
8 pages

ABSTRACT

A fundamental assumption of software testing is that there is
some mechanism, an oracle, that will determine whether or
not the results of a test execution are correct. In practice
this is often done by comparing the output, either automati-
cally or manually, to some pre-calculated, presumably cor-
rect, output [17]. However, if the program is formally
documented it is possible to use the specification to deter-
mine the success or failure of a test execution, as in [1], for
example. This paper discusses ongoing work to produce a
tool that will generate a test oracle from formal program
documentation.

In [9],[10] and [11] Parnas et al. advocate the use of a re-
lational model for documenting the intended behaviour of
programs. In this method, tabular expressions are used to
improve readability so that formal documentation can re-
place conventional documentation. Relations are described
by giving their characteristic predicate in terms of the val-
ues of concrete program variables. This documentation
method has the advantage that the characteristic predicate
can be used as the test oracle -- it simply must be evaluated
for each test execution (input & output) to assign pass or
fail. In contrast to [1], this paper discusses the testing of in-
dividual programs, not objects as used in [1]. Consequently,
the method works with program documentation, written in
terms of the concrete variables, and no representation func-
tion need be supplied. Documentation in this form, and the
corresponding oracle, are illustrated by an example.

Finally, some of the implications of generating test oracles
from relational specifications are discussed.

1.0 INTRODUCTION

As software becomes pervasive in our society, its correct
behaviour becomes increasingly critical to the safety and
well being of people and businesses. Consequently, there is
an increasing need for the strict application of engineering
discipline to the development of software systems. The
Software Engineering Research Group at McMaster Univer-
sity seeks to address this need by developing techniques and
tools to facilitate the production of software design docu-
mentation that is 1) clear enough to be read and understood
by both ‘domain experts’ and programmers with a minimum
of special training, and 2) complete and precise enough to
allow thorough analysis, both manually and mechanically.
The use of tabular expressions to represent relations [12] is
one of the cornerstones of these techniques.

All software testing research and practice assumes that there
is some mechanism, anoracle, for determining whether or
not the output from a program is correct [17]. In many cases
this oracle consists of a manual observation of the test input
and output, which can be time consuming, tedious and error
prone. If, however, a program is mathematically docu-
mented, it should be possible to derive an oracle from that
documentation.

This paper describes on-going work aimed at developing an
automated Test Oracle Generator (TOG) tool that, given a
relational program specification [9] using tabular expres-
sions [12], will produce a program that will act as an oracle.
This oracle procedure will take as input a test execution (i.e.
an input, output pair) from the program under test and will
returntrue1 if the pair satisfies the relation described by the
specification, orfalse if it does not. A brief introduction to
the documentation techniques is given, followed by an illus-
tration of how this documentation can be used to produce an
oracle. Finally some of the implications of this technique
are discussed.

1. true andfalse are used to represent predicate values,
whereas the value of boolean valued program variables are
represented by TRUE and FALSE.

Generating a Test Oracle from Program Documentation

work in progress

Dennis Peters

peters@mcmaster.ca

David L. Parnas

Software Engineering Research Group
CRL, McMaster University, Hamilton, Ontario, Canada L8S 4K1

2

1.1 RELATED WORK

Several authors have described tools which can be used to
compare the results of a test execution with some pre-
defined ‘correct’ data. In [8], Panzl describes three systems
that verify the values of program variables against test cases
described using a formal test language. Another system,
described by Hamlet in [6], tests a program using a list of
input, output pairs which have been supplied as part of the
program code. All of these systems require that the user pro-
vide the expected output, which may be difficult to obtain.
Also they can only compare for equality of expected and
actual output, and hence relational (as opposed to func-
tional) specifications cannot be used. For example, the pro-
gram specified in Table 2 is required to indicate an
occurrence of the value of x in the array B, if one exists. If
that value occurs in B in more than onc place, then it is suf-
ficient that the program indicate any one of these. Systems
such as those described by Panzl or Hamlet would consider
some of these to be invalid.

The latter limitation is partially overcome by the “program
testing assistant” described by Chapman in [3]. This system
allows the user to specify ‘success criteria’ (e.g. equal, set-
equal, isomorphic etc.) which are used when comparing
actual and expected output. This system, however, must
record the input and output from previous executions of the
program to be used as test cases -- it requires that the user
once had a version of the program considered correct.

Other systems, such as described by Luckham et al. in [7],
allow program code to be annotated with assertions which
are evaluated as the code is executed. While these systems
are capable of checking that the value returned by a program
has the desired properties (expressed in terms of the values
of other program variables in that scope), they are limited in
that they can only make assertions about variable values at a
particular point in the program and thus cannot check that
variables have been changed in the correct manner (i.e. new
values expressed in terms of their previous values).

If a program is formally documented, then it should be pos-
sible to use the specification as an oracle, so the expected
output need not be given by the user. In [16], Stocks and
Carrington discuss deriving oraclespecifications from
model based specifications using the Z notation and in [15],
Richardson et al. advocate the derivation of oracles from
formal models and specifications. Both papers suggest that
the oracle could be automatically generated, but neither dis-
cusses the problems of actually producing an oracle proce-
dure.

Other authors have discussed producing oracles for abstract
data types (ADTs) specified using algebraic specifications,
e.g. [1],[2] & [4]. These specification techniques address a
different problem from those used in this work in that they
are required to document the intended properties of the

ADT which is implemented by a group of programs,
whereas the techniques used in this work are used to
describe the effect of a single program on some concrete
data structure. The oracle problem is, therefore, different as
well -- ADT oracles must check that the specified ADT
properties hold, whereas program oracles need only check
that the data structure has been modified in the specified
manner.

2.0 PROGRAM DOCUMENTATION METHOD

The documentation which is the input to the TOG isinternal
design documentation for a single procedure, i.e. it
describes the intended behaviour of a procedure in terms of
its effect on the actual concrete data structure (variables).
This is distinct from module interface documentation,
which describes the externally observable behaviour of a
group of programs, which together implement an abstract
data type, without reference to the concrete data structure
used in their implementation (see [10]). This section
describes the relational program documentation method
used in this work which is based on that described in [11]
and has the following desirable properties.

• It is precise and formal.

• It is clear enough to be read and understood with a mini-
mum of special training.

• Reading a specification neither gives any details about,
nor requires any knowledge of, the algorithm used by
the program specified.

2.1 TERMINOLOGY

2.1.1 RELATIONAL SPECIFICATION

In [9], the use of Limited Domain Relations (LD-relations)
to specify programs is described. AnLD-relation, L, is a
pair (RL, CL) where RL is an ordinary relation and CL is a
subset of the domain of RL, known as thecompetence set.
The domain and characteristic predicate of L are the domain
and characteristic predicate of RL.

An LD-relation, L, can be used to specify a program by let-
ting RL be the set of acceptable start state, stop state pairs,
and CL be the set of start states for which the program must
terminate. Thus, a program, P, is said tosatisfy a specifica-
tion, L, if and only if

• when started in any state, x, if P terminates, it does so in
a state, y, such that <x, y> is an element of RL, and

• for all starting states, x, in CL, P will always terminate.

Note that if x∉ domain(RL) then P cannot terminate such
that P satisfies L.

3

If P satisfies L for all possible starting states then P can be
said to becorrect with respect to L.

In the case of a deterministic program, RL is a function. In
the case where CL is exactly the domain of RL (always for
deterministic programs) CL need not be given.

In this paper we say that a program is specified by an LD-
relation referred to as theprogram relation. If the compe-
tence set is not given it is assumed to be the domain of RL.

2.1.2 PREDICATE LOGIC

In writing program specifications it is often necessary to use
functions which arepartial, i.e. their domain is a subset of
the possible values of their arguments, but it is a desirable
property that predicates always betotal, i.e. they always
have a clearly defined value (true or false) regardless of the
values of their arguments. The predicate logic described in
[13] has this property and so a subset of it is used in this
work.

This logic differs from traditional logic in that aprimitive
relation is defined as beingfalse if one or more of its argu-
ment terms is a function application with argument values
outside the function’s domain. For example, if F and G are
functions and x is not in the domain of F then “F(x) > G(x)”
is alwaysfalse, as is “F(x) = F(x)” (‘>’ and ‘=’ are primitive
relations). Note that in many other logics the latter expres-
sion is taken to be equivalent totrue by the “axiom of
reflexivity”.

The standard logical operators are used (¬, ∧, ∨, ⇒) and
they have their usual interpretation.

Quantification is permitted but must be restricted to a finite
set, which is described by an inductively defined predicate
(see below). The following forms are permitted, where P(x)
is an inductively defined predicate and Q(x) is any predicate
expression of a permitted form:

Universal: (∀x, P(x)⇒Q(x))

Existential: (∃x, P(x)∧Q(x))

2.1.3 INDUCTIVELY DEFINED PREDICATES

We define aninductively definedpredicate, P, on <type> as
the characteristic predicate of a set, S, which is formed in
the following way. Given a triple, {I, G, Q}, where:

I is an enumerated finite set of elements of <type>,

G is a function, G: <type>→ <type>,

Q is a predicate on <type>, and

∃m,∀x∈I, ¬Q(Gm(x)). [EQ 1]

S is the least set formed by the following rules:

1. all elements of I are in S

2. ∀x∈S [Q(x)⇒ G(x)∈S]

This least set can be constructed by the following inductive
steps:

1. S0 = I

2. Sn+1 = Sn ∪ {G(x) | x∈Sn ∧ Q(x)}.2

It can be proven that∃N, SN+1 = SN. (In fact, we can take N
= m from EQ1, above.) Thus S = SN and S is finite.

Thus we can give an inductive definition for the predicate,
P(x), by providing appropriate definitions for I, G and Q.
For example, the characteristic predicate of the set of inte-
gers from MIN to MAX, inclusive, is inductively defined
by: I ≡ { MIN }, G(x) ≡ x+1 and Q(x)≡ x < MAX.

Note that P(x) is equivalent to

(x∈I ∨ (∃y, (P(y)∧ Q(y) ∧ (x = G(y))))).

2.1.4 TABULAR EXPRESSIONS

Mathematical functions and relations are represented using
the multi-dimensionaltabular expression notation described
in [12]. These expressions are equivalent to, but often easier
to read and understand than, expressions written in a more
traditional manner. Tabular expressions are particularly well
suited to describing the kinds of conditional relations that
frequently occur in program specifications.

There are several different types of tabular expressions
described in [12] which are interpreted as either predicate
expressions or terms. In this paper only one form of tabular
expression, themixed vector table, will be used and tables
will be at most 2-dimensional. A tabular expression is con-
structed from conventional (scalar) expressions andgrids --
indexed sets of cells that contain terms or predicate expres-
sions, which may themselves be tabular. The interpretation
of a mixed vector table is described by way of an example.
A more thorough treatment is given in [12].

Table 1 is an example of a 2-dimensional mixed vector
table. Cells in the column header, H2, contain predicates
which are evaluated to determine which column is applica-
ble. Cells in the row header, H1, contain a variable name fol-
lowed by either ‘|’ (read ‘such that’) or ‘=’. Rows that have

2. Note that an efficient algorithm for constructing this set
would only consider the elements of Sn that are not in Sn-1
at each step.

TABLE 1. Mixed V ector T able

x < 0 x = 0 x > 0 H2

y | y > 6 true y = 0

H1 z = x - y 10 x G

4

‘|’ in the corresponding row header cell contain predicate
expressions in their main grid cells, while those that have
‘=’ contain terms.

A mixed vector table is interpreted by selecting the column
for which the column header cell expression evaluates to
true and conjoining the predicate expressions formed by
that column in the following way: If, for a cell C, the corre-
sponding row header cell, H1<i>, contains a ‘|’ then the
predicate expression is simply the predicate expression in C.
If, on the other hand, H1<i> contains an string of the form
“x =” (where ‘x’ is any variable name) then the predicate
expression is formed by appending the contents of C to the
contents of H1<i>. Thus, Table 1 is a representation of the
following predicate:

((x < 0)∧ (y > 6)∧ (z = x-y))∨ ((x = 0)∧ (z = 10))∨ ((x
> 0) ∧ (y = 0)∧ (z = x))

2.1.5 BEFORE AND AFTER VALUE

The following convention for denoting the value of program
variables before and after a program is executed is used
[11].

Let P be a program and xi, …, xk be the program
variables used in P. Then

• “x i' ” (to be read “xi after”) denotes the value of the
programming variable xi after execution of P.

• “ 'x i” (to be read “xi before”) denotes the value of the
programming variable xi before execution of P.

2.2 DOCUMENTATION COMPONENTS

For the purposes of this work, program documentation is
said to consist of a program specification together with the
definitions of auxiliary predicates, functions and non-primi-
tive data types, constants and functions used in the program
specification. Each of these components is described below.

2.2.1 PROGRAM SPECIFICATION

A program specification, as illustrated in Table 2, consists
of three components: (1)Theprogram invocation gives the
name and type of the program and lists the name and type of
its actual arguments. (2)Theexternal variable list lists the
name and type of all external variables used in the program
relation expression. (3)Theprogram relation defines the
LD-relation that specifies the behaviour of the program. It
may include an expression that gives the characteristic pred-
icate of the competence set and must include an expression
that gives the characteristic predicate of the relation.

2.2.2 AUXILIARY PREDICATES & FUNCTIONS

An auxiliary predicate is a named predicate expression. It
has a name, a list of arguments, and a definition which is
either an ordinary predicate expression, written in terms of
the arguments, or a triple which defines an inductively
defined predicate (see section2.1.3). Its name, together with
a list of actual arguments, can be used in any expression
where a predicate expression is permitted. It is evaluated by
substituting the actual argument values for their correspond-
ing arguments in the definition and evaluating the resulting
predicate expression.

In a similar manner, anauxiliary function is a named func-
tional expression. It has a name, type, list of arguments and
a definition which is an ordinary functional expression writ-
ten in terms of its arguments.

2.2.3 USER DEFINITIONS

A user definition is a sequence of text in the syntax of the
programming language which is used to declare data struc-
tures, functions or symbols that are used in the specification
and are not primitive to the programming language. This is
required so that the basic symbols (e.g. constant names) and
operators (e.g. structure element access) which are used in
the specification can be understood.

3.0 EXAMPLE DOCUMENTATION

In this section the documentation is given for a small pro-
gram, ‘find’, similar to that described in [11], which
searches an integer array ‘B’ for a value given by ‘x’ and
returns its index in ‘j’ and, using a boolean variable
‘present’, indicates if a match was found. The design of an
oracle and the procedure for automatic generation are
described in section4.0 using this specification as a basis
for examples.

3.1 PROGRAM SPECIFICATION

TABLE 2 - ’Find’ specification

void
find(int B[N], int x, int j, bool present)

external variables:

Rfind(<'B[], 'x>, <B'[], x', j', present'>) =

(∃i, bRange(i)
∧ 'B[i] = 'x)

(∀i, bRange(i)
⇒ ¬('B[i] = 'x))

j' | 'B[j'] = 'x true

present' = TRUE FALSE

∧ NC('B, 'x, B', x')

5

3.2 AUXILIARY PREDICATES

bRange(int i)

inductiveDef[{0}, i+1, i<(N-1)] 3

NC(int 'a[], int 'b, int a'[], int b')

(∀i, bRange(i) ⇒ 'a[i] = a'[i]) ∧ ('b = b')

3.3 User Definitions
#include “defs.h”

#def ine N 10 /* Size of array
to search */

4.0 ORACLE DESIGN

Given program documentation as illustrated above, it
should be clear that the characteristic predicate of the pro-
gram relation can be used as an oracle -- if an input-output
pair is in the program relation then the execution was suc-
cessful. The challenge of this work then is to convert the
documentation into a form that can be executed (evaluated)
so that it can be used in an automated testing environment.

Since it is likely that a program will be tested for several
input values using the same specification, it was decided
that the TOG should convert the documentation into a form
that could be compiled using a standard high-level language
compiler. This has the advantages that the TOG output is in
a form that can be understood by programmers and the
resulting oracle executes relatively quickly. Since both the
tabular documentation tools being developed at McMaster
and the example programs selected for illustration of this
tool are implemented using the C programming language, it
was decided that the oracle should also be implemented in C
or a derivative (e.g. C++).

4.1 INTERFACE

An oracle, in the context of this work, consists of a C source
code file which contains four externally accessible pro-
grams, initOracle, inCompSet, inDomain, and inRelation.
initOracle is used for initializing internal data structures etc.
and is intended to be called only once for each execution of
the oracle (an execution may involve evaluating any number
of test executions). The latter three programs are boolean
valued functions which evaluate the characteristic predicate
of the competence set, domain and relation components,
respectively, of the program relation. To simplify imple-
mentation, these all have the same arguments, which repre-
sent the ‘before’ and ‘after’ values of the arguments to the
program under test. The ‘after’ values are not used by inDo-

3. This notation is used to denote an inductive definition.

=df

=df

main and inCompSet. Thus, for the example given above,
the access program prototypes are4:

#def ine ARGS_PROTO int B[N], int x, \
int p_B[N], int p_x, \
int p_j, BOOL p_present

#def ine ARGS B, x, p_B, p_x, p_j, \
p_present

void initOracle();
BOOL inCompSet(ARGS_PROTO);
BOOL inDomain(ARGS_PROTO);
BOOL inRelation(ARGS_PROTO);

The oracle procedures are constructed by traversing the syn-
tax tree of the expressions in the program relation in a post-
order manner (i.e. innermost sub-expressions are processed
first) and constructing code to implement each sub-expres-
sion as described below.

4.2 SCALAR EXPRESSIONS

The scalar (i.e non-tabular) expressions used in this form of
program documentation can easily be represented in C as
described below. Each scalar expression is translated into
equivalent C statements.

4.2.1 LOGICAL OPERATORS

Except when they are the root node of a quantified expres-
sion (see section4.2.4), logical operators are directly trans-
lated to their equivalents as given in Table 3. (P and Q are
arbitrary predicate expressions.)

Thus the top node of the program relation expression tree,
which is the conjunction of the table expression withNC(B,
x) is implemented in the following procedure:

BOOL
inRelation(ARGS_PROTO)
{

return(f ind_tab.inRelation(ARGS)

4. The actual variable names used in the oracle are derived
from those appearing in the specification. In this example
'B, 'x, B', x', j' and present' are represented by B, x, p_B,
p_x, p_j and p_present, respectively.

TABLE 3. Logical Operator Conversions

Logical Operator C Equivalent

¬P !P

P ∨ Q P || Q

P ∧ Q P && Q

P ⇒ Q (!P) || Q

6

&& nc_B_x(ARGS));
}

4.2.2 PRIMITIVE RELATIONS

Since the logic used in this work differs from traditional
logics in the definition of primitive relations, the standard
programming language relational operators must be com-
bined with information about the domain of partial func-
tions. For example the predicate expression “'B[j'] = x”,
which appears in the first row of the first column of the
table, is translated into the following procedure. (Arrays are
treated as partial functions.)

static BOOL
f ind_g1_1(ARGS_PROTO)
{

return(B_domain(p_j)
&& (B[p_j] == x));

}

4.2.3 INDUCTIVELY DEFINED PREDICATES

A set of classes of C++ objects has been defined to imple-
ment inductively defined predicates. Each of these classes
has methodsf irst() andnext() , for enumerating the
elements in the set characterized by the predicate, and an
operator, () , which evaluates the predicate for an element.
The definition of an inductively defined predicate (an auxil-
iary predicate definition) is converted into an array and two
procedures for use by an object of one of these classes. For
example, the definition forbRange(int i) (see section3.2)
results in the following code.

static int bRange_I[] = { 0 };

static int
bRange_G(int i)
{

return(i+1);
}

static BOOL
bRange_Q(int i)
{

return(i < (N-1));
}

When an inductively defined predicate is used in an expres-
sion it is implemented by instantiating an object from an
appropriate class, depending on the type of the elements of
the set, and passing it the array and procedures correspond-
ing to the predicate definition. This is illustrated by the
objectbRange of typeIndPred_int which is used in
the quantification example, below.

4.2.4 QUANTIFICATION

Quantifier expressions are implemented using loops which
call the procedures to enumerate the elements of the set
which has the inductively defined predicate (see
section2.1.3) as its characteristic predicate. The root node
of the quantification expression (i.e. the ’∧’ for existential or
‘⇒’ for universal) is not implemented as described in
section4.2.1 but is effected by evaluating its right child
expression for only those elements which make the left
child expressiontrue (i.e. the elements of the set character-
ized by the inductively defined predicate). To ensure that
evaluation is as fast as possible, the loops are designed to
terminate as soon as the result of the quantification is known
(i.e. first positive instance for existential quantification, first
negative instance for universal quantification). Unfortu-
nately, however, quantification over a large set is inherently
a lengthy process.

The quantification “(∃i, bRange(i) ∧ 'B[i] = 'x)”, which is in
the first cell of the column header of the table is imple-
mented as follows.

static BOOL
f ind_h2_1(ARGS_PROTO)
{

BOOL result = TRUE;
IndPred_int bRange(bRange_I, 1,

bRange_G,
bRange_Q);

int i;

i = bRange.f irst();
while (result && bRange(i)) {

result = !(B_domain(i)
&& (B[i] == x));

i = bRange.next();
}
return(!result);

}

4.3 TABULAR EXPRESSIONS

Several classes of (C++) table objects which implement the
various types of tabular expressions have been defined. An
object of one of these classes is instantiated to implement
each non-scalar expression. Although, as illustrated in
section2.1.4, tabular expressions could be translated into
equivalent scalar expressions which could then be translated
into equivalent C statements as for scalar expressions, it is
felt that there are advantages to the table object approach.
Firstly, the table objects encapsulate all knowledge of the
semantics of tabular expressions so the TOG need not have
this knowledge and is hence less complicated. Also, since
the algorithm for interpreting a table is built in to the table
object class (i.e. is not automatically generated), that code

7

can be designed to minimize the number of cell expressions
that need to be evaluated and hence improve performance.

Procedures that implement the expressions contained in
each cell of the table are generated and pointers to these are
used by the table object.

Predicate expression table objects have two access pro-
grams (methods in C++ terminology) which may be used to
evaluate the table:f indCell determines if the current val-
ues of the arguments are in the domain of the table, and
inRelation evaluates the table.

4.4 AUXILIARY PREDICATES & FUNCITONS

As mentioned in section2.2.2, auxiliary predicates and
functions are simply a shorthand notation for writing more
complicated expressions. With the exception of inductively
defined predicates, which are implemented as described in
section4.2.3, a procedure to implement each auxiliary pred-
icate or function is generated, and appropriate calls to these
are used in the code which implements other expressions.

4.5 USER DEFINITIONS

The user definition text is inserted at the beginning of the
oracle code so that these basic definitions and symbols can
be used by the oracle.

5.0 DISCUSSION

The documentation methods described in section2.0 have
been found to be useful for describing software behaviour.
The mathematics (logic) used is neither new nor difficult so
only a small amount of training should be required for spec-
ifiers, designers, programmers and users to become com-
fortable with it. The use of a single set of documentation by
all people involved in the production and verification of a
software system greatly reduces the risk of miscommunica-
tion or errors in translation. The addition of tools which
allow the software to be tested directly against this docu-
mentation will enhance confidence in the implementation
and speed up, and hence encourage, testing.

The requirement that the documentation be written so that it
can be used to derive an effective test oracle does, however,
impose some restrictions. For example, the use of primitive
relational operators, most notably ‘=’, is only valid for the
basic data types for which these operators are defined. A
specifier might be tempted to write an expression such as “x'
= myFunc('x)”, where x is a variable of non-primitive (i.e.
abstract) type andmyFunc() is an auxiliary function of that
type, but it is impossible to evaluate this expression without
the definition of ‘=’ for that type. The solution is to define
an auxiliary predicate, sayabsTypeEqual(), that evaluates

equality for the abstract data type, so the above expression
could be written “absTypeEqual(x', myFunc('x))”.

Also, the restriction of quantification to finite (presumably
small) sets may be seen as complicating the documentation.
As is pointed out in [13] “…practitioners do not want to use
methods that require them to use many symbols to say sim-
ple things.” An example which is used to illustrate the bene-
fits of the logic is the expression “(∃i, B[i] = x)”. To
evaluate this expression, in the worst case, an oracle must
evaluate “B[i] = x” forevery integer i. Although we can
assume that the set of integers is finite, this evaluation
would certainly take longer than is practical. So, in the nota-
tion adopted in this work, the expression must be written as
“ (∃i, bRange(i) ∧ B[i] = x)” which is slightly more compli-
cated, but can be evaluated much more quickly (assuming
that bRange characterizes a set much smaller than the set of
integer representations on the computer). This, unfortu-
nately, also introduces an extra step in the process of verifi-
cation of a specification -- the (human or computer) verifier
must check that the inductively defined predicate does not
exclude any values of interest, which may be a non-trivial
task where complicated expressions are involved.

It is quite possible to write a specification for which the ora-
cle will not terminate or will only terminate after an unrea-
sonable amount of time. Non-termination could be caused
by either a non-terminating recursion in an auxiliary defini-
tion, errors in the definitions of an inductively defined pred-
icate or a non-terminating ‘primitive’ (i.e. defined in the
programming language) function. Slow termination could
be caused, for example, by quantification over large sets.
For example, consider the well known ‘shortest path prob-
lem’ for which a specification is given in [12]. An oracle
based on this specification must enumerate all possible
paths through the directed graph to ensure that there is no
valid path with a smaller path weight -- an O(n!) calcula-
tion. The responsibility for avoiding such non-terminating
or slowly-terminating oracles must rest with the user (i.e.
specifier/verifier). Non-termination can only be avoided by
careful definition of auxiliary predicates/functions and judi-
cious use of well tested/verified primitive functions. For
problems such as the shortest path problem, it is not practi-
cal to test the whole program against the specification for
large graphs, but it may be practical to test some sub-pro-
grams called by it and then to use other techniques to verify
the top level code.

6.0 CONCLUSIONS

The problems addressed by this work are seen as being of
very practical importance. The use of formal documentation
techniques has been shown to improve the quality of soft-
ware (e.g. [5]) but the industrial community has been slow
to accept them because they are seen as greatly increasing
the up-front cost of system development without significant

8

measurable benefit. The ability to test a program using its
documentation as an oracle will greatly increase the value of
such formal documentation by reducing the cost of testing
and helping to ensure that errors that occur during testing
are detected. The test oracle generator can also be used to
ensure that documentation is kept up to date: if a program is
always tested against the documentation then everyone is
assured that the documentation is consistent with the pro-
gram behaviour.

We believe that the generation of a useful test oracle from
relational program documentation is both feasible and prac-
tical. Development of a Test Oracle Generator tool which
uses the methods described in this paper is currently under
way. Tools for allowing easy editing and manipulation of
documentation using these techniques are also being devel-
oped.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the assistance of Jeff
Zucker of McMaster University in the preparation of this
paper, particularly in clarifying the sections on inductively
defined predicates. Several helpful comments have also
been received from the anonymous reviewers as well as
from Arne Maus of the University of Oslo.

This research was supported in part by the Government of
Ontario through the Telecommunications Research Institute
of Ontario (TRIO) and the Government of Canada through
the Natural Sciences and Engineering Research Council
(NSERC).

REFERENCES

1. Antoy, S. & Hamlet, R., “Objects that Check Them-
selves against Formal Specifications”,TR 91-1, Dept.
of Computer Science, Portland State University School
of Engineering and Applied Sciences, Portland, OR. 18
pgs.

2. Bernot, G., Gaudel M. C. & Marre, B., “Software Test-
ing Based on Formal Specifications: A Theory and a
Tool”, Software Engineering Journal, Vol. 6, pp. 387-
405.

3. Chapman, D., “A Program Testing Assistant”,Commu-
nications of the ACM, Vol. 25, No. 9 (September 1982),
pp. 625-634.

4. Gannon, J., McMullin, P. & Hamlet, R., “Data-Abstrac-
tion Implementation, Specification, and Testing”,ACM
Transactions on Programming Languages and Systems,
Vol. 3, No. 3 (July 1981), pp. 211-223.

5. Gerhart, S., Craigen, D. & Ralston, T., “Experience
with Formal Methods in Critical Systems”,IEEE Soft-
ware, (January, 1994) pp. 21-28.

6. Hamlet, R. G., “Testing Programs with the Aid of a
Compiler”, IEEE Transactions on Software Engineer-
ing, Vol. SE-3, No. 4 (July 1977), pp. 279-290.

7. Luckham, D. C., von Henke, F. W., Krieg-Brückner, B.
& Owe, O., ANNA A Language for Annotating Ada
Programs Reference Manual, Lecture Notes in Compu-
ter Science, 260, Goos, G. & Hartmanis, J. (editors),
Springer-Verlag, 1987.

8. Panzl, D. J., “Automatic Software Test Drivers”,Com-
puter, April 1978, pp. 44-50.

9. Parnas, D. L., “A Generalized Control Structure and Its
Formal Definition”,Communications of the ACM, Vol.
26, No. 8 (August 1983), pp. 572-581.

10. Parnas, D.L. & Madey, J., “Functional Documentation
for Computer Systems Engineering (Version 2)”, CRL
Report No. 237, Telecommunications Research Insti-
tute of Ontario (TRIO), September 1991, 14 pgs.

11. Parnas, D. L., Madey, J. & Iglewski, M., “Formal Doc-
umentation of Well-Structured Programs”,CRL Report
No. 259, Telecommunications Research Institute of On-
tario (TRIO), September 1992, 37 pgs.

12. Parnas, D. L., “Tabular Representation of Relations”,
CRL Report No. 260, Telecommunications Research In-
stitute of Ontario (TRIO), November 1992, 17 pgs.

13. Parnas, D. L., “Predicate Logic for Software Engineer-
ing”, IEEE Transactions on Software Engineering, Vol.
19, No. 9 (September 1993), pp. 856-862.

14. Peters, D. K., “Shortest Path Algorithm - Formal Pro-
gram Documentation”,CRL Report No.280, Telecom-
munications Research Institute of Ontario (TRIO),
February 1994, 11 pgs.

15. Richardson, D. J., Aha, S. L. & O’Malley, T. O. “Speci-
fication-based Test Oracles for Reactive Systems”,Pro-
ceedings of the 1992 International Conference on
Software Engineering (ICSE), (May, 1992), pp. 105-
118.

16. Stocks, P. & Carrington, D., “Test Template Frame-
work: A specification-based testing case study”, Pro-
ceedings of the 1993 International Symposium on
Software Testing and Analysis (ISSTA), (June, 1993),
pp. 11-18.

17. Weyuker, E. J., “On Testing Non-testable Programs”,
The Computer Journal, Vol. 25, No. 4 (1982), pp. 465-
470.

