
Design-level Detection of Interactions in Aspect-Oriented Systems

Pouria Shaker and Dennis K. Peters

Faculty of Engineering and Applied Science,
Memorial University of Newfoundland, St. John’s, NL, Canada, A1B 3X5

{pouria, dpeters}@engr.mun.ca

Abstract. The behaviour of an aspect-oriented (AO) system is the woven behaviour of system concerns
(core and aspect). Care must be taken that the woven behaviour of two concerns (possibly compound,
i.e. the result of weaving two or more primitive concerns) satisfies both existing critical correctness
properties of the behaviour of each individual concern and new desired correctness properties of the
woven system. If this set of properties is inconsistent, we say that two or more of the concerns involved
undesirably interact. We present a process for detecting undesirable concern interactions in AO systems
at the design phase of the software development process, which combines light-weight syntactic
analysis and formal verification of design models expressed in the UML and a simple domain-specific
statechart weaving language (SWL).

1 Introduction

Separation of concerns (SOC) is the ability to deal with systems one concern at a time. With ideal SOC one
can develop, test, and modify system concerns in isolation and evolve systems to handle new concerns
without changing existing parts of the system. In 1972, Parnas suggested that this ideal can be approached
through the technique of modularization [1]; that is, localizing each concern in a module. Over the years,
programming paradigms have emerged to help developers achieve better SOC by providing better
modularization mechanisms. The Object-Oriented (OO) paradigm is currently the most popular; its primary
unit of modularity, the class, improves SOC by grouping together data and behaviour related to a single
concern; however not all concerns of a system can be simultaneously localized in classes. Often in OO
systems, concerns related to the primary functionality of the system (core concerns) are localized in classes,
while other concerns (cross-cutting concerns) such as logging, caching, security, thread safety, etc. are
scattered across several classes. The Aspect-Oriented (AO) paradigm takes another step towards ideal SOC
by introducing a new unit of modularity: the aspect. Aspects localize the data and behaviour of cross-
cutting concerns and specify points in the structure or execution of the core (join points) where aspect
behaviour (advice) applies. A weaving mechanism interleaves the execution of the core with that of the
aspects.

By untangling cross-cutting behaviour from core behaviour, the AO paradigm makes it easier to reason
about individual concern behaviour. Reasoning about overall system behaviour however, becomes a
challenge as it requires examining the woven behaviour of the core and the aspects, which may or may not
be explicitly available to the developer in a comprehensible form (this depends on the workings of the
weaving mechanism). This situation can give rise to unanticipated anomalies in the behaviour of the woven
system. The desired properties of the woven behaviour of two concerns (possibly compound, i.e. the result
of weaving two or more primitive concerns) are (1) existing critical correctness properties of the behaviour
of each individual concern and (2) new correctness properties of the woven system; if this set of properties
is inconsistent, we say that two or more of the concerns involved undesirably interact. In (1) we say critical
correctness properties, to distinguish between desired and undesired interactions. The very purpose of
weaving an additional concern may be to violate existing properties of constituent concerns in favor of
achieving new properties for the woven system. In the remainder of the paper the term interaction will be
used to mean undesired interaction. Less formally, each concern of a system represents a system goal; if
two concerns have conflicting goals, then they interact. Consider an example from [2] involving an
operating system core acted on by security and logging aspects. The security aspect encrypts arguments of
method calls while the debugging aspect logs method calls for debugging purposes. If logging precedes
security, security is compromised by a plain log file; and if security precedes logging, logging is

compromised by an encrypted log file that is not very useful for debugging. Other examples of interacting
concerns include logging vs. performance, or performance vs. persistence.

The sooner an error is found in the software development process the easier it is to fix. In this paper we
present a process for detecting concern interactions at the design stage using both a syntactic analysis of the
design model as well as formal verification of behavioural properties.
 We model core and aspect concerns separately using UML class and statechart diagrams and specify

rules for weaving core and aspect behaviour in our proposed statechart weaving language (SWL). The
SWL offers a rich join point model, support for specifying execution order for the core and aspects at
join points as well as advice that can conditionally suppress core execution, and the introduction of new
(signal or call) events in the core by aspects.

 We present a static analysis of the design model (UML + SWL) that produces a report listing potential
sources of interaction.

 We present two algorithms for weaving core and aspect models into woven UML class and statechart
diagrams. The first approach supports all features of the SWL but results in high verification complexity.
The second approach lowers verification complexity at the expense of losing support for some SWL
features.

 We propose the use of existing UML verification methods (such as [3] [4] [5]) to verify the woven
model against behavioural properties (although formal verification of UML models is still a research
topic, we view it as an available technology).

 We provide a proof of concept realization of the process where we express UML models in Textual
UML Format (UTE) the proprietary input language of Hugo/RT [3]; we provide tool-support for
automating the static analysis and weaving of the UTE model based on the SWL specifications; we use
Hugo/RT to translate the woven UTE model into a Promela model that can be model-checked with Spin
[6].
Our work is dinguished from previous efforts in design-level detection of concern interactions (see

Section 6) in that it adopts mainstream design notation (the UML) combined with a simple domain-specific
weaving language to minimize the learning curve in producing design models while combining the
strategies of previous approaches, namely light-weight syntactic analysis and formal behavioural analysis,
in detecting both core/aspect and aspect/aspect interactions.

The rest of this paper is organized as follows: Section 2 presents AO modeling with UML and our
proposed SWL with a bounded buffer case study (adopted from [7]). Section 3 describes the syntactic
analysis on the design model. Section 4 describes our proposed weaving algorithms. Section 5 presents a
summary and analysis of related work (additional references to related work have been made in other
sections where appropriate). Section 6 presents the conclusion and directions for future work.

2 Aspect-Oriented Modeling Approach

The application of AO technology at the design stage of the software development process is termed
aspect-oriented modeling (AOM); for related research see the series of AOM workshops [8]. We sought a
modeling approach that makes use of mainstream design notation (such as the UML) and lends itself to
formal verification. To this end we adopted an extension/modification of the approach in [9] which we
present below. To illustrate our approach we will use the bounded buffer case study from [8]. We consider
a FIFO buffer core regulated by synchronization and mutual exclusion aspects; synchronization ensures
that get/put requests are blocked when the buffer is empty/full; mutual exclusion ensures that the buffer can
be accessed by one client (producer or consumer) at a time. In the first step we model the structure and
behaviour of the core and aspects separately using UML class and statechart diagrams (see Figure 1). Note
that in Figure 1, objects communicate asynchronously via signal events. The behaviour associated with a
signal event is fully specified by the action component of the transition triggered by the signal event; for
example, the behaviour associated with the add signal event in the Synch class is fully specified by the
action item++.

Next we specify weaving rules in our proposed SWL, the abstract grammar of which is shown in Figure
2. In a weaving rule specification we declare aspects and precedence rules governing aspect ordering. An
aspect declaration points to the class that models the aspect and specifies which (core) classes the aspect
crosscuts (a class cannot be declared as both an aspect and a core). For each core we can introduce new

event receptions for the core statechart and specify advice that applies at join points raised by the core
statechart. Supported join point kinds are (note that arguments of the join point kinds, underlined in the
grammar of Figure 2, are regular expressions describing sets of state, event, or object names):
 inEvent‹st, ev›: corresponds to the run-to-completion processing of an event (whose name is)

matched by ev by the core statechart when it is in a state matched by st.
 outEvent‹obj.ev›: corresponds to the execution of an event invocation action for which the event

is matched by ev and the target object is matched by obj.
 stateEntry/Exit‹st›: corresponds to the execution of entry/exit actions of a core state matched

by st.
 transition‹srcSt, dstSt›: corresponds to the execution of actions of a transition in the core

statechart from a state matched by srcSt to a state matched by dstSt.

Fig. 1. Bounded buffer UML model and SWL weaving rules specification

The pointcut designators presented in the grammar essentially correspond to AspectJ’s context matching
pointcut designators (e.g. call, execution, etc.). Named pointcuts and the disjunctive composition of
primitive pointcuts (via || operator) can be trivially supported (a disjunctive pointcut is equivalent to
copies of the advice for each of the disjuncts); however, support for scoping pointcut designators (e.g.
cflow) will require changes to the weaving algorithm and is left as future work.

Aspect advice is specified as a forest. A node ‹st, ev(args)|null› is enabled if the aspect
statechart is in a state that belongs to the node’s state-set, that is the set of states matched by st. Execution
of a node either introduces event ev with arguments args in the aspect statechart or does nothing (when
the second argument is null). Aspects can access contextual data from inEvent and outEvent join
points through their event arguments and use this data in advice by supplying them as arguments to advice
node events. Advice execution can be described as a call to executeAdvice(advice.rootNodes)
(see Figure 3). Note that Figure 3 provides an operational specification for advice execution;
implementations for this specification are presented in Section 4. For the execution of advice as described
in Figure 3 to be deterministic, we require that no two sibling nodes be enabled at the same time, or in other
words, for state-sets of sibling nodes to be disjoint. Alternatively we could allow multiple enabled sibling
nodes and always pick the first one. Advice can be specified to execute before or after its join point. Before

unlocked

release acquire

locked

Buffer

buffer : List<Item>

«signal» put(i: Item)
«signal» get()Producer

Consumer

SWL
UML

aspect Synch
 core Buffer
 before inEvent(idle, get)
 (empty, null)
 consume
 before inEvent(idle, put)
 (full, null)
 consume
 before transition(reading, idle)
 (*, remove)
 before transition(writing, idle)
 (*, add)

aspect Mutex
 core Buffer
 before inEvent(idle, get|put)
 (unlocked, aquire)
 before inEvent(idle, get|put)
 (locked, null)
 consume
 before transition(reading|writing, idle)
 (locked, release)

precedence
 Buffer * : Mutex > Synch

Synch

items : int
CAP : int

remove[else]/items--

add[else]/items++

remove/items--

add/items++

empty

remove[items > 1]/items--

fullpartial

add[items < CAP-1]/items++

get
writingreading idle

put/buffer.append(i)

«signal» add()
«signal» remove()

Mutex

«signal» done(Item)

«signal» done()

con

 pro

/con.done(buffer.remHead())

/pro.done()

«signal» acquire()
«signal» release()

advice can potentially change event arguments in inEvent and outEvent join points and can have
special consume leaf nodes. Consume nodes are always enabled and cannot have siblings; their execution
prevents the core or advice of lower precedence from seeing the join point.

Fig. 2. SWL abstract grammar (underlined non-terminals are regular expressions describing sets of state, event, or
object names)

Fig. 3. Advice execution procedure

Intra-aspect advice precedence is determined by order of declaration. Inter-aspect advice precedence for
aspects declared in the same file can be explicitly declared in weaving rule specifications at the resolution
of join points; where not specified, order of declaration determines precedence. Inter-aspect advice
precedence for aspects declared in separate files is non-deterministic (to make it deterministic, an inter-file
precedence specification similar to a build file can be conceived). If more than one advice introduces an
event of the same name but with differing argument lists to the core, only the event introduction by the
advice of highest precedence takes effect. This is essentially a simple conflict resolution strategy adopted
from AspectJ. Alternatively, the conflict can be reported and its resolution left to the developer. Figure 1
shows the weaving rule specification for the bounded buffer example.

Our modeling approach has many similarities to the event-based AOP (EAOP) work presented in [2]. In
EAOP, aspect behaviour is expressed as a combination of basic rules. A basic rule is made up of a
parameterized pointcut and advice that can reference pointcut parameters. A basic rule on its own
constitutes a primitive aspect; compound aspects can be formed by the combination operators: prefixing (a
basic rule to an aspect), choice (between two aspects), and repetition (of an aspect). Upon occurrence of a
join point, the applicable basic rule for an aspect (if one exists) is determined as follows: in a prefixed
aspect, the first prefix is the applicable basic rule provided its pointcut matches the join point; in a choice
between two aspects, the applicable basic rule is that of the first aspect that has an applicable basic rule; in
a repetition of an aspect, the applicable rule is that of a single iteration of the repetition. If an applicable
basic rule is found, it is applied by executing its advice with pointcut parameters replaced by corresponding
values from the join point, and it is removed from the aspect behaviour (for the current iteration of a
repetition). The consumption of each join point by an aspect in this manner evolves the aspect from one
state to the next. In our approach, aspects are explicitly modeled as finite state machines, and the execution
of advice-trees cause state transitions in the aspect model. Structural elements of advice-trees can be
mapped to elements of EAOP aspect specifications: advice nodes correspond to basic rules, the sibling
relationship between nodes corresponds to a restricted choice operator (where at most one aspect in a
choice can have an applicable basic rule for a given join point), the parent-child relationship between nodes
corresponds to the prefixing operator, where the parent is the prefix for an aspect prefixed by the child, and
finally, advice-trees by definition, are repetitious. In EAOP aspect weaving is expressed by the parallel

executeAdvice(Set<AdviceNode> nodes)
 if nodes.hasEnabledNode
 nodes.enabledNode.execute();
 if !nodes.enabledNode.isLeaf
 executeAdvice(nodes.enabledNode.childNodes);

 WeavingRules Aspect+ Precedence*
 Aspect className Core+
 Core className EventIntroduction+ (BeforeAdvice | AfterAdvice)+
 BeforeAdvice before JoinPoint (consume | BeforeAdviceNode+)
 AfterAdvice after JoinPoint AfterAdviceNode+
BeforeAdviceNode AdviceAction (consume | BeforeAdviceNode*)
 AfterAdviceNode AdviceAction AfterAdviceNode*
 AdviceAction ‹AspectStateExp, aspectEvent(Args) | null›
 JoinPoint inEvent ‹CoreStateExp, CoreEventExp›

 | outEvent ‹ObjExp.EventExp›
 | (stateEntry | stateExit) ‹CoreStateExp›
 | transition ‹CoreSrcStateExp, CoreDstStateExp›

 Precedence coreName JoinPoint : aspectName (> aspectName)+

composition of aspects. Two parallel aspects are said to interact if both have applicable basic rules for some
join point. Conflict resolution operators are introduced that apply advice of conflicting basic rules in
sequence, or suppress the advice of one basic rule in favor of the other. Our approach provides similar
conflict resolution operators: advice precedence imposes a sequential ordering on interacting aspects as
defined in [2]; additionally, the execution of consume nodes in advice-trees suppresses advice of aspects of
lower precedence (conditional suppression is made possible by having both consume and non-consume leaf
nodes in an advice-tree). Finally, in EAOP, the notion of inter-crosscut variables is introduced to allow
basic rules of a complex aspect to exchange information. This idea is readily supported in our approach
since aspects are modeled structurally as classes with data members that can serve as a medium to pass
information within and between advice-trees.

Our modeling approach also has commonalities with composition filters [10] where core behaviour is
enhanced by filter modules that can manipulate incoming/outgoing messages to/from the core. A filter has
a type and a pattern; the pattern determines which messages the filter accepts/rejects while the type
determines actions performed by the filter upon acceptance/rejection of a message (e.g. modifying the
message, dispatching the message to the core, etc.). Filters can be composed sequentially. In our approach
aspects can be viewed as filters and core join points as messages; advice pointcuts correspond to filter
patterns, and the advice-tree specification combined with the aspect state machine constitute the filter type
(this gives flexibility in specifying filter actions). Upon acceptance of a message, in addition to performing
actions associated with its type, an aspect can conditionally consume the message. A rejected message is
passed on to other aspects (if present) or to the message target. Unlike filters however, aspects (as modeled
in our approach), in EAOP terms, are stateful in that they evolve with the acceptance of messages.

The expressive power of our modeling approach depends on that of its two main components: first, the
modeling of core and aspect structure and behaviour; and second, the specification of rules for weaving
core and aspect modules (structurally and behaviourally). The expressive power of the first component is
essentially that of UML class diagrams for specifying structure, and UML statecharts for specifying
behaviour. The expressive power of the second component is that of our SWL, a thorough characterization
of which is yet to be performed. Such characterization should include detailed comparisons with existing
formalisms as well as a wide range of sophisticated case studies; however, informal comparisons with
formalisms such as EAOP [2] and composition filters [10] (as presented above), as well as AspectJ [11]
(consider the concepts of event introduction, advice ordering, and advice precedence) provide some hints as
to the expressiveness of our SWL.

3 Syntactic Analysis of the Design Model

A syntactic analysis of a design model specified in UML and SWL may reveal overlaps between advice in
the same or in different aspects unnoticed by the developer. Such overlaps may be the source of
interactions and so it useful to draw attention to them to allow revisions prior to the computationally
expensive formal verification of the design. Our analysis performs the following steps:
 Unfold regular expressions in advice and precedence declarations, by analyzing aspect and core

statecharts, producing concrete declarations from templates (warnings are generated for regular
expressions with no matches).

 Detect and report advice applied to the same join point. In the report, advice are categorized by kind
(before or after advice) and ordered by precedence within each category; instances where an advice of
higher precedence may consume the join point preventing lower precedence advice from seeing it are
highlighted; whether this actually happens may depend on run-time data.

 A join point that occurs within another join point will be consumed if its container is consumed. From
the definitions of Section 2, it is apparent that outEvent join points can occur within inEvent,
stateEntry/Exit, and transition join points, and stateEntry/Exit and transition
join points can occur within inEvent join points; our analysis detects and reports such instances.

In the bounded buffer example, our analysis will report the following
 Multiple advice on join points inEvent(idle, get) and inEvent(idle, put) and the

possibility of Mutex advice consuming the join points preventing Synch advice from seeing them.

 Multiple advice on join points transition(reading, idle) and transition(writing,
idle).

The number of shared join points may become unwieldy in a large application and/or in the presence of
systemic aspects (e.g. logging) that may be applied to most/all join points. In such inherently complex
cases, the static analysis itself as well of its usefulness to the developer may not scale up. To combat this
situation, mechanisms could be envisioned to allow the developer to parameterize the static analysis to
report what is deemed to be a significant subset of the set of shared join points. Since the syntactic analysis
is performed on the unwoven model, its results are readily traceable to elements of aspect and core models.

4 Weaving Algorithms

We present two algorithms for weaving aspect and core UML models based on an SWL specification. The
first approach is as follows:
 Structural weaving: for each core class we introduce a proxy class with an identical interface;

unidirectional associations ending at the core are moved to the proxy (consider bidirectional associations
as two unidirectional associations); the proxy has a bidirectional association with the core and a
unidirectional association with all aspects applied to the core.

 Behavioural weaving: the proxy statechart handles the same events as the core as well as new events
introduced by advice. When the proxy receives event ev, for each advice on a join point of form
inEvent(st, ev), it reacts by executing actions that map to the SWL advice in the manner shown in
Figure 4; if no such advice exists, the event is simply passed on to the core. The proxy also handles
special call events from the core corresponding to before and after state entry/exit, transition, and event
invocation actions. When the proxy receives such events, if advice for corresponding join points is
specified, advice actions (derived in a manner similar to inEvent join points) are executed; join point
consumption is conveyed to the core by setting a global flag. This approach relies on synchronous
communication between the proxy and core/aspect statecharts to ensure strict order in their interleaved
execution; for this reason all signal events in the core and aspect statecharts are made into call events.

Fig. 4. Actions for advice on join point inEvent(cst, cev)

In effect, the proxy is a localized implementation of advice-tree specifications in the language of
statecharts: the proxy statechart intercepts incoming, outgoing, and internal events generated by the core
and orchestrates the execution of core and aspect models as specified by advice-tree specifications (hence
the need for both proxy and core modules). Figure 5 (1) shows the woven class diagram and a skeleton of
the proxy statechart for the bounded buffer example; this woven model was expressed in UTE and
translated into Promela using Hugo/RT and model-checked for absence of deadlock using Spin. Deadlock
occurs in a system of communicating statecharts when each statechart in the system is stuck in a state
waiting for an event that can only be triggered by another statechart in the system. Absence of deadlock is
property desirable for any system; however, problem-specific properties such as “no writes/reads are
possible to a full/empty buffer” and “only one reader/writer can use the buffer at a time” can (and should)

 actions(Set<AdviceNode> nodes)
 if nodes has just one consume node
 consume = true
 otherwise for every node <ast, aev(args)|null> in nodes
 if(aspect.inState(ast))
 ast.aev(args) | skip
 actions(node.children) if node has children

 if(core.inState(cst))
 actions(advice.rootNodes) for highest precedence before advice
 if(!consume)
 actions(advice.rootNodes) for remaining before advice
 if(!consume)
 core.cev
 actions(advice.rootNodes) for all after advice

also be checked. The verification report showed a high level of complexity in the Promela model (roughly
3x106 states and three minute verification time). In an effort to reduce verification complexity we
investigated in alternate weaving approach described below:
 Structural weaving: each core class is given unidirectional associations to each aspect class applied to it
 Behavioural weaving: for before advice on inEvent(st, ev) join points, the core statechart is

augmented with additional states and transitions between st and the target states of transitions leaving
st with event ev (see Figure 6). Augmenting the core statechart with after advice actions requires
computing all possible configurations reached after the run-to-completion (RTC) step of processing ev,
and appending after advice actions to the state-entry actions of the lowest level state(s – in the presence
of and-states) of each such configuration; but which of the low-level states should be augmented?
Another complication arises in the presence of guarded null transitions: whether the source src of the
null transition is part of the post RTC configuration can be determined by a static evaluation of the null
transition guard in the state entry actions of src; but if the guard makes reference to global variables in
the presence of concurrent statecharts, the result of the condition evaluation may be invalidated before
the state entry actions of src (including after advice actions) begin to execute! Due to such
complications it is believed that after advice cannot be supported in this weaving approach.

 Advice for other join point kinds is realized by augmenting their corresponding actions with advice
actions derived in a manner similar to the first weaving approach. Again, new events introduced by
advice are added to the core and signal events of aspects are made into call events for synchronization
purposes.

Here, the implementation of the advice-tree specification (as a statechart) is tangled with that of the core.
Figure 5 (2) shows the woven class diagram and the skeleton of the woven core statechart for the bounded
buffer example. Model-checking the woven model showed a reduction in the complexity of the Promela
model (roughly 3 x 105 states and under one minute verification time).

Fig. 5. Woven UML model for bounded buffer example using two weaving algorithms

The verification complexity of a statechart model increases with the number of component statecharts and
the complexity of each component statechart (in terms of state and transition count of the flattened
statechart, the count and type of data members, and the size of event queues). The first weaving approach
adds a new component to the model: the proxy. The complexity of the proxy statechart in terms of number
of states and transitions is a function of the number and size of advice-trees. If we model advice-trees with
a chain of choice pseudo-states, each advice node adds a choice state and each branch adds a transition to a
proxy statechart made up of a single idle state as shown in Figure 5 (1). The application of multiple advice
at a given join point adds transitions linking pseudo-state chains of each advice-tree. In the second weaving
approach, no new component is added but the additional states and transitions due to advice-trees are added
to the core statechart. Additionally, intermediate states for consume advice as well as data members for
event arguments and consume flags are added as shown in Figure 6. New states and transitions due to
advice-trees have a greater impact on verification complexity in the first approach since they are added to a
new component. Additional complexity may be introduced by translations performed by UML verifiers (we
have experimented with only one such verifier: Hugo/RT; see results above). To assess the scalability of
our approach with larger problems (involving more aspects, more interactions, and more complex advice),

get/advice actions put/save put args; advice actions

writingreading

idle
Buffer

Producer Consumer

Synch Mutex

1
2

Woven core statechart

Proxy
Mutex

Synch Consumer

Producer
Buffer

trans(reading, idle), trans(writing, idle)/advice actions

core action for put

core action for transition

[consume] [consume]

put, get/advice actions

idle

Proxy statechart

we must experiment with other UML verifiers and more sophisticated case studies. In our work, we
perform offline design-time analyses; as such, we do not consider run-time performance overheads
associated with the weaving approaches.

In terms of traceability of verification results to aspect and core models, both approaches suffer from the
fact that verification is performed on the woven model. The first approach however, has the upper hand: the
proxy localizes the implementation of advice-trees with statechart elements that are readily traceable to
advice-tree specifications as described above. With the help of UML verifiers such as Hugo/RT,
verification traces can be mapped to executions of the proxy statechart. With the second approach, advice-
tree implementation is tangled with the core statechart hindering traceability. The direct mapping between
additions to the core statechart and advice-tree specifications however, provides some relief.

Fig. 6. Weaving before advice for join point inEvent(st, ev) into core statechart

5 Related Work

A well-known and extensively researched instance of the concern interaction problem appears in
telecommunication systems where features applied to base communication services may interact [12]. A
popular example in telephony systems is the interaction between the ‘call forward when busy’ and ‘call
waiting’ features when applied to the same call service. In the event of an incoming call when the
subscriber’s line is busy, the behaviour of one feature compromises the behaviour of the other. There is
much to be learned and adopted from research in the feature interactions domain; however, solutions to the
concern interaction problem in AO systems (including this work) need to be more general and applicable
across a range of domains (e.g. email, telecommunications, etc.). In [13] the feature interaction problem has
been studied using AO technology where features are modeled as aspects applied to a base call service
core. AspectJ [11] is used to encode the basic call model as a finite-state machine (FSM) and features as
aspects that change the FSM. Program slicing is used to extract portions (slices) of the core affected by
each aspect and overlapping slices are reported as potential interactions.

Research in concern interactions is harder to come by in AO literature. Perhaps the most explicit
treatment of the subject is given in [2] where a formal language for specifying aspects along with support
for the detection and resolution of aspect interactions is presented. Here, aspects are said to interact if they
advise the same join point (defined as event patterns in the execution trace of the core). Linguistic support
is provided to resolve interactions by composing aspect advice. The definition of interactions as presented
in [2] is useful yet limited: it does not account for aspect/core interactions or indirect aspect interactions
(e.g. aspects advising disjoint join points but using common data); also, it does not differentiate between
desired and undesired interactions. These limitations can be addressed by formally verifying desired
properties of core, aspect, and woven models before and after weaving. The definition of [2], however,
remains useful for drawing the attention of the developer to potential sources of undesired interactions (but
unfortunately not all of them, e.g. in the case of indirect interactions). We adopt the benefits of the
definition in the syntactic analysis phase of our approach, and address its limitations via the formal
verification of aspect, core, and woven models.

 In [14], an analysis of AO programs is introduced that classifies interactions between aspect advice and
core methods. Advice may directly interact with a method by augmenting, narrowing, or replacing its
execution, or may indirectly interact with a method by using object fields also used by the method. The

actions(advice.rootNodes) for highest precedence before advice
if(!consume)

 actions(advice.rootNodes) for remaining before advice

Advice actions:

ev[grd]/act
st trg

[consume || !grd]/suppress st entry actions

[!consume && grd]/actev/save event args;
 advice actions

st

trg

Note: st exit actions are not suppressed when
the join point is consumed; this is a known
limitation of the approach

before weaving after weaving

analysis of [14] does not consider aspect/aspect interactions. Some elements of the advice classification of
[14] are made explicit in our SWL: for example, after advice and before advice without consume leaf nodes
are augmenting advice; before advice with both consume and non-consume leaf nodes is narrowing advice;
and before advice with only consume lead nodes is replacement advice. Our approach does not explicitly
classify/report indirect interactions; rather, such interactions can be inferred indirectly from the result of the
formal verification of the model.

The use of formal specification and verification of AO systems to detect concern interactions has been
previously explored. The accuracy of results obtained from this approach will depend on the accuracy of
the specification and verified properties. In [15], it is proposed to use program slicing on AspectJ programs
and use the slices to construct models that can be analyzed to verify system properties (also, as in [13]
disjoint slices imply no interactions). In [16], superimpositions are introduced as collections of generic
parameterized aspects with formal specifications of assumed properties of core programs to which they can
be applied, and desired properties of the woven program. Superimposition specifications are used to define
proof-obligations of the correctness of woven programs and the feasibility of combining superimpositions.
In [17], a behavioural interface specification language for AspectJ supporting the formal verification of AO
programs is proposed. The work of [15] [16] [17] is intended to operate at the source code level, while our
approach operates on design artifacts. Nevertheless, the main ideas of the aforementioned research can be
adapted. For example, as in [15], slicing can be applied to woven statecharts to reduce verification
complexity. Also, our SWL can be extended to allow aspect specifications to be augmented with assumed
properties of the core to which they are applied as well as desired properties of the woven model as in [16]
(currently such specifications are made in the context of the particular UML verification tool used).

Past research on the formal verification of AO designs includes the following: In [18], concerns are
modeled as roles and weaving as role-merging. The models are formally specified and verified with Alloy.
In [19], a run-time manager is proposed for dynamically weaving aspects with a core modeled as a labeled
transition system; interactions are detected using run-time model-checking and resolved using adaptive
strategies. In [20], techniques for modularly verifying aspect advice (modeled as a state machine) without
access to the core are introduced. Our work differs from these efforts in two respects: First, it adopts main-
stream design notation (the UML) to model the behaviour of core and aspect modules. Second, it
introduces a simple SWL, separating the concern of modeling core and aspect modules from that of
specifying how the modules are to be woven; such separation of concerns permits a light-weight analysis of
the unwoven model prior to the computationally expensive formal verification of the woven model. In
particular, our work differs from [19] in that it is an offline analysis: aspect and core models are woven at
design time and the formal verification phase of our analysis operates on the woven model. This is in
contrast to [19] which provides an online analysis, where new aspects can be woven in at run-time and
interactions detected and resolved by monitoring the execution of the woven system. A main component of
an online interaction detection framework is an adaptive model for code and aspect modules. Modeling the
behaviour of the proxy or woven core module (depending on the weaving algorithm applied) with an
adaptive statechart would constitute an important step towards evolving our approach to an online analysis.

Research on modular reasoning of AO systems [21][22][23][24] is aimed at eliminating the need for
analyzing the entire system to understand the effect of applying an aspect to the core; such an
understanding will aid developers in foreseeing and resolving interactions. To promote modular reasoning,
aspect-aware interfaces for core modules as introduced in [21] can be derived from SWL specifications,
and core module specifications can be augmented to include a list of advisable join points as in [22].

6 Conclusion and Future Research

We have presented a process for detecting concern interactions in AO systems at the design phase of the
software development process, which combines light-weight syntactic analysis and formal verification of
design models expressed in the UML and a simple domain-specific statechart weaving language (SWL).
We have experimented with two approaches to weaving UML models based on SWL specifications; one
approach supports all features of the SWL but produces woven UML models that result in complex
Promela models when translated using Hugo/RT [3]. The second approach yields simpler woven Promela
models but does not support after advice in SWL specifications. We are not certain whether the added
complexity of the first approach is more largely due to translation anomalies in Hugo/RT or the inherent

complexity of woven models produced by the approach. To determine this, other UML verification tools
should be used; unfortunately vUML [4] is no longer available for download, but the IF toolset [5] can be
experimented with. We have automated the second approach (tailored for use with Hugo/RT) and are trying
examples from the feature interaction domain. In the future, the practicality of our process should be
assessed against other sophisticated examples.

References

[1] Parnas D. L. On the criteria to be used in decomposing systems into modules. Communications of the ACM, 15(12):
1053—1058, 1972

[2] Douence R., Fradet P., and Südholt, M. Composition, reuse and interaction analysis of stateful aspects. In: Proc .of
the 3rd International Conference on Aspect-Oriented Software Development (AOSD'04), ACM, pp. 141-150, 2004.

[3] Schafer T., Knapp A., and Merz S. Model checking UML state machines and collaborations. Electronic Notes in
Theoretical Computer Science, 55(3):13 pages, 2001.

[4] Lilius J. and Porres Paltor I. vUML: a tool for verifying UML models. In: Technical Report 272, Turku Centre for
Computer Science, 1999.

[5] Ober I., Graf S., and Ober I. Validating timed UML models by simulation and verification. In: Proc. of workshop
on Specification and Validation of UML models for Real Time and Embedded Systems, SVERTS, associated with
UML 2003, technical report Verimag, 2003.

[6] Holzmann G. J. The Spin Model Checker -- Primer and Reference Manual. Addison-Wesley, Boston,
Massachusetts, USA, 2004.

[7] The Aspect-Oriented Statechart Framework Project. http://www4.carthage.edu/faculty/mahoney//AOP/AOSF/.
[8] AOSD 2005. Aspect-Oriented Modeling, 6th Int'l Workshop, Chicago, Illinois, USA, http://dawis2.icb.uni-

due.de/events/AOM_AOSD2005/.
[9] Mahoney M., Bader A., Elrad T., and Aldawud O. Using Aspects to Abstract and Modularize Statecharts. In: The

5th Aspect-Oriented Modeling Workshop In Conjunction with UML 2004, 2004.
[10] Bergmans L. and Aksit M. Composing Crosscutting Concerns Using Composition Filters. Communications of the

ACM, 44 (10), 51—57, 2001.
[11] Kiczales, G. et al. Getting Started with AspectJ. Communications of the ACM, 44(10): 59—65, 2001.
[12] Calder M., Kolberg M., Magill M. et al. Feature Interaction: A Critical Review and Considered Forecast.

Computer Networks, 41: 115—141, 2003
[13] Monga M., Beltagui F., and Blair L. Investigating feature interactions by exploiting aspect oriented programming.

2002
[14] Rinard M., Salcianu A., and Bugrara S. A Classification system and analysis for aspect-oriented programs. In:

Proceedings of the 12th ACM SIGSOFT International Symposium on the Foundations of Software Engineering,
2004.

[15] Blair L. and Monga M. Reasoning on AspectJ programmes. In: Proceedings of Workshop on Aspect-Oriented
Software Development, German Informatics Society, Essen, Germany, pp. 45—50, 2003.

[16] Sihman M., and Katz S. Superimpositions and aspect-oriented programming. The Computer Journal, 46(5):529—
541, 2003.

[17] Zhao J. and Rinard M. Pipa: A behavioural interface specification language for AspectJ. In: Fundamental
Approaches to Software Engineering (FASE), Springer, pp. 150—165, 2003.

[18] Nakajima S. and Tamai T. Lightweight Formal Analysis of Aspect-Oriented Models. In: UML2004 Workshop on
Aspect-Oriented Modeling, 2004.

[19] Pang J. and Blair L. An Adaptive Run Time Manager for the Dynamic Integration and Interaction Resolution of
Feature. In: Proceedings 22 International Conference on Distributed Computing Systems Workshops, IEEE, Los
Alamitos, California, pp. 445—450, 2002.

[20] Krishnamurthi S., Fisler K., and Greenberg M. Verifying Aspect Advice Modularly. In: Proceedings of the 12th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, ACM, Newport Beach,
California, 2004.

[21] Kiczales G. and Mezini M. Aspect-Oriented Programming and Modular Reasoning. In: Proc. 27th Int’l Conf.
Software Eng. (ICSE 05), ACM, pp. 49—58, 2005

[22] Aldrich J. Open Modules: Modular Reasoning about Advice. In: Proc. 2005 European Conf. Object-Oriented
Programming (ECOOP 05), LNCS 3586, Springer, pp. 144—168, 2005.

[23] Sullivan K., Griswold W. G., et al. On the criteria to be used in decomposing systems into aspects. In: Proceedings
of the Joint 10th European Software Engineering Conference and 13th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2005), ACM, Lisbon, Portugal, pp. 5—9, 2005.

[24] Clifton C. and Leavens G. Observers and assistants: A proposal for modular aspect-oriented reasoning. In: Proc.
FOAL Workshop, 2002.

