular Expressions

In [29], Parnas describes a method for representing mathematical functions and
relations using multi-dimensional tables calledular expessionsThese are equivalent
to, but often easier to read and understand than, expressions written in a more traditional
manner Tabular expressions are particularly well suited to describing conditional relations
of the forms that frequently occur in program specifications. This sub-section gives a brief

summary of [29].

A tabular expression is constructed recursively from conventional (scalar)
expressions and grids. gealar expessionis either a term or a predicate expression as

described in Sectiop.1.

2.2.1 Syntax of Grids and &bles
A grid, G, ofdimensionality(i.e. the number of dimensions) dim(G), is an
indexed set such that the index set is a set of dim(G)-tuples which are the Cartesian prod-

uct of the sets:

{1, 2, ..., len(G)}, {1, 2, ..., len,(G)}, ..., {1, 2, ..., Ieraim(G)(G)},
where lef(G) is the length of G in ité'idimensionshapeﬁG) is a tuple of length dim(G)
whose ' element is lefiG). G denotes the element (cell) of G with index |, where | is a

member of the index set of G.

If I is an n-tuple, J" (for 1 <j < n) denotes théﬁ element of | and “I|j” denotes

the (n-1)-tuple formed by removing tHBq’aIement from I.

A table T, consists of a main grid, G, and coordinate header grid<.C...,

Cdgim(c) such that shape(C= len(G). In the remainder of this thesis coordinate header
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grids will be referred to as header grids or simply headgsieDotes theﬂ] element of

Ci.

Note also that dim(T) = dim(G), Igi¥) = len(G) and T =G

2.2.2 Semantics of dbles

In this thesis, a table is classified as being eitmaranal,invertedor vector

table.

A normal table contains predicate expressions in all of the cells of the header
grids. For a normal table, Theselected celis a cell of the main grid with index, I, such
that the value of the conjunction 6f ! for 1<i< dim(T) istrue. If no such cell exists
then there is no selected cell. If more than one such cell exists then the table is not well

defined.

An inverted table, Tcontains predicate expressions in the cells;0f3g, ...,
Cdim(m) as well as in the cells of the main grid, G. The selected cell of T is a cellwfiC
index, b, such that the conjunction & I fori=1, 3,4, ...,dim(T) and Gstrue. If no
such cell exists then there is no selected cell. If more than one such cell exists then the

table is not well defined.

Normal and inverted tables can be eittugctionor predicatetables. A function
table contains a term in all cells that could be the selected cell (i.e. cells of the main grid
for normal tables or cells ofQor inverted tables). A predicate table contains predicate

expressions in all cells that could be the selected cell.

The value of the function described by a function table is the value of the term in

the selected cell, if such a cell exists, otherwise it is undefined. The value of the predicate
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expression described by a predicate table is the value of the predicate expression in the

selected cell, if such a cell exists, otherwise fitiise.

A vector table contains predicate expressions in the cells, &L..., Gyim(T)
and strings of the form %" or “x; =", where xis a variable, in € The selected cells of T
are the cells of the main grid with any index, I, such that the value of the conjunction of
G ! for2<i<dim(T) istrue. Note that these cells will form a column of the main grid—

they will have | =1, 2, ..., len(G). If no such cells exist then there are no selected cells.

In this work, a vector table is always interpreted as a predicate table. The value
of the table is the value of the conjunction of the expressions formed from the selected
cells in the following manner: for cells, Gor which the corresponding@ell, C, | , is
of the form “x |” the expression is simply the predicate expression.ifk@ cells for
which the corresponding;Cell is of the form “x="the expression is the predicate

expression “x= G,". If there are no selected cells then the table valteiss.

2.2.3 Expessions

A function table can be considered to be a function application and is thus a term
in the sense of [30], and a predicate table can be considered to be a predicate expression.

Any term or predicate expression is an expression and may appear as an element of a grid.

2.3 Relational Specification

As discussed in [8], [19] and [31], among others, a digital computer can be
viewed as a finite state machine (FSM)—it consists of a finite set of memory and bulk
storage locations and input and output registers, each of which is itself a finite state
machine. The state of a computer is the combination of the state of all of its component

FSMs.
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For the purpose of discussing programs, the following terminology is adopted
from [28] and [31]: Arexecutions a (possibly infinite) sequence of states of the machine,
the first of which is known as iisitial or startingstate. If an execution is finite then it is
said to be &erminating executigrand the last state is known adiitsl or stoppingstate.
A program B, is a mechanism for establishing a pattern of state changes of the machine
and hence denotes a set of executions—the possible sequences of states established by that

program—sometimes called tbgecutionf P

Frequentlywhen specifying a program, the specifier does not want to restrict the
intermediate states that the machine might be in during execution (i.e. the algorithm used
by the program) but only requires that the stopping state be correct for each starting state.
In these cases only the initial and final states of terminating executions are of interest. A
pair of states that are the initial and final states of a terminating execution are referred to as
anexecution summaryRecalling that a binary relation is a set of pairs, clearly the set of

acceptable execution summaries for a program can be described using a relation.

2.3.1 Limited Domain Relations

In [25], [26], [28] and [31] Parnas et al. describes the use of Limited Domain
Relations (LD-relations) to specify programs. lAD-relation L, is a pair (R, C, ) where
R_ is an ordinary relation and, Gs a subset of the domain of Rknown as theompe-
tence setThe domain and characteristic predicate of L are the domain and characteristic

predicate of R.

An LD-relation, L, can be used to specify a program by lettindp&the set of
acceptable start state, stop state pairs (i.e. execution summaries) lzeth€ set of start-
ing states for which the program must terminate. A prograis,said tcsatisfya specifi-

cation, L, if and only if
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» when started in any state, X, if P terminates, it does so in a s&iehythat
<X, y> is an element of R and

« for all starting states, x, in|CP will always terminate.

Note that if a starting statelxdomain(R ) then P cannot terminate such that P

satisfies L.

In the case of a deterministic progran),iRa function. In the case wherg S

the domain of R (always for deterministic programs) @eed not be given.

In this thesis a program is assumed to be specified by an LD-relation, which is
referred to as thepecification elation If the competence set is not given, it is assumed to

be the domain of R

2.4 Program Variables and State Descriptions

As described in [19], a computer can be considered to be sub-divided into
smaller FSMs some of which are referred tpragram variablesA typecan be associ-
ated with each program variable to denote its number of possible states and the abstraction
used to describe these states. The suitably abstract description of the state of a program
variable is known as itgalue For example, if we say a program variable is of ANSI C
typeint then it must have at least®possible states which are typically represented by

the integer numbers between -32766 and 32767.

In the context of documentation for a program or set of programs, hqoweler
a very small percentage of the possible program variables are typically relevagatd he
structue of a program or set of programs is defined as being the set of program variables
whose values &ct, or are décted by the program(s) (i.e. the memory locations and reg-

isters that are used by the program). In this thesis, thestateis assumed to refer to the
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state of the data structure with respect to a particular program or set of progistats. A

descriptionis a tuple giving the value of each program variable in the data structure.

A program variable names a string of characters used to represent a program
variable in a program text (i.e. code). Abusing the notation slighily value of x”,
where “X” is a program variable name, is used to refer to the value, in some state, of the

program variable represented by x.

2.4.1 Befoe and After Value

The following convention for denoting the value of program variables before and

after a program is executed is adopted from [28] and [15]:

Let P be a program angl x.., % be the names of the program variables in

the data structure of Phen

Xi” (to be read “xbefore”) denotes the value qgfin the initial state of an
execution of P and

* “X;" (to be read “xafter”) denotes the value of x the final state of an
execution of P

For the purposes of interpretation of a specificatipmnd "x are diferent

terms.

2.5 Functional Testing

Functional testingf a program involves executing the program under test
(PUT) using some ‘test data’ and examining the output data to verify the program behav-

iour [16]. This work considers only functional testing, referred to simptgsisg

For the purpose of this worktest caseX, is a description of a starting state for

a program. Aest execution summafyES) is a pair of state descriptions, <X, Y>, the first
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of which is a test case and the second is a description of the state in which the program ter-
minated after having been started in X. A TES can be sgidsswith respect to a rela-
tional specification if the TES is an element of the specification relation, otherwise it is

said tofail with respect to that specification.

In [4], Bernot et al. discuss the need to develop a set of hypotheses, H, which
express the relationship between the pass or failure of a series of TESes and the correct-
ness of the program. In the case of a deterministic program and exhaustive testing (i.e.
every starting state is a test case), clearly H is ‘if all TESes pass then the program is cor-
rect, otherwise it is not’. In practice, howewvexhaustive testing is rarely practical. Also,
in the case of non-deterministic programs, it is impossible to reach such conclusions since

any test case can describe the initial state of sevefalaiit execution summaries.

As stated in Sectioh.2, the selection of a set of test cases is not considered in
this work. Since the hypothesis set is, in general, a function of these test cases, it will also

not be discussed. Interested readers are referred to [4] for a further discussion of this topic.

2.6 Test Oracle

In [16, p.43], Howden describes aracleas a function which, given a program,
P, can determine, for each input, x, if the output from P is the same as the output from a

‘correct’ version of P

Consistent with this, in the context of this work,aaacleis a program which,
given a TES, will determine if it passes or fails with respect to the specification from
which the oracle was derived by evaluating the characteristic predicate of the specification
relation—if it evaluates ttrue, then that TES passes, otherwise it fails. Note that such an

oracle does not require the existence of a ‘correct’ version of P
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2.7 Test Harness

Practical program testing typically involves executing the PUT for maferdif
ent test cases and verifying the results using the test oracle. This can be done using a pro-
gram known as test harnessvhich may partially simulate the environment in which the
PUT is designed to be used, and may also perform such tasks as collecting statistics on the

number of failed tests, etc.
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3 Program Documentation Method

The documentation which is the input to the@ is design documentation for a
single program (procedure), i.e. it describes the intended behaviour of a program in terms
of its efect on the actual data structure. This is distinct frondule interface documenta-
tion which describes the externally observable behaviour of a module without reference to
the data structure used in their implementation (see [27], [28] and [38})o¢Aleis a
group of programs which are designed and implemented as a single work assignment.
Typically they implement an abstract data type or encapsulate a design decision, e.g. algo-
rithm or external device interface.) This chapter describes the program documentation
method used in this work, which is based on that described in [28] and has the following

desirable properties.

* Itis precise and formal.

* It is clear enough to be read and understood with a minimum of special
training.

» Reading a specification neither gives any details about, nor requires any
knowledge of, the algorithm used by the program specified.

It is assumed that this documentation is created using other TTS tools and is

stored in an appropriate format.

3.1 Primitives

Since specifications are written in terms of the values of the program variables in
the data structure, it is convenient to describe these variables and operations on them using
the notation of the programming language used for the implementation of the program

under test (PUT). This has the clear advantage that programmers and verifiers responsible

19
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for reading the specifications will be familiar with the notation. It also makes it easier to
produce tools, such as th®G, which interact with the specified program or its environ-
ment. For this reason, the primitives supported by (€& &re specific to the program-

ming language used. In this thesis, the programming language is C.

3.1.1 Data Wpes

Since, as discussed in Sectihd, the value of a program variable is understood
in the context of its type, the documentation must give the type of each program variable
in the data structure. Also, since functions defined in the documentation must be compared
with program variables, they too must be assigned a type. Those types which are sup-
ported by the programming language or defined (in the syntax of the programming lan-

guage) in the ‘user definitions’ section of the documentation are taken to be primitive.

3.1.2 Primitive Functions

Primitive functionsare those functions that are assumed to be ‘built in’ to the
system and can be used without definition in specifications. Parnas et al. [28] define a
knownprogram as “one that does not require a specification” (i.e. its specification is
assumed to be understood) anceailableprogram as one that “exists in a project or sys-
tem library”. Programs that are available or are made available through declarations in the
‘user definitions’ section, are treated as primitive functions. Primitive functions are

assumed to be total (i.e. their domain is the cartesian product of thement types).

3.1.3 Primitive Predicates
The usual primitive relations, =, >, ¥,and<, are defined and used in the stand-
ard infix notation style for comparing terms of the same primitive type. Note that these

primitive relations are not defined for non-primitive (i.e. abstract) types, so expressions
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such as “x' amyFung'x)” (where x is a program variable of non-primitive type) are not
permitted. Auxiliary predicates may be defined to evaluate relations such as equality on

abstract data types.

3.2 Documentation Components

The documentation consists of: constants, variables, program specifications,
auxiliary predicate definitions, auxiliary function definitions, inductive predicate defini-
tions and user definitions. The manner in which these are represented to the user is an
implementation detail of the program documentation editing tools—examples given here

are for illustration purposes onlyhe documentation components are described below

3.2.1 Constants

A constant is any string of symbols that is interpreted as a constant in the syntax
of the programming language. For example, in C the following strings are cons&nts:

TRUE 0x2b and“A Text String”

3.2.2 \ariables

In the documentation, strings of characters callthbles(not aprogram vari-
able which, as described in Secti@gi, is a FSM) are used to represent either the value of
program variables in the initial state or final state of an execution, the value of expressions
passed as guments in auxiliary or inductive definitions (i.e. formajwanents), or as
guantification indices. As mentioned in Sectiba.1, a program variable name, annotated
with a single quote (') either before or afisra variable used to represent the value of that
program variable in the initial or final state, respectivéliriables which represent quan-
tification indices are considered to represent a value only where they are bound. A variable

that is the same as the name of the program specified by the specification is used to repre-
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sent the value returned by the program (e.g. the value of the accumulator register in the

final state), if appropriate for the programming language.

All variables must have a type, which is as described in Sextloh. For this
prototype oracle generajdhe type of a particular variable must be the same throughout
the program documentation. (i.e. The same quantification index variable cannot be used to

guantify over two diferent types in dierent parts of the documentation.)

3.2.3 Pogram Specifications

A (relational) pogram specificationas illustrated in dblel on page4, con-
sists of three components: (1) Ti@gram invocatiorgives the name and type of the pro-
gram and lists all of its actualgarment program variables. (2) Teeternal variable list
lists all other program variables referred to (by annotated variables with the same name) in
the specification relation expression. (3)Bpecification elationdefines the LD-relation
that specifies the behaviour of the program. It includes expressions that give the character-
istic predicates of the domain, competence set and relational components of the LD-rela-
tion. Note that, by default, if the competence set is not given then it is taken to be the same

as the domain of the specification relation.

3.2.4 Auxiliary Predicate Definitions

Auxiliary predicates can be defined so that complicated or frequently used predi-
cate expressions can be written more concisely in the documentation. The definition of an
auxiliary predicate consists of a name, a list of formgliarent variables, and a predicate
expression written in terms of the formajaments. When its name, together with a list of

actual aguments, is used in the documentation, it is evaluated by substituting the values
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represented by the actuajaments for their corresponding formagaments in the defi-

nition predicate expression and evaluating the resulting predicate expression.

3.2.5 Auxiliary Function Definitions

Auxiliary functions can be defined so that complicated or frequently used func-
tions can be written more concisely in the documentation. The definition of an auxiliary
function consists of a name, a type, a list of formgiiiarent variables, a term expression
and an optional predicate expression, which gives the domain of the function, both written
in terms of the formal guments. When the auxiliary function name, together with a list of
actual aguments, is used in the documentation it is evaluated by substituting the values
represented by the actuatjaments for their corresponding formagaments in the term
expression. If the definition contains a domain expression that does not evaluage to
the value of the function is undefined, otherwise the value is that described by the expres-

sion.

3.2.6 Inductively Defined Pedicate Definitions

An inductively defined edicateis an auxiliary predicate that is defined induc-
tively as described in Secti@l.3. Its definition consists of a name, a formguarent
variable and the definition components I, G, and Q. ‘I’ is a string which is an enumerated
set in the syntax of the programming language (an initial value for an array in the C lan-

guage) and ‘G’ and ‘Q’ are expressions in terms of the forrgahaent variable.

3.2.7 User Definitions
A user definitioris a sequence of text in the syntax of the programming language
which is used to declare data structures, functions or symbols that are used in the docu-

mentation and are not primitive to the programming language. This is required so that the
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basic symbols (e.g. constant names) and operators (e.g. structure element access) which

are used in the specification can be understood.

3.3 Sample Pogram Documentation

Table 1, which is adapted from an example used in [28], specifies a program
‘find’ which searches an integer array ‘B’ for a value given by ‘X', returns its index in j’
and, using a boolean variable ‘present’, indicates if a match was found.

TABLE 1 - Find Program Specification

void
find(int B[N], int x, int j, bool present)

external variables:

Dfing =true
Cfing = true
Rfing (1) =
(0, bRangé) 0 | (Ui, bRang€) O
'B[i] ='x) - (B[] = %))
j'l ‘B[jT="x true
present' = || TRUE FALSE ONC(B, ', B', X)

Auxiliary Pr edicate Definitions

NC(int 'a[], int 'b, int a'[], int b")
2 (Oi, bRangé) O 'ai] = a'i]) O (b = b

Inductively Defined Predicates(see Sectio.1.3)

bRangéint i)
21 ={0}, G(i) = i+1, Q(i) = i<(N-1)

User Definitions
#include “defs.h”

#def ine N 10 [* Size of array to search */



4 Oracle Design

This chapter describes the interface and internal design of the oracle that will be
the output of the OG. The design is illustrated using specific examples from an oracle
prototype, which was manually produced for the simple ‘find’ program specification given

in Section3.3.

4.1 Programming Language

The example programs to be tested (see Appendix A) are written using the C
programming language, and hence the primitives used in the specification are Wstyle. T
simplify the oracle generation process and the interface to the test harness, the oracle is
implemented using C and C++. This decision should not be seen as a significant feature of
the design—if the intended application werdetiént, the oracle design could be trans-

lated with little significant change.

4.2 Interface

The interface to the oracle is a set of three boolean valued progn&als-
tion ,inCompSet andinDomain . initOracle is an initialization program which

should be called by the test harness once, before the first oracle program is called.

inRelation evaluates the characteristic predicate of the relational component
of the specification relation. It takes the value of the PUT data structure in the initial state
and final state (i.e. the TES) ag@ments and can be called by the test harness to evaluate

TESes as necessalyreturnsTRUEIf the TES passes, 6/ALSE otherwise.

25
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iInCompSet andinDomain evaluate the characteristic predicates of the com-
petence set and domain, respectivepecified for the specification relation. Theguar
ments are those values from the start state of the TES which are required to evaluate the
characteristic predicates. They ret@iRUEIf the test case is in the set,FoALSE other-
wise. These two programs can be used to avoid executing the PUT using test cases for
which either there is no acceptable TES (i.e. the test case is not in the domain) or the PUT

may be non-terminating (i.e. the test case is not in the competence set).

An alternative interface design, similar to that used in [35], would be to use the
‘debug’ information supplied by a compiler to resolve references to the data structure, and
to embed code in the PUT to evaluate the oracle predicate at the appropriate points in the
execution. While this method seems to lend itself to an elegant test harness design, it is felt
that it may also be limiting, and will certainly make the job of the test oracle generator dif-
ficult. Also, since it involves modification of the PUflintroduces the potential for errors
being avoided during testing which may appear in the ‘released’ version (i.e. without the
oracle code). If desired, the chosen interface design could be adapted for use in such a
manner by embedding calls to the oracle access programs at appropriate locations in the

PUT.

In a testing environment, it is often desirable to know in some sense why a test
execution fails, so that program (or specification) faults can be easily isolated. Since rela-
tional program specifications are used in this work, which may allow several correct stop-
ping states for a particular test case, it is not, in general, possible for an oracle to determine

why a TES has failed.

Table 2 gives the syntax of the interface to the prototype oracle access programs.

Each row in the table describes the interface to one of the access programs, which is
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named in the first column. The second column gives the type of value returned by the pro-
gram and the subsequent columns give the formal names and types of the prggram ar
ments, in the order that they appédwmte that, with the exception wiitOracle , the

actual number and types ofyjaments for these access programs are specific to the partic-
ular PUT and specification (‘find’ in this case).

TABLE 2 - Oracle Access Pograms

Name | Value| Arg.1| Arg.2 | Arg.3 | Arg.4 | Arg.5 Arg. 6
initOracle

inCompSet| bool

inDomain | bool

inRelation | bool int B[] int X int B_pl] intx_p intji_ p bool present_p

4.3 Internal Design Overview

The oracle can be viewed as a ‘compiled’ version of the specification in that it is
generated by translating the ‘source’ specification into an executable form (C code). Once
it has been ‘compiled’, it can be executed without reference to the specification from
which it was derived. One advantage of this design is that it allowsaetd use optimi-

zation techniques to reduce the time required for oracle execution.

An alternative is to construct the oracle as an ‘interpgret@ch would represent
the specification by data and evaluate it directly for each TES. An advantage of this design
is that the oracle generation process is relatively simple, probably involving no code gen-
eration (the oracle programs are the same for any specification, only the data they use is
dependant on the specification). A disadvantage is that the oracle will need to interpret the
semantics of the documentation during evaluation, and so would probably be compara-

tively slow to execute. This is seen as a significant disadvantage since, in real applications
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of this work, speed of oracle execution is much more important than oracle generation

simplicity.

4.3.1 Expession Implementation

Each of the oracle access programs (with the exceptioit©facle ) evalu-
ates a predicate expression which may be arbitrarily complex. Since any expression is
made up of one or more sub-expressions, the complexity is managed by decomposing
each expression into its constituent sub-expressions and implementing each sub-expres-
sion individually In addition to the access programs, the oracle code consists of a set of
internal functions and objects, each of which implements a sub-expression and may call

other internal functions or object methods.

Since programming languages in general, and C in partisulgport basic logi-
cal and relational operators (il&.[], =, >, <, = etc.), these operators can be used to
directly implement some of the expressions. Using these operators it is possible to imple-
ment an entire expression as a single C statement by translating it into a purely scalar
guantifier free expression (by expanding quantification to a series of conjunctions or dis-
junctions and translating tabular expressions into an equivalent disjunction of conjunc-
tions) but for all but the most trivial specification, the resulting C statement would be
many lines long. While this would undoubtedly result in an oracle that executes relatively
quickly, since there would be none of the overhead associated with loops or function calls,
it would require significant &rt on the part of the @G to do the translation and would
result in virtually incomprehensible oracle code. For this reason the oracle is implemented
using the C logical and relational operators only where they directly represent the opera-

tors in the specification (see Sections 4.4.1 and 4.4.2, below).
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Another method of implementing expressions uses a class of C++ objects, with a
sub-class for each expression type. A particular expression is implemented by instantiat-
ing the appropriate objects, which contain references to their sub-expression objects. For
expression forms such as tabular expressions, which have complex semantics, this helps to
simplify the oracle generation process—tl@3 need only translate the expression into
the appropriate object constructbor forms with less complex semantics, howetrer

gain in simplicity of the ©G does not warrant the overhead of a C++ object.

The code to implement each type of expression is described in the following sec-

tions.

4.4 Scalar Expessions

Scalar (i.e. non-tabular) expressions can be translated into equivalent C state-

ments as described below

4.4.1 Logical Operators

Except when they are the root node of a quantified expression (see
Sectiond.4.4), logical operators can be directly translated to their C equivalents, as given
in Table 3. (P and Q are arbitrary predicate expressions.)

TABLE 3 - Logical Operator Conversions

Logical Operato  C Equivalent

P P
POQ PIlQ
POQ P&&Q

PO Q ('P) ]| Q
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Thus the expression which is the definition of the auxiliary predicate NC (see
page 24) is implemented in the following procedume ( is a procedure which imple-

ments the quantified sub-expression):

static BOOL
nc(int p_a[N], int p_b, int a_p[N], int b_p)
{

}

return(nc_1(p_a, a_p) && (p_b ==b_p));

4.4.2 Primitive Relations

Since the logic used in this work fdifs from most traditional logics in the defi-
nition of primitive relations, the standard programming language relational operators are
combined with information about the domain of partial functions. For example, the predi-
cate expressiomguiaded RE'B, ') = x”, whereguarded_B(defined in SectioA.6) is a

partial function, is translated into the following code.

(guarded_B_domain(j_p) && (guarded_B(p_B, j_p) == x));

This translation relies on the fact that C expressions are evaluated from left to
right and evaluation stops as soon as the value of the expression is known. So, in the above
code, ifguarded_B_domain(j_p) returng=ALSEthen the right hand side will not be

evaluated.

4.4.3 Inductively Defined Pedicates

Since inductively defined predicates (IDPs) are intended to be used to character-
ize sets for quantification purposes, their implementation provides, in addition to the usual
predicate expression evaluation operator (i.e. is the predioater false for a given

value), a means to enumerate the set elements. An IDP is implemented in the form of an
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(C++) object class which encapsulates the algorithm for determining the next element of

the set.

An array is used to represent the ‘I’ component of the IDP definition and two
procedures implement the expressions ‘G’ and ‘Q’. For example, the definition for

bRangéint i) (see SectioB.3) is implemented using the following code.

static int bRange_I[] ={0};

static int
bRange_G(int i)
{

}

static BOOL
bRange_Q(int i)
{

}

return(i+1);

return(i < (N-1));

The IDP object classes have three methdgis: (an operator method),irst
andnext . The method('e) ' returns TRUE if e is in the set characterized by the tDP
FALSE otherwisef irst, initializes the objecs internal variables and returns the first
element of the array representingéxt returns the ‘next’ element of the set, as
described by the following three cases.

1. If the most recently returned element, say e, is such that @ag,ithen G(e) is
returned.

2. If Q(e) istalse and there are more elements of |, then the next element of | is
returned.

3. Otherwise, then there are no further elements of the set so an element not in the set
is returned. (So th@ operator will return KLSE.)

Thus the enumeration of the set that is characterized by an IDP can be accom-

plished using the following algorithm (where P is the IDP object).
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e =P.f irst();
while (P(e)) {
process(e);
e =P.next();
When an inductively defined predicate is used in an expression, it can be imple-
mented by instantiating an object from the appropriate class, depending on the type of the
elements of the set, with the array and procedures corresponding to the IDP definition

passed as guments to the instantiation function. This is illustrated by the obfanhge

of typelndPred_int  which is used in the quantification example below

4.4.4 Quantification

Quantifier expressions are implemented using loops that call the appropriate pro-
cedures to enumerate the elements of the set characterized by the IDP (sed 3ektion
above). The root node of the quantification expression (i.e(tHer'existential or £1°
for universal) is not implemented as described in Sedtibr, but is décted by evaluat-
ing its right child expression for only those elements which make the left child expression
true (i.e. the elements of the set characterized by the IRYNIure that evaluation is as
fast as possible, the loops are designed to terminate as soon as the result of the quantifica-
tion is known (i.e. the first positive instance for existential quantification, and the first neg-
ative instance for universal quantification). Of course, quantification oveyeadar is

inherently a lengthy process.

The quantification (Ci, bRang€) [ 'B[i] = 'x)”, which is in the first cell of the

column header of the table on page 24, is implemented as follows.
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static BOOL
table_H2_2_ 1(int p_B[N], int p_x)
{

IndPred_int bRange(bRange 1, 1,
bRange_ G,
bRange_Q);

inti;

BOOL result = TRUE;

i = bRange.f irst();

while (bRange(i) && result) {

result = !(p_BJ[i] == p_Xx);
i = bRange.next();

return(!result);

4.5 Tabular Expressions

Tabular expressions are implemented by instantiating an object of one of several
classes of (C++) table objects which implement the various types of tabular expressions
(normal, inverted and vector). These table objects encapsulate all knowledge of the
semantics of tabular expressions, so t&Tneed not have this knowledge and is hence
less complicated. The expression in each cell of the table is implemented as a procedure
(C function) and a pointer to each of these procedures is stored by the table object. In an
attempt to make tabular expression evaluation fasietable objects evaluate cell expres-
sions as few times as possible and preferentially choose the most recently used cells to
evaluate first (if test cases are such that successive cases select the same cell then this will

make a test suite run faster).

Table objects have two methods which are used to evaluate the expression:
findCell determines if the values of thegaments are in the domain of the table (by
determining if a selected cell or cells exist), &aatlie evaluates the table, returning the
value in aCELL data structure which is a union of all of the basic data types in C (includ-

ingvoid * ).
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An alternative implementation for a tabular expression is to translate it into an
equivalent scalar expression and then implement the scalar expression as described in the
previous section. This option has the disadvantages that it requires th@GHhsave the
ability to perform the translation, and it does not allow the above optimizations made pos-

sible by the table object design.

4.6 Auxiliary Predicates and Functions

As mentioned in SectioB.2.4 and SectioB.2.5, auxiliary predicates and func-

tions are expressions which are either complicated or used repeAtedlypropriately
typed procedure is used to implement each auxiliary predicate or function definition, with
the expression, implemented as described above, forming the body of the procedure. For
auxiliary functions for which a domain expression is given, a procedure is produced to
implement that expression as well. For example, consider an auxiliary function defined as
follows:
int guarded_Rint b[], int i)

2 bi]

domain: 0<i<N

This is implemented by the following procedures:

static int
guarded_B(int b[], int i)
{

return(bli]);

static BOOL
guarded_B_domain(int i)

{
}

return((0 <=i) && (i < N));
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Appropriate calls to these procedures are used in the code that implements

expressions using the auxiliary predicate or function.

4.7 Compilation and Execution

The oracle consists of three groups of code: that generated b @GarfoutFi-
le.cc (whereoutFile is the output file name specified by the pasrdescribed in
Section5.1.2), and the two sets of object classes, in indPred.ccadtel dc, which are not
generated by thedG but are used by th€OlG generated code. As is the norm for C++
programs, each source file has a corresponding ‘include’ file with the file name extension

“.h”.

To use the oracle, a test harness program, which calls the oracle procedures and
the PUT and reports the results, must be written. It should include the oracle header file
(outFile.h) which declares the oracle procedure prototypes. The test harness and the oracle
code must be compiled and linked to produce an executable program.JFigaréow-
chart of a possible test harness design and Settiatiscusses some other possible

designs in further detail.
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FIGURE 1 - Sample est Harness Flowchart




5 Test Oracle Generator Design
This chapter briefly describes the requirements and design of the protQi¢e T

5.1 Requirements

To reiterate, the requirements of th@G@ are that it accept a program specifica-
tion in the form described in Chapter 3 and produce the code for an executable test oracle

such as that described in Chapter 4.

5.1.1 Assumptions

It is assumed that the mathematical expressions used in the specifications have
been input and saved using the table holder module (see SReti@16). This assumption
affects the Specification File and Expression modules, which are described in

Section5.2.2.1 and Sectidh.2.3.2, respectively

The oracle code is constructed using two sets of object clasdesailexpres-
sions formTable ,invTable andvecTable ) and IDPsihdPred_<type> )
implemented in @ble.cc and indPred.cc, respectivllijese are assumed to be present
and correct. This assumptiorfeaits the Code module which is described in

Section5.2.3.3.

5.1.2 User Interface

The user interface to theOlG is a ‘command line interface’ similar to that of
many compilers. This has the advantage that it can be invoked by standard tools such as

‘make’. The command line syntax is as follows:

37
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tog [ -lerrlevel] [ -h ] [ -o outFile] [ specFile]

Options:

-lerrlevel Set the message logging level to errlevel wieerevelis one oD, |, W
or S (Debug, Info, Vdrning, Serious). Only messages with seriousness
equal to or greater tharlevelwill be written to the log file (DG_log-
file). The defaulerrlevelis W.

-h Output a help message (and do nothing).

-0 outFile UseoutFile as the base name for the oracle output. Thedile#sle.cc and

outFile.h are produced. The default nameriacle.

specFile Generate the oracle from the specificatiogpgacFile If no file name is

given then input is read from standard input.

5.1.3 Input Format

The input to the DG is in the form of a specification file which contains the
information as described in Chapter 3. The file consists of a sequence of items, each of
which define either a constant, variable, auxiliary predicate, auxiliary function, induc-
tively defined predicate or the program relation. The last item in the file is the user defini-

tions text. The format of the specification file is described in detail in Appendix B.

5.1.4 Anticipated Changes

It is expected that the following items are likely to change within the useful life

of the TOG.

 Specification file format
» Oracle programming (output) language
* Oracle design
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* User interface

5.2 Module Decomposition

The TOG is implemented by a setmwioduleseach of which encapsulates a set
of design decisions. Several of the modules can be further sub-divided into sub-modules
which encapsulate more specific design decisions. The benefits of this encapsulation are
twofold: the design is easier to understand because of this separation of concerns, and it is
easier to change theOTs since the decisionsfatted by the change are likely to be iso-

lated

For the purpose of illustrating the system designMbdule Uses Relatiois
used. Module A is said eseModule B if some programs in Module A rely on the correct
behaviour of some programs in Module B to accomplish theirt&igure? illustrates
the Module Uses Relation for th@©T for the first level module decompositiomable 4

gives the Module Uses relation for the sub-modules.

5.2.1 User Interface (DG_main.c)

The User Interface module acts as the main controlling module foGe [T
encapsulates the interpretation of command ligeraents and the sequence of invocation
of other modules. It uses the Specification interface module to read the specification from
the file, the Output module to initialize the output files and Oracle Generation module to

produce the oracle code.

1. Note that the module uses relation is derived from the program uses relation discussed in [24].
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FIGURE 2 - First Level Decomposition Module Uses Relation
5.2.2 Specification Interface

The Specification Interface module is responsible for providing access to the

PUT specification information. It is sub-divided into the following sub-modules.

5.2.2.1 Specification File 0G_spec.c)
This module extracts the specification from a file and stores it in the appropriate

information storage modules, described belmwretrieval by the Oracle Generation
module. It encapsulates the specification file format and the algorithm for reading it. The

information about the auxiliary predicates, and functions and inductively defined predi-



TABLE 4 - Module Uses Relation

Module

Level

Uses

User Interface

7

Oracle Structure
Expression
Specification File
Output

Status ©ken
Message Logging

Oracle Structure

Expression

Code

Context
Specification File
Output

Line Buffer
Status ©ken
Message Logging

Expression

Code
Applications
Table Holder
Line Buffer
Status ©ken
Message Logging

Code

Context
Procedures
Constants
Variables
Applications
Inductively Defined Predicate
Procedures

Line Buffer
Status ©ken
Message Logging

Specification File

Constants
Variables
Applications
Inductively Defined Predicate
Table Holder
Status ©ken
Message Logging

41
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TABLE 4 - Module Uses Relation

Module Level | Uses
Context 3 Procedures
Name hble

Status ©ken
Message Logging

Constants 2 Status dken
Message Logging
Variables 2 Id Table

Status ©ken
Message Logging

Applications 2 Id Table

Status ©ken
Message Logging
Inductively Defined Predicates2 Id Table

Status ©ken
Message Logging

Procedures 2 File Output
Status ©ken
Line Buffer
Message Logging
Id Table 1 Message Logging
Name Rble 1 Message Logging
Output 1 Message Logging
Line Buffer

cates used in the specification are stored in lists which can be enumerated using the mod-
ule access programs.

TABLE 5 - Specification File Module Access Rigrams

Name Type | Arguments| Description

TOG_specOpen void FILE * Read the specification from the file.

TOG_specGetCompSet Expn Return the competence set expression fo
the specification relation.

TOG_specGetCSAs int Id **ids Return the ayjument Ids for the competence
set expression.

TOG_specGetRelation Expn Return the relation expression for the
specification relation.

TOG_specGetRelAys int Id **ids Return the agument Ids for the relation

expression.
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TABLE 5 - Specification File Module Access Rigrams

Name Type | Arguments| Description

TOG_specGetDomain Expn Return the domain expression for the
specification relation.

TOG_specGetDomAys int Id **ids Return the agument Ids for the domain
expression.

TOG_specNextAuxPred bool Make the ‘next’ auxiliary predicate current.
If there are no more return BOOLAESE

TOG_specGetAuxPredid Id Return the Id of the current auxiliary
predicate.

TOG_specGetAuxPredDef Expn Return the definition of the current auxiliany
predicate.

TOG_specGetAuxPred4s int Id **ids Return the agument Ids for the current
auxiliary predicate.

TOG_specNextAuxFunc bool Make the ‘next’ auxiliary function current.
If there are no more return BOOLAESE

TOG_specGetAuxFuncld Id Return the Id of the current auxiliary
function.

TOG_specGetAuxFuncDef Expn Return the definition of the current auxiliany
function.

TOG_specGetAuxFuncDomainld Return the Id of the domain predicate of the
current auxiliary function.

TOG_specGetAuxFungpe char * Return the type of the current auxiliary
function.

TOG_specGetAuxFuncls int Id **ids Return the agument Ids for the current
auxiliary predicate.

TOG_specNextindPred bool Make the ‘next’ inductively defined
predicate current. If there are no more retdrn
BOOL_FALSE

TOG_specGetindPredld Id Return the Id of the current inductively
defined predicate.

TOG_specGetindPredl int char **i Return the ‘I’ component of the current
inductively defined predicate.

TOG_specGetindPredG Id Return the Id of the ‘G’ component of the
current inductively defined predicate.

TOG_specGetindPredQ Id Return the Id of the ‘Q’ component of the
current inductively defined predicate.

TOG_specGetUserDef char* Return the user definitions text.

5.2.2.2 Constants OG_const.c)
The representation (name) of every constant used in the specification is stored

using this module. It encapsulates the data structure used for storing this information.
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TABLE 6 - Constants Module Access Rigrams

5.2.2.3 \riables (DG_vars.c)

The name and type of each variable used in the specification is stored using this

module. It encapsulates the data structure used for storing this information. dible idT

module is used to implemenfiefent storage with fast retrieval of the information.

TABLE 7 - Variables Module Access Rigrams

Name Type | Arguments| Description
TOG_constlnit Initialize the module internal data structure.
TOG_constLoad bool FILE * Load a table of constant names from the file.
TOG_constDelete Id Delete a constant from the table.
TOG_constGetName char* | Id Write the name of the constant with the

char *buf given Id into buf.

Name Type | Arguments| Description

TOG_varslnit Initialize the module internal data structure.

TOG_varsLoad bool FILE * Load a table of variable names and types

from the file.

TOG_varsDelete Id Delete a variable from the table.

TOG_varsGetName char* | Id Write the name of the variable with the
char *buf given Id into buf.

TOG_varsGetype char* | Id Write the type of the variable with the given
char *buf Id into buf.

5.2.2.4 Applications (DG_applic.c)
An application is any function or predicate used in the specification including

both those defined in the specification (i.e. auxiliary functions and predicates) and those
which are defined in the oracle programming languagefarheof an application is an

array of arity + 1 strings which are used with thguament expressions to construct the

code which evaluates the application invocation. The name, farity and domain predi-

cate Id of an application used in the specification is stored using the Applications module.
It encapsulates the data structure used for storing this information. Himediodule is

used to store the information.
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TABLE 8 - Applications Module Access Pograms

1%

Name Type | Arguments| Description
TOG_applnit Initialize the module internal data structur
TOG_appAdd Id Add an application to the module.
char *name
int arity
TOG_appDelete Id Delete a application from the table.
TOG_appSetForm Id Set the ‘numi” form string for the
int num application with the given Id.
char *form
TOG_appGetForm char* | Id Return a pointer to the ‘nufi’form string
int num for an application.
TOG_appSetDomain Id Set the Id of the domain predicate for the
Id domain application.
TOG_appGetDomain Id Id Return the Id of the domain predicate for t
application.
TOG_appGetArity int Id Return the arity of the application.
TOG_appGetName char* | Id Return the name of the application.

5.2.2.5

Inductively Defined Predicate©)@_indPred.c)

Theinstantiationof an IDP is a string which is used in the oracle code to declare

an instance of the IDFhe name, type and instantiation information for an IDP used in the

specification is stored using the Inductively Defined Predicate module. It encapsulates the

data structure used for storing this information. Thaldd module is used to store the

information.

TABLE 9 - Inductively Defined Predicates Module Access grams

U

Name Type | Arguments| Description
TOG_indPredinit Initialize the module internal data structur
TOG_indPredAdd Id Add an IDP to the module.

char *name

char *type
TOG_indPredDelete Id Remove an IDP from the module.
TOG_indPredSetInstantiation Id Set the instantiation of the IDP

char *inst
TOG_indPredGetinstantiation| char * | Id Return the instantiation of the IDP
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TABLE 9 - Inductively Defined Predicates Module Access Rgrams

Name Type | Arguments| Description
TOG_indPredGetyjpe char* | Id Return the type of the IDP
TOG_indPredGetName char* | Id Return the name of the IDP

5.2.2.6 ‘&ble Holder (libtblhold.a)
The components of a specification that are mathematical expressions are stored

using the &ble Holder module, which is not ®G module, but is the central module of

the TTS. This module is described in further detail in [17].

5.2.3 Oracle Generation

The Oracle Generation module is responsible for converting the specification

into the oracle implementation. It is sub-divided into the following sub-modules.

5.2.3.1 Oracle Structure QIG_oracle.c)
The structure of the oracle (i.e. the procedures and their names) and the algo-

rithm for constructing this structure is encapsulated by this module. It retrieves the compo-
nents of the specification from the Specification Interface module and uses the other
Oracle Generation sub-modules to construct the oracle.

TABLE 10 - Oracle Structure Module Access Rigram

Name Type | Arguments| Description
TOG_oracle Construct the oracle.

5.2.3.2 Expression JG_expn.c)

Mathematical expressions are decomposed into their component sub-expressions
by this module. It encapsulates the interface to #idelHolder module and the algorithm
for constructing procedures to implement expressions. The Code module is used to con-

vert expressions into code.
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TABLE 11 - Expression Module Access igram

Name Type Arguments Description
TOG_expn TOG_Line | Expn Translate the sub-expression at
Path ‘Path’ and return the code to

TOG Line buf evaluate it in buf.
TOG_Cntxt parent

5.2.3.3 Code (0G_code.c)
The knowledge of the syntax of the oracle programming language (C for this

prototype) is encapsulated by this module. It converts the components of an expression
into C code and combines them to form the oracle procedures, objects and statements.

TABLE 12 - Code Module Access Rigrams

Name Type Arguments Description

TOG_codeConst char * Id id Write the code for the constant intp
char * buf buf.
TOG_Cntxt cntxt

TOG_code¥r char * Id id Write the code for the variable into
char * buf buf.
TOG_Cntxt cntxt

TOG_codeQLE Id quant_id Write the code to evaluate the
Id var_id guantification on the expression
Id ind_pred_id given in exp. The code is the body
TOG_Line exp of quant_proc.
TOG_Cntxt quant_proc

TOG_codeApplic TOG_Line | Idid Write, into line, the code to
int arity evaluate the given application with
TOG_Line ags]] the given aguments.
TOG_Line line
TOG_Cntxt cntxt

TOG_codeNewable TOG_Cntxt| int num_dims Write the code to instantiate a table
int shape[] object.
TOG_TableType

TOG_code@ableCell TOG_Chntxt table Construct a function for a table
TOG_Cntxt cell cell.

TOG_Table\alueType vT
TOG_Line expn
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TABLE 12 - Code Module Access Rigrams

[0}

Name Type Arguments Description

TOG_codeableSetHeade TOG_Cntxt table Write the code in ‘initOracle’ to
TOG_Cntxt cell initialize the header functions of a
int header table.
int cell_num

TOG_code@bleSetMain TOG_Cntxt table Write the code in ‘initOracle’ to
TOG_Cnitxt cell initialize the main grid functions of
char *index atable
int num_dims
int cell_num(]

TOG_codeNewPrivateProc TOG_Cntxt | TOG_Cntxt parent Create a new function internal to
char *name the oracle.
char *type

TOG_codeNewPublicProg TOG_Cntxt| TOG_Cntxt parent Create a new function which is arn
char *name access program to the oracle.
char *type

TOG_codeNewIndPred TOG_Cntxt| Id Construct the context for an
char *i inductively defined predicate
int num object.
char * g_name
char * g_name

TOG_codeAddIindPred Id id Write the code to instantiate an
TOG_Cntxt cntxt inductively defined predicate

object.

TOG_codeAddQuantf Idid Add a variable to the context for
TOG_Cntxt cntxt use in quantification.

TOG_codeMakeHeading TOG_Cntxt cntxt Construct the code which forms th

function heading.

TOG_codeMakePrototype TOG_Line | TOG_Cntxt cntxt Write a prototype for the context i
TOG_Line buf buf.

TOG_codeConstructCall | TOG_Line | TOG_Cntxt caller Construct the code for ‘calleio
TOG_Cntxt callee call ‘callee’.
TOG_Line buf

TOG_codedable\alue TOG_Line | TOG_Cntxt caller Construct an invocation of the table
TOG_Cntxt table ‘value’ method.
TOG_Table\alueType
type
TOG_Line buf

TOG_codeComment TOG_Line | char *text Write the text as a comment.

TOG_Line line




49

TABLE 12 - Code Module Access Rigrams

Name Type Arguments Description

TOG_codeProcslue TOG_Cntxt Write the code so that the cntxt
TOG_Line val returns ‘val'.

TOG_codeAddIndexDecl | char * int num_dim Declare a variable ‘index’ in

‘initOracle’.

TOG_codeSetlInitCntxt TOG_Cntxt init Set the ‘initOracle’ context.

TOG_codeCellElement char * TOG_Table\alueType Translate the table value type inta
type its name.

5.2.3.4 Context (DG_context.c)
A context(TOG_Cntxt ) is an ADT which represents a procedure in the oracle

code and the collection of variables known within that procedure. It contains a ligtiof ar
ments and internal variables, the name and type of the procedure @l &rbc which
contains the statements which make up the procedure. The Context module is used to
manage knowledge of contexts and to avoid conflicts between variable names.

TABLE 13 - Context Module Access Rsgrams

Name Type Arguments| Description
TOG_cntxtlnit Initialize the module internal data structure.
TOG_cntxtCleanUp Destroy all contexts.
TOG_cntxtCreate TOG_Cntxt| TOG_Cntxt | Create a new context.
char *name
TOG_cntxtDestroy TOG_Cntxt | Destroy a context.
TOG_cntxtGetName | char * TOG_Cntxt | Return the name of the context.
char *buf
TOG_cntxtSetype TOG_Cntxt | Set the type of the context.
char *type
TOG_cnixtGetype char * TOG_Cntxt | Return the type of the context.
TOG_cntxtGet¥r char * TOG_Cntxt | Return the name of a variable within a
Idid context.
char *buf
TOG_cntxtAdd\ar TOG_Cntxt | Add a variable to the context.
Idid
char *name
bool isAg
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TABLE 13 - Context Module Access Rograms

Name Type Arguments| Description
TOG_cntxtRemoveast TOG_Cntxt | Remove a variable from the context.
Idid
TOG_cntxtGetCode TOG_Proc | TOG_Cntxt | Return the procedure for the context.
TOG_cntxtGetFirstAg | Id TOG_Cntxt | Return the first gument to the context.
TOG_cntxtGetNextAg | Id TOG_Cntxt | Return the next gutment to the context.
TOG_cntxtOutput TOG_Cntxt | Output the procedure for the context using
the output module.
TOG_cntxtAddTmp¥r | char * TOG_Cntxt | Add a temporary variable to the context.
char *name

5.2.3.5 Procedures QIG_procedures.c)

A procedue (TOG_Proc) is an ADT which represents the lines of text that form
the source code for a function. The Procedures module encapsulates the data structure for
storing these lines of text. The output module is used to write the text to the disk.

TABLE 14 - Procedures Module Access Rigrams

Name Type Arguments | Description

TOG_proclnit Initialize the module data structure.

TOG_procCreate TOG_Proc Create a new procedure.

TOG_procDestroy TOG_Proc Destroy a procedure.

TOG_procOutput TOG_Proc Write the procedure to the output file.

TOG_procAddHeading TOG_Proc Add text to the procedure heading.
TOG_Line text

TOG_procAddDeclaratior TOG_Proc Add text to the procedure declarations.
TOG_Line text

TOG_procAddBody TOG_Proc Add text to the body of the procedure.
TOG_Line text

TOG_procAddClosing TOG_Proc Add text to the procedure closing.
TOG_Line text

5.2.4 Output

The Output module encapsulates text manipulation algorithms and data struc-

tures and the file system. It is sub-divided into the following sub-modules.
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5.2.4.1 File Output (@G_output.c)
The interface to the file system for writing the oracle source code files is encap-

sulated in the File Output module.

TABLE 15 - File Output Module Access Pograms

Name Type Arguments | Description

TOG_outlnit char *outname| Initialize the module data structure. Open
the appropriate output files.

TOG_outinclude TOG_Line Write text to the header file.

TOG_outDp TOG_Line Write text to the top of the code file.

TOG_outBody TOG_Line Write text to the body of the code file.

TOG_outClose Close all files.

5.2.4.2 Line Bukr (TOG_line.c)
A line (TOG_Line) is an ADT which represents a sequence of arbitrary length

strings of text. The Line Btdr module encapsulates the data structure for storing lines
and provides access programs for their manipulation.

TABLE 16 - Line Buffer Module Access Pograms

Name Type Arguments | Description

TOG_linelnit Initialize the module data structure.

TOG_linelnsert | TOG_Line | TOG_Line Insert text at the begining of the line.
char *text

TOG_lineAppend| TOG_Line | TOG_Line Append the text to the end of the line.
char *text

TOG_linePack TOG_Line | TOG_Line Pack the line into strings of less than width
int width characters.

TOG_lineGetExt | char * TOG_Line Return a bugr containing all of the text in
char * the line.

TOG_lineDestroy TOG_Line Destroy a line.

TOG_lineJoin TOG_Line | TOG_Line In1 | Append In2 to the end of In1.
TOG_Line In2
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5.2.5 Utility Module

The TOG uses the following general purpose modules to store and manipulate

data that can be referenced by integer or text keys.

5.2.5.1 1Id &ble (id&ble.c)

The Id Table module facilitates thefiient storage and fast retrieval of a set of

arbitrary data structures keyed by an integer identifier

TABLE 17 - Id Table Module Access Rigrams

Name Type Arguments | Description

IDTab_create | IDTab int size Create a table to store up to size items egch
int dsSize of dsSize bytes

IDTab_destroy IDTab Destroy a table.

IDTab_insert | bool IDTab Add an item to a table.
int id
void *dat

IDTab_remove| bool IDTab Remove an item from a table.
int id

IDTab_find void * IDTab Retrieve an item from a table.
int id

5.2.5.2 Namedble (nameable.c)

The Name &ble module facilitates thefefent storage and fast retrieval of a set

of names (character strings) and their integer identifiers. Elements in the set can be

retrieved quickly using either a name or an identifier as a key

TABLE 18 - Name Table Module Access Rigrams

Name Type Arguments | Description
name®BbleCreate Name®ble | int size Create a name table for up to size elements.
nameBbleDestroy Name®ble Destroy a name table.
name®BbleAdd bool Name®ble Add an element to the name table.
char *name
intid
nameBbleDelete bool NameTble Delete the named element from the table.
char *name
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TABLE 18 - Name Table Module Access Rigrams

Name Type Arguments | Description
nameBbleDeletelndex | bool Name®ble Delete the identified element from the table.
intid
nameBbleGetindex int Name®ble Return the id of the named element.
char *name
nameBbleGetName char * Name®ble Return the name of the identified element
intid
nameBbleGetFirstindex| int Name®ble Return the id of the first element in the table.
nameBbleGetNextindeX int Name®ble Return the id of the next element in the
table, or NAME_NOT_FOUND if there are
no more.

5.2.6 Status Reporting

The Status Reporting module is used by all modules of@ fbr the purpose

of monitoring and reporting the status of other modules.

5.2.6.1 Error dken (TOG errorc)
A status token is used to communicate success or failure status information

between modules and between programs within the same module. This token is accessed
through the Error dken module.

TABLE 19 - Error Token Module Access Rigrams

Name Type Arguments | Description

TOG_errSet TOG_Token Set the current error status.

TOG_errGet TOG_Token Return the current error status.

TOG_errGetStr| char * TOG_Token Return a descriptive string corresponding|to
the given error status.

5.2.6.2 Message Logging (sw eredr

To communicate information to the user for the purpose of debugging either the
TOG or a specification, a log file is used. The Message Logging module provides an inter-

face to this log file.
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TABLE 20 - Message Logging Module Access Bgrams

Name Type Arguments | Description

SW_error int level Log a message to the logfile at the given
char *format error level. ‘format’ is a printf style format
string and <ajuments> are the guments
for it.

<amguments>

SW__errorlnit int level Open the named file as the logfile. Messages
char *fileName| of level below ‘level’ are ignored.

SW_errorClose Close the lodfile.

5.3 Algorithm Overview

The algorithm for generating an oracle used by @& Tonsists of the follow-

ing steps:

1. Initialization: open files, initialize data structures.
2. Read Specification from file.
3. Create oracle program contexts.

4. Code Auxiliary Definitions: Create a C function for each, code the expres-
sion.

5. Code oracle programs: inDomain, inCompSet, inRelation.
6. Write and close files.
7. Free data structures.

5.3.1 Expession Coding

The mathematical expressions used in auxiliary definitions or in the specification
relation are translated into code in the following manner: The expression syntax tree is tra-
versed using a depth-first (i.e. innermost sub-expressions first) traversal and each sub-
expression is implemented in turn as described in Chapter 4. The code that gives the value
of each sub-expression is written into afeu{TOG_Line ) which is used to construct the
code for the ‘parent’ expression. This process continues until the root expression has been

implemented and the resulting code is used as the body of the procedure in the oracle.



6 Trial Application

In order to evaluate the practicality anteefiveness of the methods described in
this thesis, and to gain an appreciation of their strengths and weaknesses, the methods
were used to test some programs that are used in a commercial network management
application? This chapter gives a brief description of the programs to be tested and dis-

cusses the testing procedures, results of the testing and the lessons learned from this trial.

6.1 Program Overview

The programs to be tested together implement a module (hereafter known as the
hash modulgused to store elements (data structures) for quick retrieval using an integer
key. This is achieved using two hash tables, referred to as table A and table B. Three of the
modules access programs are testddshAdd, which adds an element to one of the
tablesHashFind , which retrieves an element from one of the tables without changing
the table, antHashRemove, which removes an element from one of the tables. Complete

specifications and source code of these programs are given in Appendix A.

6.2 Test Procedure

As discussed in Chapter 3, the methods described in this thesis are intended for
testing individual programs, not modules. The methods described in [38] and [40] would
be useful for testing the externally observable behaviour of this moduddettively test
the hash module using the methods described in this thesis, three oracle programs, one for

each access program, are used with a single test harness.

1. Provided by Newbridge Networks Corp., Kanata, Ontario.
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The input to the test harness is a series of commands, each of which instruct it to
either add, remove, or find an element in one of the two tables. Each command, together
with the state of the hash module before the command is executed, forms a test case for
one of the programs. The test case is only executed if it is in the competence set of the pro-
gram, as determined by the appropriateompSet program. The TES made up of the
test case together with the description of the state of the hash module following execution
and the values returned by the program, is passed to the apprioteltgion pro-

gram to determine pass or failure of the test.

Since the hash module is part of a commercial software system, it has previously
been carefully inspected and tested, so it is expected that no errors will be detected by fur-
ther testing. @ verify that the testing procedures does, in fact, detect errors when they
occurt it is necessary to introduce some errors into the hash module. This is done by mak-
ing small changes to the hash module code so as to slightly alter its behaviour such that it
no longer satisfies its specification. Each modified version of the hash module (presuma-
bly containing only one coding fault) is tested separately using the same set of test harness

commands.

6.3 Testing Results

Test suites for testing the hash module were generated randomly using a simple
program based on the C language uniform distribution random number gemaradoy. (
The tests were approximately uniformly distributed between the two tablds. 21 sum-

marizes the test suites anable 22 summarizes the results of the testing.

As can be seen from the information able 22 for tests 3 through 8, the testing
procedures were successful in detecting all of the errors inserted in the codegdhe lar

number of rejected test cases in tests 5 and 7 are due to the fact that the code modifications



TABLE 21 - Test Suite Descriptions

Number of commands

Suite | Add | Remove| Find | Total
A 3303 3363 3334 | 10000
B 4984 2516 2500 | 10000
C 489 256 246 | 1000

TABLE 22 - Summary of Hash Module Bst Results
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Test
# | Suite Code Modifications Passed Failed | Rejected
1 A Unmodified 10000 0 0
2 B Unmodified 10000 0 0
3 C Neglect to append existing list to added item in 881 119 0
HashAdd (line 182)
4 C Neglect to append added item to existing list in 511 489 0
HashAdd (line 183)
C Neglect to set ‘identifiein HashAdd (line 181) 3 6 991
C Always return NULL fromHashRemove 737 263 0
C Neglect to re-join list when element removed in 29 14 957
HashRemove (line 233)
8 C Use wrong size to calculate hash index for table B| 746 254
(line 123)

introduced for these tests were such that the integrity of the data structure was not main-

tained correctlyand thus the tests cases were not in the competence set of the programs.

Since the test harness copies the entire data structure before each command is

executed, and the time required to do this depends on the number of elements in the hash

tables, the time required to execute a suite of tests is dependent on the size to which the

tables grow and hence the ratio of ‘add’ to ‘remove’ commands in the suite. (Since ‘find’

commands do not change the size of the table, their frequency is not relevant to this analy-

sis.) Test #1, which used test suite A in which the frequency of ‘add’ commands is approx-

imately equal to that of ‘remove’ commands, took an elapsed time of about two and a half

minutes (approx. 15 ms per command). On the other hand, test #2, which used test suite
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B in which the frequency of ‘add’ commands was about twice that of ‘remove’ com-
mands, required an elapsed time of about five and a half minutes (approx. 34 ms per com-
mand). Both of these times are considered to be quite acceptable, especially considering

how long it would take to manually verify the results of 10 000 test executions.

6.4 Discussion

As was the intention, the process of using these methods to test commercial soft-
ware brought to light some of thefiktilties of using these methods in a realistic software

development situation. Thesefditilties are discussed in this section.

6.4.1 Specification Faults

One of the recognized dangers of using a formal specification to derive an oracle
for testing software is that the oracle is only as good as the specification from which it was
derived. On several occasions during preliminary testing of this module, it was thought
that a fault had been discovered. On closer examination, hquwtevas realized that the
fault was actually a fault in the specification, not the implementation of the hash module

itself. Of course, if there is no specification, then there is no hope of generating an oracle.

Careful inspection is an obvious method of removing faults from the specifica-
tion. Howeverif an oracle is generated from the specification, then other fault detection
methods are possible. Experience has shown that inspection of the oracle code itself is a
useful way of detecting faults in the specification—the structure of the code mirrors that of
the specification. Also, it is possible to test the specification by executing the oracle with a
TES for which the results are known (e.g. from a previous ‘correct’ version of the PUT or

a TES that has been manually produced or checked).

1. All times are elapsed time running under OSF/1 V2.0 on a lightly loaded DEC Alpha.



59

6.4.2 Bst Harness Construction

Since thanRelation programs in general take both starting and stopping
state descriptions asgaments, the value of the data structure in the starting state is cop-
ied to other variables by the test harness before executing theSBtiTa test harness is
based on the design of the data structure, and the data structure must be exported from the

PUT so that it can be accessed by the test harness.

In the case of the hash module, the data structure is complex enough that copying
it is itself a potentially error prone activity and, in fact, in preliminary testing some errors
were found in that portion of the test harness code. In addition, the progstimget-

Tables was required (an addition to the hash module) so that the data structure could be

exported.

An alternative design is to have the hash module access programs directly invoke
the test harness, which could copy the data structure and call the oracle programs as neces-
sary This implementation would likely involve more changes to the hash module code
than that described above, and hence it is more likely to adverkaiythe behaviour of
the module. (The module that is tested should be as close as possible to the module that

will be used in the real system.)

6.4.3 Non-Estable Poperties

There is a class of properties which are impossible or impractical to test using an
oracle generated using these methods Such properties are illustrated by the hash
module: the requirement that a program should call another program some number of
times, such as fddashOperateOnNext ; and properties of the data structure that are
not retained when the data structure is copied, such as the valuesartitgCheck

field.
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One of the ayjuments tdHashOperateOnNext is a pointer to a program
which is to be called bidashOperateOnNext for some subset of the elements in the
hash table. It is not possible to give a relational specificatiblasiiOperateOnNext
since its dict on the data structure and even the set of elements upon which it will act are
not known without knowledge of the program which is ituanent. It is, therefore, only
possible to specify the program in conjunction with the program which is to be passed as
its agument. Also, since the TES does not normally include information about which pro-
grams were called during the execution of the Rbd oracle can only check théeet on
the data structure of calling the given program, not that it was actually called the correct

number of times. A potential solution to this problem is discussed in S&c&on

ThesanityCheck field in thehashStruct  data structure is used as a fault
detection mechanism by this module, and presumably others in the system. The value of
sanityCheck is set to be equal to the location in memory of the instance of the data
structure (i.e. it is a pointer to itself). Unfortunatéfyhis data structure is copied to a new
location in memory (i.e. so that it can be used as part of the start state in the TES) the value
of sanityCheck  will no longer have the desired property since its location in memory
has changed, so it is not possible to ascertain the correctness of this value fronfrarcopy
this reason the integrity of this field cannot be checkedRglation for ‘before’ val-
ues of the data structure (this is overcome by the use e auxiliary predicate only

when referring to ‘aftévalues).

6.4.4 Oracle Generation
When using these methods to test multiple programs with a single test harness,
some of the assumptions made in the design of the oracle are notwalislidh invalid

assumptions are illustrated through the testing of the access programs of the hash module:
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1) that it is suicient to choose fixed names for the oracle access programs, and 2) that the
auxiliary predicates and functions should be implemented by procedures internal to the

oracle.

All oracles produced by theOG have access programs with the same names
(initOracle ,inRelation  ,inCompSet andinDomain ), so a name conflict
results if more than one oracle is accessed by the same test harness. In the case of the hash
module this was avoided by prefacing the name of each oracle program with the name of
the hash module program for which it is the oracle. For examplaRleéation pro-
gram forHashAdd is calledhashAdd_inRelation . For this prototype, the renaming
is done using a script controlled stream edibok clearly support for dérent oracle pro-

gram names could be added as an option for future versions ddte T

A large percentage of the auxiliary predicates defined in the hash module specifi-
cation are used by more than one of the program specifications, so there is adairly lar
amount of code duplication between the oracle code files. This duplication could be
avoided by producing an additional code file which contains the auxiliary function and

predicate implementations, and having each oracle use those programs as necessary
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7 Discussion and Conclusion
This chapter discusses potential applications for & a&nd some of the limita-

tions of the methods.

7.1 Applications for This Work

This work is applicable to the same problems as is any methodology that pro-
duces an executable test oracle. The most obvious of these is in the ‘unit testing’ phase of
software development during which small, relatively independent, components of the soft-
ware, or ‘units’, are tested independenflytest harness, such as that illustrated in
Figurel on page36, can be used to invoke a PUT for some set of test cases. Calls to the
oracle functions determine if each test case passed or failed, and these results are reported

so that the PUT can be corrected.

Another possible application for an executable oradle $#u testing: The code
for a software system can be modified by adding calls to the oracle programs for certain
critical components, so that failures of these components during system operation (e.g.
during system testing or beta trials) are reliably detected and reported. The behaviour of
the resulting program is similar to that of those developed using the methods described in
[18] or [35]. Forin-situtesting, no test harness need be constructed since the PUT is called

as usual by the system.

In [1], Antoy and Hamlet describe another way of using executable oracles to
which this work can be adapted. Their specifications, and hence their oracles, are some-
what diferent from those used in this work in that they use algebraic specifications of

ADTs and require that the user provide a ‘representation mapping’ to map from the con-
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crete data structure to the abstract specification. Their oracles thus test that properties
expressed in the specification hold in the abstract sense. Since relational program specifi-
cations, as used in this work, are in terms of the concrete data structure, no representation
mapping is needed—the oracle tests that the concrete data structure is modified in the pre-
scribed manneiTo use oracles as generated by tl&5Tio create a self-checking ADT

similar to Antoy and Hamlef'requires that a set of oracle programs be generated for each
access program for the ADT (we assume that an ADT consists of a set of access programs
that operate on a common data structure). Calls to these oracle programs can then be

embedded in the ADT code in the manner described in [1].

A further application of this work—that of enforced documentation consist-
ency—derives from the fact that the oracle is generated directly from the program docu-
mentation. It has been noted that one of the factors that reduces the value of program
documentation is the fact that it cannot be relied upon to be accurate (i.e. consistent with
the code) since programmers can easily modify the code without updating the documenta-
tion. If a TOG generated test oracle is always used to test a program before it is released,
then we are assured that the documentation is consistent with the code. A correct program

will only pass the tests if the documentation is accurate.

7.2 Limitations of the Method

As with any program documentation technique, relational program documenta-
tion is not ideally suited for all types of programs and hence itfisudifto apply this
work in some cases. One class of programs thaffisulito document using this method
are those that manipulate the data structure in a manner other than simply changing the
value of variables. Examples of this include dynamic memory allocation (i.e. increasing

the size of the data structure), input and output, and process control.flcidtdd
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express the characteristics of the stop state for these programs since relational operators to
represent such characteristics as “is a valid block of memory on the heap” do not exist, in

general. Some of these problems are being addressed by Brian Bauer in his M.Eng. thesis

[3].

Programs for which there is a requirement on the intermediate states that the
computer may be in during execution, such as “if condition C is true then call procedure
X" or “don’t call x more than n times” (as for the Dutch National Flag example discussed
in [28]), are also diffcult to document using these methods. This is because the specifica-
tions used in this work are relations which contain only the start state and stop state, and
do not allow any restrictions on the intermediate states. Even if these can be formally
specified, a TES does not include information that can be used to determine intermediate
states, so the oracle can not determine if such a program meets the specification. One,
somewhat artificial, solution to this problem is to add to the data structure information
which represents the relevant information about the intermediate states (e.g. the number of
times ‘x’ was called). Using that solution, it isfditilt to state in a relational specification,
and hence to test, that the added data structure elements actually represent the intended

information.

It is also possible to write a specification for which the oracle will not terminate
or will only terminate after an unreasonable amount of time. Non-termination can be
caused by either a non-terminating recursion in an auxiliary definition, errors in the defini-
tion of an inductively defined predicate or a non-terminating ‘primitive’ (i.e. defined in the
programming language) function. Slow termination can be caused, for example, by quan-
tification over lage sets. For example, consider the well known ‘shortest path problem’
for which a specification is given in [32]. An oracle based on this specification enumerates

all possible paths through the directed graph to ensure that there is no valid path with a
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smaller path weight—an O(n!) calculation. The responsibility for avoiding such non-ter-
minating or slowly-terminating oracles rests with the user (i.e. specifier/verifier). Non-ter-
mination can only be avoided by careful definition of auxiliary predicates/functions and
judicious use of well tested/verified primitive functions. For problems such as the shortest
path problem, it is not practical to test the whole program against the specification for
large graphs, but it may be practical to test some sub-programs called by it and then to use

other techniques to verify the top level code.

It is also possible for the PUT to be a non-terminating program in some cases.
Since the oracle programs can only be used either before the PUT is invoked or after it has
terminated, there is no means for these functions to detect that the PUT has not terminated
(or has exceeded some reasonable time limit). This responsibility must rest with the test
harness. Note, howeveéhat the oracle programs do provide a means of detecting test
cases for which the PUT should not terminate (i.e. those not in the domain of the program
relation) or may not terminate (i.e. those in the domain but not in the competence set)

throughinDomain andinCompSet , respectively

Finally, in some cases it may be possible to document a program using the meth-
ods used in this thesis in such a manner as to make it impossible to generate an executable
oracle from the documentation. For example, an oracle cannot be generated for programs
with a data structure that includes items for which the state (value) cannot be determined
by the oracle programs (e.g. the computer display). In these cases, some other form of ora-

cle or additional test equipment (e.g. terminal simulator) are necessary

7.3 Future Work

As described in Chapter 6, th©® has been tested and evaluated using some

small programs which has shown that the methods are viable in these cases. More experi-
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ence with applying it to a wide variety of industrial software applications would allow us
to draw more general conclusions about the viability and usefulness of the methods. Sug-
gestions for improvements in th©G and oracle designs would undoubtedly result from

that work.

Experience has shown that there are some auxiliary predicates and functions, or
forms of auxiliary predicates and functions, that frequently appear in specifications of the
form used in this work. For example, it is often the case that a specification states that
some set of variables are not changed—denoted by the auxiliary predicate ‘NC’ in [28]. In
this work the specific form of this predicate must be specified in the documentation (see
the definition for NC given in Sectid3 on pag4). It would be convenient if this defi-

nition could be produced automatically from a shorthand notation as used in [28].

It has been suggested that, in cases where the specification relation is a function,
(i.e. it contains only one stopping state for any given starting state), it would be possible
for the oracle to output a description of the correct stopping state for each test case and
allow the test harness to determine if the program is in the right state. It is not, in general,
possible to automatically generate such an oracle from specifications of the form used in
this work, even if they are functional. (e.g. Consider a specification for a program to solve
a system of n linear equations in n unknowns—the specification is functional but an oracle
that outputs the correct stopping state could not be generated autompticaby be
possible to automatically generate such oracles for some limited set of specifications but

that would require significant modifications to this work.

The TOG design was chosen carefully to allow the programming language used
in the oracle to be changed eadilyt only C has been used in this prototype. A more

broadly applicable ®G would allow the user to choose among several popular program-
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ming languages to facilitate interfacing with PaAritten in these languages. This could
be accomplished by providing several Code sub-modules and having the Oracle Genera-

tion module select the appropriate one according to thésuseguest.

Finally, the TTS is envisioned as a set of interworking tools for documenting
software. As the tools in this system mature, there will be opportunities to integrate related
tools so that they appear seamless to the Eseexample, theDG could be invoked as a
menu item from a tool for editing program documentation. This would require modifying
or replacing the User Interface and possibly the Specification Interface modules of the

TOG.

7.4 Conclusions

The development and application of th@G prototype has shown that it is fea-
sible to automatically generate executable test oracles from relational program documen-
tation. The experience of applying these methods to industrial software has shown,
however that there are some limitations to these methods:

* The documentation used to generate the oracle is almost as complicated as the

PUT and needs to be checked carefully

« Certain classes of program behaviour cannot easily be documented and tested
using these methods.

» A suitable test harness may be a non-trivial program, which must also be
checked carefully

Despite these limitations the availability of an executable oracle has the follow-

ing benefits for the software testing process:

- faster test analysis, hence reduced cost, and

« reliable failure detection, hence increased value.
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In addition, because the oracle is generated directly from the program documen-
tation, which can be ensured to be consistent with the program as described in7Skction

the value and usefulness of this documentation is greatly increased.
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Appendix A - Hash Module Documentation

71
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A.1 Introduction

This appendix gives the complete specifications and code for a small module
taken from a network management application developed by Newbridge Networks Corpo-
ration of Kanata, Ontarfo The specifications were developed by the author using the
source code and an informal module description provided by the module designers as a
guide. The specifications are used to generate an oracle and test the code as described in

Chapter 6.

A.2 Internal Design Documentation

A.2.1 Informal Description

The module implements a collection of hash tables which are used for storing
user data objects for quick retrieval. The data object contains a numeric key value which is
used to locate it in a table. Each table is constructed using a fixed length array of pointers
to the beginning of a linked list of data objects. Since each list is allowed to grow indefi-
nitely, the number of elements in each table is not bounded. A simple hashing algorithm is
used to calculate in which list an element is stored and each list is sorted in increasing

order

1. The code and design of this module are proprietary property of Newbridge Networks Corporation and are
used here by permission. This information may not be copied or used in any manner without explicit written
permission from Newbridge Networks Corp.
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A.2.2 User Definitions

A.2.2.1 Constants

The following constants define the size of the hash table arrays and are parame-

ters to the program function specifications, belBwoth constants must be powers of 2 (i.e.

o),

#def ine A_HASH_SIZE (1 << 10) /* 1024 for A hash table */
#def ine B_HASH_SIZE (1 << 4) /* 16 for B hash table */

The following constants are used to indicate which table is to be used by an

access program.

#def ine HASH_A 1 /* A structures */
#def ine HASH_B 2 /* B structures */

A.2.2.2 Data Structues

The following structure is used to contain a single element of this ukxa.

struct hashStruct {
struct hashStruct *sanityCheck;
/* can be used to help detect corruption */

unsigned int identif ier; /* the external key */
struct hashStruct *hashNext; /* ptr to next elem in list */
intdata; 1!

A.2.2.3 Hash ®bles

There are two tables implemented by this module, they are statically allocated as

follows.

static struct hashStruct *AHashArray[A_HASH_SIZE];

/* A hash table */
static struct hashStruct *BHashArray[B_HASH_SIZE];

/* B hash table */

1. Any user data could be defined here, a simple integer is used for testing.
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A.2.3 Program Functions

A.2.3.1 HashAdd

TABLE 23 - HashAdd Program Description

unsigned int

HashAdd(unsigned int thable, unsigned int theld, struct hashStruct *thePtr)

external struct hashStruct *AHashArray|[]
variables: struct hashStruct *BHashArray[]

CHashadd = (‘theTable = HASH_AL'theTable = HASH_B)
(Oi, AListqi) O sorted’AHashArray[i])) O
(0, BListqi) OO sorted’'BHashArray[i]))

RHashadd = ((‘theTable = HASH_A 'theTable = HASH_B)
(O, AListdi) O sorted’AHashArray[i])) O
(O, BListdi) O sorted'BHashArray[i])))

'theTable = HASH_AD

inTable'AHashArray
A_HASH_SIZE, 'theld) —inTable'AHashArray A_ HASH_SIZE, 'theld)
HashAdd = FAIL SUCCESS

AHashArray[]' ||| Aequa(’AHashArray(],

sangAHashArray'[hash('theld, A_HASH_SIZE)])

AHashArray'[]) insertedA'AHashArray[], AHashArray'[], 'theld, 'thePtn)
BHashArray[]' ||| Bequa('BHashArray][], Bequa('BHashArray[], BHashArray'[])
BHashArray'[])
'theTable = HASH_BO
inTable('BHashArray
B_HASH_SIZE, theld) —inTableg'BHashArray B_HASH_SIZE, theld)
HashAdd = FAIL SUCCESS
AHashArray[]' ||| Aequa(’AHashArray[], Aequa(’AHashArray[], AHashArray'[])
AHashArray'])
BHashArray[]' ||| Bequa{'BHashArray(], sanéBHashArray'[hash(theld, B_HASH_SIZE)])
BHashArray'[]) insertedf'BHashArray[], BHashArray'[], ‘theld, 'thePt)
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TABLE 24 - HashRemove Pogram Description

struct hashStruct*

HashRemove(unsigned int thedle, unsigned int theld)

external variables:

struct hashStruct *AHashArray(]
struct hashStruct *BHashArray(]

CHashrRemove= (‘theTable = HASH_A]'theTable = HASH_B)]

(O, AListqi) O sorted’AHashArray[i])) U

(Oi, BListqi) O sorted’BHashArrayl[i]))
Ruashremove= ((‘theTable = HASH_ALI'theTable = HASH_B)

(0i, AListdqi) O sorted’AHashArray[i])) O
(O, BListdi) OO sorted'BHashArray[i])))

'theTable = HASH_AC
=inTable'AHashArray([],
A_HASH_SIZE, 'theld) inTable('AHashArray[], A_ HASH_SIZE, 'theld)
HashRemove | HashRemove = NULL | sameDatéHashRemovgfindElenf'AHashArray[hash('theld,
A_HASH_SIZE)], 'theld))
AHashArray'[] | Aequa('AHashArray][], sangAHashArray'[hash('theld, A HASH_SIZE)])
AHashArray'[]) deletedAAHashArray[], AHashArray'[], ‘theld)
BHashArray'[] | Bequa('BHashArray][], Bequa('BHashArray[], BHashArray'[])
BHashArray'[])
'theTable = HASH_BO
—inTablg'BHashArray([],
B_HASH_SIZE, theld) inTable('BHashArray[], B_HASH_SIZE, theld)
HashRemove | HashRemove = NULL | sameDatéHashRemovgfindElenfBHashArray[hash('theld,
B_HASH_SIZE)], 'theld))
AHashArray'[] | Aequa('AHashArray][], Aequa('AHashArray[], AHashArray'[])
AHashArray'[])
BHashArray'[] | Bequa('BHashArray][], sang¢BHashArray'[hash('theld, B_HASH_SIZE]])
BHashArray']]) deleted®BBHashArray[], BHashArray'[], ‘theld)
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A.2.3.3 HashFind

TABLE 25 - HashFind Program Description

struct hashStruct*
HashFind(unsigned int thable, unsigned int theld)

external
variables: struct hashStruct *AHashArray(]
struct hashStruct *BHashArray[]

CHashFing = (theTable = HASH_A theTable = HASH_B)
(O, AListdqi) O sorted’AHashArray[i])) O
(4, BListdi) O sorted'BHashArray[i]))

RHashrind = Aequa('’AHashArray[], AHashArray'[])
Bequa('BHashArray[], BHashArray'[])]

((theTable = HASH_A['theTable = HASH_B)]

(O, AListdqi) O sorted’AHashArray[i])) O

(O, BListdi) O sorted'BHashArray[i])))

‘theTable = HASH_A ‘theTable = HASH_B
HashFind | sameDataHashFind sameDatédHashFind
findElenf'AHashArray[hash('theld, findElenf'BHashArray[hash('theld,
A_HASH_SIZE)], 'theld) B_HASH_SIZE)], 'theld)

A.2.4 Auxiliary Predicate Definitions

AListqunsigned int i)
2 inductiveDef[ {0}, i+1, i < (A_HASH_SIZE-1) ]

BListqunsigned int i)
2 inductiveDef[ {0}, i+1, i < (B_HASH_SIZE-1) ]

Aequa( struct hashStruct * before[], struct hashStruct * after[], unsigned int Id)
4 (Oi, AListgi) O (listEqualbeforeli], after[i]))

Bequa( struct hashStruct * before[], struct hashStruct * after[], unsigned int Id)
2 (Oi, BListgi) O (listEqualbeforeli], after]i]))
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deletedA struct hashStruct * before[], struct hashStruct * after[], unsigned int Id)
2 (0Oi, AListgi) O ((=(hash(ld, A_HASH_SIZE) = ijllistEqualbefore][i], after[i])) 0
deletedLigtbefore[i], after[i], 1d)))

deletedB struct hashStruct * before[], struct hashStruct * after[], unsigned int Id)
2 (0Oi, BListgi) O ((-=(hash(ld, B_HASH_SIZE) = i)llistEqualbefore][i], after[i])) 0
deletedLigtbefore[i], after[i], 1d)))

deletedLisfstruct hashStruct *before, struct hashStruct *atiasigned int Id)
2 - (before = NULL)O

before->identifier = Id - (before->identifier = 1d)

listEqualbefore->hashNext, after] sameDatébefore, after)]
deletedLigtbefore->hashNext, aftethashNext, 1d)

inList(struct hashStruct *list, unsigned int Id)
2 - (list = NULL) O (list->identifier = Id0inList(list->hashNext, Id))

insertedA struct hashStruct * before[], struct hashStruct * after[], unsigned int Id,
struct hashStruct *ptr)
2 (0Oi, AListgi) O ((=(hash(ld, A_HASH_SIZE) = ijllistEqualbefore][i], after[i])) 0
insertedListbefore[i], after[i], Id, ptr)))

insertedB struct hashStruct * before[], struct hashStruct * after[], unsigned int Id,
struct hashStruct *ptr)
2 (Oi, BListqi) O ((=(hash(ld, B_HASH_SIZE) = i)llistEqualbefore][i], after[i])) 0
insertedListbeforeli], after]i], 1d, ptr)

insertedLisgstruct hashStruct *before, struct hashStruct *aftesigned int I1d,
struct hashStruct *ptr)
2~ (after = NULL)O

after>identifier = Id - (after>identifier = I1d)
after = ptr[J] sameDatébefore, after)]
after>data = pt>datall insertedListbefore->hashNext, aftethashNext,
listEqualbefore, after-hashNext) | 1d, ptr)

inTable(struct hashStruct *table[], unsigned int size, unsigned int I1d)
2 inList(table[hash(ld, size)], Id)
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listEqualstruct hashStruct *left, struct hashStruct *right)
df

left = NULL - (left = NULL)
right = NULL true false
= (right = NULL) || false sameDatdeft, right) [J
listEqualleft->hashNext, right->hashNex

sameDatéstruct hashStruct * left, struct hashStruct *right)
2 (left = NULL Oright = NULL) O (= (left = NULL Oright = NULL) O
(left->identifier = right->identifier)] (left->data = right->data))

sand struct hashStruct * list)
2 (list = NULL) O ((list = list->sanityCheckl)] - (list->hashNext = NULL)Y]
((list->identifier < list->hashNext->identifief) san€list->hashNext)))
sorted struct hashStruct * list)

2 (list = NULL) O (= (list->hashNext = NULL)J
((list->identifier < list->hashNext-> identifier) sortedlist->hashNext)))

A.2.5 Auxiliary Function Definitions

struct hashStruct findEleng struct hashStruct *list, unsigned int Id)

&
= (list = NULL) O = (list = NULL) O
list = NULL (list->identifier = 1d) - (list->identifier = Id)
NULL list findElenglist->hashNext, 1d)




A.3 Hash Module Code

A.3.1 hash.c

/ * *kkkkkkkk * *kkkkkkkk

* $RCSS ile: hash.c,v $ $Revision: 1.5 $
* $Date: 1994/12/19 19:24:33 $

* $State: Exp $

*

* Example code.

* REVISION HISTORY

* $Log: hash.c,v $

* Revision 1.5 1994/12/19 19:24:33 peters
* Added hash_getTable.

*

* Revision 1.4 1994/12/15 20:23:47 peters
* Made ANSI compatible.

*

* Revision 1.3 1993/11/05 20:54:19 peters
* Changed AAA to A and BBB to B.

*

* Revision 1.2 1993/09/03 19:02:12 peters
* Reformated to improve readability.

*

* Revision 1.1 1993/09/03 18:10:43 peters

* |nitial revision
*

*

*% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkkhkkkhkk *% xx/

File: hash.c

Contents:
This f ile provides routines that hash a 32-bit unsigned external ID in
orderto f ind the element within some data structures. New structure types
can be added by def ining a new HASH_XXX constant and adding a new case
statement to the routines.

This f ile contains the following exported routines:
HashAdd
HashFind
HashRemove
HashOperateOnNext

This f ile contains the following local routines:
DoFind
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Copyright 1991,1992,1993 Newbridge Networks Corporation.

* *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkkhkkkhrk *% * *kkkkk x/

#include <stdlib.h>
#include “sw_error.h”
#include “stuff.h”
#include “hash.h”

/* The following structure must be a valid overlay for the f irst part */
[* of the structure to be hashed. */

struct hashStruct {

struct hashStruct *sanityCheck; /* can be used to help detect corruption */
unsigned int  identif ier;  /* the external key */

struct hashStruct *hashNext; [* ptr to next structure in hash list */

I

/* The following arrays are used to hold the actual hash tables. They are */

/* NOT sized to hold the maximum number of expected elements but instead are */

/* sized to hold the number of elements for the “average” use of the */

[* structures.*/

/* It must be ensured that in the largest expected use of the structures, */

/* the linear scanning required to handle overf lows will not be greater */
/* than is desired. To provide for a simple and cheap hash function, the */

/* size of the arrays MUST be a power of two. Note that it is trivial to */

/* remove this restriction if ever required. */

#def ine A_HASH_SIZE (1 << 10) /* 1024 for A hash table */
#def ine B_HASH_SIZE (1 << 4) /* 16 for B hash table */

static struct hashStruct *AHashArray[A_HASH_SIZE]; /* A hash table */
static struct hashStruct *BHashArray[B_HASH_SIZE]; /* B hash table */

/* Now def ine the hash function itself. We know that the hash module will */

/* be used for structures whose identif iers are assigned in increasing order */

/* starting from 1, i.e. 1, 2, 3, ... Thus, a trival hash function is to */

/* AND the external ID with (XXX_HASH_SIZE - 1). This will provide hash */

/*indexes of 1, 2, 3, ..., and then wrap around to 0, 1, 2, ... etc. */

[* Thus, the array will get f illed up, and then wrap around and overf low */
/* will start. Of course, by then some of the hash entries could have */

/* been freed up. */

#def ine HASH_FUNC(id,size) ((id) & ((size) - 1))
/*
*/

/ * Fkkkkk * Fkkkkkkkkkk * Fkkkkk

Routine: DoFind

Description:
Searches for the specif ied external id. TRUE is returned if the
id was found in the hash table, and FALSE otherwise. In addition,
a pointer to the hashNext f ield of the preceeding item is returned.

Note that if there is no preceeding item, then the pointer points



to the hash table array entry, i.e. to the head of the linked list.

Fkkkkkkkkkkkkk Kkkkkkkkkkk xxx/

static unsigned int

DoFind(register unsigned int theTable, /* which hash table is being used */
register unsigned int theld, /* the external id to be hashed */
register struct hashStruct ***trailPtr)/* trailing ptr for searching */

{
register struct hashStruct **hashArrayPtr; /* ptr into hash array */
register struct hashStruct *curPtr; [* ptr to current item */
register int loopCount; * count for inf inite check */

switch (theTable) {
case HASH_A:
hashArrayPtr = &AHashArray[HASH_FUNC(theld, A_HASH_SIZE)];
break;
case HASH_B:
hashArrayPtr = &BHashArray[HASH_FUNC(theld, B_HASH_SIZE)];
break;

}

*trailPtr = hashArrayPtr;  /* ptr to hashNext f ield of preceeding item */

/* If the hash entry if free, then then item does not exist yet. */
if ((curPtr = *hashArrayPtr) == NULL)
return(FALSE);

/* We have a collision for the hash index, so now we have to search */
/*and try to f ind the item. When the search terminates, trailPtr */
/* points to the hashNext pointer of the previous item. If the item */

/* was not found, then trailPtr points to the hashNext pointer of what */

/* should be the previous item. */

/* We know that curPtr cannot be NULL to start, so use a do while loop. */
/* Make sure that we do not loop inf initely (which could happen if the */
/* linked list has been corrupted). */
loopCount = MAX_HASH_LOOP;
do {

SanityCheck(curPtr);

Checklnf initeLoop(loopCount);

if (theld <= curPtr->identif ier)

return(theld == curPtr->identif ier); /* return TRUE if item found */
*trailPtr = &curPtr->hashNext; /* point to hashNext of new prev
item */

curPtr = curPtr->hashNext; [* point to next item in list */

} while (curPtr I= NULL);

return(FALSE); /* if we are at the end of list then item not found */
} *DoFind */

¥
*/

[** * *kkFkhIKIFKK * *kkFFIIIIFFRIKIK
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Routine: HashAdd

Description:
Adds the specif ied id and block of storage to the hash table. It
is an error to add an an item to the hash table if it already exists.

/
unsigned int /* returns SUCCESS or FAILURE */
HashAdd(register unsigned int theTable, /* which hash table is being used */
register unsigned int theld, /* the external id to be added */
register unsigned int *thePtr) /* pointer to the item to be added */
{
register struct hashStruct *itemPtr; /* ptr to item being added */
struct hashStruct **trailPtr; [* ptr to next ptr of previous item */

if (DoFind(theTable, theld, &trailPtr)) {
SW_error(ERR_SERIOUS, “Attempt to add existing external id %u”, theld);
return(FAIL);

}

/* The item was not found, so insert it into the list. */
itemPtr = (struct hashStruct *)thePtr;

itemPtr->identif ier = theld;
itemPtr->hashNext = *trailPtr; /* item’s next is the previous’ next */
*trailPtr = itemPtr; [* previous’ next is now the new item */
return(SUCCESS);

}* HashAdd */

/*

*/

Routine: HashFind

Description:
Returns the address of the item with the specif ied id. If no item
currently exists with the id, then NULL is returned.

* * * * * * /

unsigned int * [* return address of item with external id */
HashFind(register unsigned int theTable, /* which hash table is being used */
register unsigned int theld) [*the external id to be found */

{

struct hashStruct **trailPtr; [* ptr to next ptr of previous item */

if (DoFind(theTable, theld, &trailPtr))
return((unsigned int *)*trailPtr);
else
return(NULL);
}Y* HashFind */

/*
*
/




Routine: HashRemove

Description:

Removes the item from the hash table with the specif ied id.

an error try to remove something which does not exist in the hash
table. The storage of the item itself is NOT freed. This is the
responsibility of the caller. The address of the removed item

is returned, or NULL if the item could not be found.

* Kkkkkkkk * Fkkkkkkk * r\nn/

unsigned int * [* return address of item with external id */
HashRemove(register unsigned int theTable, /* which hash table is being used */
register unsigned int theld)  /*the external id to be deleted */
{
register struct hashStruct *itemPtr; /* ptr to item being deleted */
struct hashStruct **trailPtr; [* ptr to next ptr of previous item */

if (DoFind(theTable, theld, &trailPtr)) {
/* Remove the item from the linked list and return address of item. */
itemPtr = *trailPtr;
*trailPtr = itemPtr->hashNext; /* previous’ next is now item’s next */
return((unsigned int *)itemPtr);
}else {
SW_error(ERR_SERIOUS, “Attempt to remove non-existant external id %u”,
theld);
return(NULL);
}

}* HashRemove */

/%
*/

/ * *kkkkkkkk * *kkkhkkkk * *kkk

Routine: HashOperateOnNext

Description:
Calls the passed in function with the pointers found in the specif
hash table. Will keep calling the specif ied function until that
function returns something other than SUCCESS.
Note that theld that is passed in is used as a place holder within the
hash table, and does not mean that all ids > theld will be operated on.

* *kkkhkkkhkkhhkkkhkk *% *% *hkkhkkkhkkkhkkkkkk *% * *kkkkk x/

unsigned int * /* return address of item with external id */
HashOperateOnNext(
register unsigned int theTable, I* which hash table is being used */

Itis

ied

register unsigned int theld, [* seed value to f ind the next item */

int  (*callActionFunc)(unsigned int *),/* the funnction to be called */
int *rc) /* the return code of the called routine */
{
struct hashStruct **trailPtr; /* ptr to next ptr of previous
item */
register struct hashStruct *curPtr;  /* ptr to current item */
register int loopCount; /* count for inf

inite check */

83



84

register unsigned int hashindex; /* the index of the hash array */
register unsigned int startindex; /* starting hashindex */

register unsigned int hashSize; /* size of hash table being used */
curPtr = NULL;

switch (theTable) {

case HASH_A:
hashSize = A_HASH_SIZE;
break;

case HASH_B:
hashSize = B_HASH_SIZE;
break;

default:
return(NULL);

}

startindex = HASH_FUNC(theld, hashSize);

if (DoFind(theTable, theld, &trailPtr))

curPtr = (*trailPtr)->hashNext; /* point to next item in list */
else

curPtr = *trailPtr;

/* Make sure that we do not loop inf initely (which could happen if the */
/* linked list has been corrupted). */
loopCount = MAX_HASH_LOOP;

for (hashindex = startindex; hashindex < hashSize; hashindex++){
if (hashindex != startindex) { /* f irst pass may have curPtr already set */
switch (theTable) {
case HASH_A:
curPtr = AHashArray[hashindex];
break;
case HASH_B:
curPtr = BHashArray[hashiIndex];
break;
}
}

/* We know that curPtr could be NULL to start, so use a while loop. */
while (curPtr != NULL) {

SanityCheck(curPtr);

Checklinf initeLoop(loopCount);

*rc = (*callActionFunc)((unsigned int *)curPtr);

if (*rc = SUCCESS)

return((unsigned int *)curPtr); /* address to pointer of current item */

curPtr = curPtr->hashNext; /* point to next item in list */

}

}
return(NULL);

}* HashOperateOnNext */

#ifdef TEST

[** *kkFhrIKI KKK * Kk kFIIRIIFFIIKRK

Routine: hash_getTable



Description: Only included when the “‘TEST’ macro is def ined. This routine
exports the addresses of the tables so that they can be copied for

testing purposes.

void

hash_getTables(void **tableA, int *sizeA, void **tableB, int *sizeB)

{
*tableA = (void *)AHashArray;

*sizeA = A_HASH_SIZE;
*tableB = (void *)BHashArray;
*sizeB = B_HASH_SIZE;

}

#endif

A.3.2 hash.h

[** *kkkkkkkkkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkhrk *%

* $RCSS ile: hash.h,v$ $Revision: 1.3 $
* $Date: 1994/12/19 19:32:50 $
* $State: Exp $

* Include f ile for example source hash.c

*%

* REVISION HISTORY

*$Log: hash.h,v $

* Revision 1.3 1994/12/19 19:32:50 peters

* Use ANSI protyping. Added hash_getTables().
*

* Revision 1.2 1993/11/05 20:55:37 peters
* Changed AAA to A and BBB to B.
*

* Revision 1.1 1993/09/03 18:14:31 peters
* [nitial revision

File: hash.h

Description:

This f ile contains the declarations of extern variables and routines

which are needed for users of the hash module.
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Copyright 1991,1992,1993 Newbridge Networks Corporation.

Fkkkkkkkkkkkkk Kkkkkkkkkkk xxx/

/* The following def initions indicate which hash table is being accessed */
#def ine HASH_A 1 /* A structures */
#def ine HASH_B 2 /* B structures */

extern unsigned int HashAdd(unsigned int theTable, unsigned int theld,
unsigned int *thePtr);
extern unsigned int * HashFind(unsigned int theTable, unsigned int theld);
extern unsigned int * HashRemove(unsigned int theTable, unsigned int theld);
extern unsigned int * HashOperateOnNext(unsigned int theTable,
unsigned int theld, int (*callActionFunc)(unsigned int *), int *rc);
#ifdef TEST
extern void hash_getTables(void **tableA, int *sizeA, void **tableB, int
*sizeB);
#endif

A.3.3 stuff.h

I‘ * * * * * * * *

* $RCSf ile: stuff.h,v$ $Revision: 1.3 $
* $Date: 1994/12/19 19:36:44 $

* $State: Exp $

*

* Include f ile for util.c

* REVISION HISTORY

*$Log: stuff.h,v $

* Revision 1.3 1994/12/19 19:36:44 peters

* Removed uneeded def ines of NULL, TRUE & FALSE.
*

* Revision 1.2 1994/12/19 19:34:02 peters

*Def ine ERR_SERIOUS & MemoryPanic()

*

* Revision 1.1 1993/09/03 18:16:37 peters

* |nitial revision
*

*

#def ine SUCCESS 1
#def ine FAIL 0

#def ine ERR_SERIOUS SW_SERIOUS

#def ine MAX_HASH_LOOP 100000



#def ine CHECK_FAILURE 1
#def ine INFINITE_LOOP 2

#def ine SanityCheck(ptr) \
if ((ptr) != (ptr)->sanityCheck) \
{ MemoryPanic(CHECK_FAILURE); }

#def ine Checkinf initeLoop(theCount) \
if (--(theCount) == 0) \
{ MemoryPanic(INFINITE_LOOP); }

#def ine MemoryPanic(code) printf(“Memory Panic: %d”, code); exit(code)
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Appendix B - TOG Input File Format
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B.1 Format Description

The TOG input file is a text file containing the complete specification for a pro-
gram including all of the components described in Se@i@nThe components are iden-
tified by a single integer and can be arranged in any order in the file with the exception that
the user definitions must be the last component. All expressions are in the format output
by theExpnSave access program of thefle Holder module, and can thus be input
using theExpnLoad access program. The following sections describe the format of each

component type.

B.1.1 Constants

All constant names must be defined in a single table in the file. The beginning of
the table is identified by the number 1 on a line by itself. The first line of the table is a
number indicating the number of lines to folldgach subsequent line is a number which

is the symbol Id followed by a period (“.”) and the symbol name.

B.1.2 \ariables

All variable names and types are defined in two adjacent tables in the file. The
beginning of the first table is identified by the number 2 on a line by itself. The first table
gives the Id and name for each variable in the same format as used for constants. The sec-
ond table begins on the line immediately following the last line of the name table and
gives the Id and type of each variable in the same format. The type of a variable is repre-
sented by the string of characters that would form its declaration in the C programming
language, with the two character combination “%s” being a place-holder for the variable

name. It is an error for the name and type tables to not contain the same set of Ids.
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B.1.3 Program Specification

The beginning of the program specification is indicated by the number 6 on a line
by itself. It is followed by the arity and formalgarment Id list for the characteristic pred-
icate of the competence set, and then by the expression which is that characteristic predi-
cate. Following that is the arjtiormal agument Id list and expression for the
characteristic predicate of the domain of the specification relation and finally théoarity
mal agument Id list and expression for the characteristic predicate of relational compo-
nent of the specification relation. It is an error for a specification file to contain more than

one program specification.

B.1.4 Auxiliary Predicate Definitions

The beginning of an auxiliary predicate definition is indicated by the number 3.
It is followed by the Id, name, arity and formafjament Id list. The expression that is the
definition of the predicate begins on the following line and is in a form that can be read by

the Table Holder

B.1.5 Auxiliary Function Definitions

The beginning of an auxiliary function definition is indicated by the number 4.
The first line of the definition has the Id, name, and type of the auxiliary function. On the
next line the first number is the arity of the function and it is followed by the Id of each of
the formal aguments and finally the Id of the characteristic predicate of the function
domain, or -1 for a total function. The auxiliary function definition expression begins on

the next line.
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B.1.6 Inductively Defined Pedicate Definitions

The number 5 identifies the beginning of an IDP definition. It is followed by the
Id and name of the IDP and the type of iguanent. The next line contains the definition
of the ‘I' set which is a number (the cardinality of the set) and a string which is used to ini-
tialize an array to represent that set. The next line contains the Id of the G function (an

auxiliary function) and that of the Q predicate (an auxiliary predicate).

B.1.7 Built-in Functions

The number 8 on a line by itself identifies the beginning of a built-in function
declaration. This describes the method for generating code to invoke a function that is part
of the programming language. The description consists of the Id, name and arity of the
function followed by a list of arity+1 strings, each on a separate line, which, when written

surrounding the actualgument representations, will invoke the function.

B.1.8 User Definitions
The number 7 identifies the beginning of the user definitions text. All of the text
following it in the file is taken to be the user definitions text and is output to the beginning

of the oracle code file (oracle.cc).
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B.2 Formal Grammar
<spec> ::= <item_list> <user_def>
<item_list> ::= <item> | <item> <item_list>

<item> ::= <const_table> | <var_table> | <aux_pred> | <aux_func>
| <builtin_func> | <ind_pred> | <prog_relation>

<const_table> ::= 1 CR <num> CR<const_list>

<const_list> ::= <const> | <const> <const_list>

<const> ::= <id> . <name>CR

<var_table> ::= 2 CR<num> CR <var_name_list> <num> CR<var_type_list>
<var_name_list> ::= <var_name> | <var_name> <var_name_list>

<var_hame> ::= <id> . <name>CR

<var_type_list> ;1= <var_type> | <var_type> <var_name_list>

<var_type> ::= <id> . <type> CR

<aux_pred> ::= 3 <id> <name> <arg_list> CR<expn>

<aux_func> ::= 4 <id> <name> <type> CR<arg_list> <id> CR<expn>
<builtin_func> ::= 8 CR<id> <name> <num> CR<form_list> CR
<form_list> ::= <form> | <form> CR <form_list>

<ind_pred> ::= 5 <id> <name> <type> CR<num><I> CR<id> <id>
<prog_relation> ::= 6 CR<arg_list> CR<expn> <arg_list> CR<expn>

<arg_list> CR<expn>
<user_def> ::= 7 <text>
<arg_list> ::= <num> <args>

<args> := <id> | <id> <args>

1. CR represents the new-line character
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TABLE 26 - Formal Grammar Symbols

Symbol Format Interpretation
As produced by theable :
<expn> An expression.
Holder
<torms Anv characters The M form is the text to precede the
y ' ith argument to the built in function
o The elements of the ‘I' component of
<I> A C array initialization. the IDP
<id> An integer A object identifier
<name> | Alphanumeric characters. The name of an object.
<num> A natural number The number of elements to follow
<text> Any characters. The user definitions text.
<type> A C type. The type of the variable or function).
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