
Interface Module Specifications for Real-time Systems

Yingzi Wang and Dennis K. Peters
Electrical and Computer Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

St. John’s, Newfoundland
Canada

wang@engr.mun.ca, dpeters@engr.mun.ca

November 13, 2001

Abstract

Documentation plays a key role as a component of design process, and a preview of a task before
it comes to be executed. A well-specified task might not take less implementation time than one with-
out documents, but one of the obvious advantages is that misunderstandings are avoided and readable
specification makes it easy for the successive developers to exploit or modify the software or hardware
design. Such merit is particularly useful for aviation and military applications in which reliability and
maintainability are very important aspects for judging the success of a project.

Interface Modules (IM) are modules that encapsulate input or output device hardware and the related
software, so that the application software can be written without specific knowledge of the particular
devices used. Replacing or modifying an interface device will only lead to changes in the IM, rather
than changing the other modules in the whole system. In real-time and embedded systems, an IM will
often relate real-valued external quantities (e.g., time, positions in space) with discrete valued software
quantities. An IM specification must therefore use a combination of notations and formalisms. This
paper presents a suitable method for IM specification, which is both precise and readable.

1 Introduction

Design documentation is an essential product of the design process, and plays several key roles. For example,

• a requirements specification can provide an overview of the system before it is implemented;

• a complete and precise system design document can be used to help determine the feasibility of the
system, or to verify other essential system properties;

• accurate and precise documentation improves maintainability and reliability by acting as a guide and
reference for current and future developers; and

• precise specifications can be used to help to detect, isolate and remove faults earlier in the project
life-cycle, which reduces costs.

To reduce the complexity of the system, a system can be decomposed into a set of modules, each of which
performs a certain task in the system.[1] These modules can be implemented by individual developers without
communicating with others very often, for the task is defined explicitly in the documents of the module
specification. A well-specified task might not take less implementation time than one without documents, but
one of the obvious advantages is that misunderstandings are avoided and readable specification makes it easy
for the successive developers to exploit or modify the software or hardware design. Such merit is particularly

1

Wang & Peters: Interface Module Specifications for Real-time Systems

Software

Processing

Serial I/O

Robotic arm
User

Interface

Robot

Interface

Figure 1: Robot System

useful for example in aviation and military applications which consider reliability and maintainability very
important aspects judging the success of a project.

Interface Modules (IM) are modules that communicate between the application software and the envi-
ronment in which it operates.[2, 3] They typically encapsulate software and hardware that implements an
interface with either human users (i.e., a human-machine interface) or some other environmental quantity
(e.g., temperature, robot arm position).

An interface module reduces the complexity of the system design by isolating the interface details from
the rest of the system software. This is particularly important in embedded systems, where the IM will often
contain special purpose hardware devices (e.g., actuators or sensors): replacing or modifying a device should
only lead to changes in the IM, rather than requiring changes to other modules in the system. If interface
hardware is not explicitly encapsulated, when a device changes, programs depending on it will also need to
change, so the change could have surprising and widespread ramifications.

Consider, for example, a system for making signs that uses a robotic arm as illustrated in Figure 1. As
illustrated, the system consists of three modules (each of which may be sub-divided into other modules):
User interface, processing, and robot interface. The User interface and robot interface modules are both
examples of interface modules, which isolate the processing software from the specific details of the input
or output device hardware and software. If, for example, the mechanical properties of the robot arm were
to be modified, it would probably require that the software controlling it also change. The robot interface
module limits the impact of these changes.

The ideal Interface Module will:

• be the only component that needs to change if the devices change;

• not need to change unless the devices change;

• be relatively small and simple structured so that it can be easily changed if necessary.

2 Specifying Interface Modules

Interface Module Specifications (IMS) are components of the System Design Document, as described in
[4, 5]. Like other module specifications, the IMS tells the module designer what behaviour is required of
the module, and allows it to be implemented without communicating with other module designers. Also
the IMS can be used to verify that the module internal design is correct. Designers of other modules in
the system can use the IMS to understand what behaviour they can expect from the module. As a part of
system design process, the IMS and the system architecture can be used to verify that the design satisfies
the system requirements.

Since interface modules interact with both other software modules and the environment external to the
system, they present new challenges for specification. In this section we briefly outline a method for specifying
interface modules that extends some of the notation for System Requirements documentation presented in
[4] to allow the IM to be viewed as a system in the sense of that work.

2

Wang & Peters: Interface Module Specifications for Real-time Systems

2.1 Module Interface

As stated in [4] environmental quantities are quantities that are external to the system, “independent of
the chosen solution and are apparent to the ‘customer’.” From the point of view of the IM, the ‘customer’
is the designer of the software that will use the IM to communicate with the external environment, and
the quantities of interest are both internal (software) and external quantities. The internal quantities are
software quantities that form the interface between the IM and other system modules, including, for example,
parameters to access programs. The external quantities are the environmental quantities relevant to the
system and represent such things as temperature, switch settings, or the position of a robot arm. All these
quantities can be represented by functions of time. Note that for real-time systems, time, itself, is a relevant
environmental quantity.

The IMS must describe the behaviour of the IM in terms of these quantities. We divide the quantities
into two, not necessarily disjoint, sets: the controlled quantities are those that the IM may change the value
of, and the monitored quantities are those whose value may effect the current or future behaviour of the
IM. The IMS, then, must give the value of the controlled quantities depending on the past values of the
monitored quantities.

2.2 Conditions, Events and Mode Classes

The relevant properties of the monitored and controlled quantities can often be succinctly characterized
by predicates, called conditions, which are Boolean functions of time defined in terms of the monitored
and controlled quantities. For an interface module access program, we use the access program name and
parameters to denote the condition that is true only when the access program is executing. For example, if
foo is an access program then foo(x) is true if and only if foo is executing, and foo(x)∧x < 0 is true if and
only if foo is executing and its parameter was less than 0 when it was called.

The instants when conditions change value are significant to the behaviour of the system, and these
instants are referred to as events. Formally, an event e, is a pair (t,c), where e.t is a time at which one
or more conditions change value and e.c denotes the status (i.e., true, false, becoming true, becoming false
— denoted T,F,@T,@F, respectively) of all conditions at e.t. For real-time systems, the amount of time
between events will be relevant to the module behaviour.

The history that is relevant to the behaviour of a module can thus be described by the initial conditions
and the sequence of events that have occurred since the initial state. It is often the case that many histories
are the same with respect to current and future behaviour, so we group these together into a mode. A set
of modes that partition the possible histories — forming an equivalence relation on the set of histories — is
known as a mode class. If the behaviour is specified for every mode in a mode class, then it is fully specified.

2.3 Controlled Value Functions

The behaviour of the IM is thus described by giving the values of the controlled quantities in terms of the
history relevant to the module. The characteristic predicate of the acceptable values of controlled values is
given using the standard predicate and relational operators and tabular expressions. These are expressed in
terms of the previous behaviour, current mode in one or more mode classes, and condition values.

3 Example: servoPositioning Package

The servoPositioning package is an interface module for a robotic arm similar to that illustrated in Figure 1.
The arm has five motors to position the tip and open or close the ‘hand’, and is controlled by software on a
PC via a serial link. For this illustration we will consider only the tip position in two dimensions, carmPos
(the position on a drawing surface), and a Boolean, carmUp, to represent if the tip is above the surface or
touching it.

3

Wang & Peters: Interface Module Specifications for Real-time Systems

3.1 Module Interface

Access Programs
Name Parameter Types
moveInitialPos
moveLinear int, int, Boolean

Environmental Quantities
Variable Description Monitor Control Value Set Notes
mt current time X Real 1
carmPos position of the arm tip X Real×Real 2
carmUp true if the tip is not touching the surface X Boolean

Notes:

1. Elapsed time measured from some arbitrary fixed time before the system is started.

2. Arm tip position is measured, in mm, in the plane containing the drawing surface with origin at the
corner of the drawing surface closest to the robot arm base.

3.2 Mode Class ClMotion

Modes : Mduninitialized,MdmovingTo(x, y, u),Mdstopped(x, y, u)

Initial Mode : Mduninitialized

Transition Relation :
Mode Event New mode
Mduninitialized @T (moveInitialPos()) MdmovingTo(CXi,

CYi, true)
MdmovingTo(x, y, u) @T (ponPosition(x, y, u)) Mdstopped(x, y, u)
Mdstopped(x, y, u) @T (moveLinear(x, y, u)) MdmovingTo(x, y, u)

3.3 Conditions

ponPosition : Real×Real×Boolean→ Boolean
ponPostion(x, y, u)

df= |carmPos.x− x| < Cε ∧ |carmPos.y − y| < Cε

3.4 Constants

Constant Description Range
CXi ‘home’ x position (−10, 10)
CYi ‘home’ y position (0, 20)
Cε Tolerance on positions (0, 2)

3.5 Controlled Value Functions:
Mduninitialized Mdstopped(x, y, u) MdmovingTo(x, y, u)

carmPos |
∣∣ d
dt (

carmPos)
∣∣ = 0

∣∣ d
dt (

carmPos)
∣∣ = 0 d

dt (|carmPos− (x, y)|) < 0
carmUp = true u u

4

Wang & Peters: Interface Module Specifications for Real-time Systems

4 Conclusions and Future Work

This paper has briefly illustrated a technique for interface module specification using notation similar to that
presented in [4]. The use of events and mode classes provides a foundation for concise descriptions of the
required behaviour.

Further investigation will focus on the issues concerning the hybrid nature of interface modules: the
quantities are both discrete and continuous in nature.

Application of these techniques to the specification of other interface modules will further illustrate their
usefulness and may allow us to draw more conclusions on specifying real-time systems.

References

[1] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,” Communications ACM,
pp. 1053–1058, Dec. 1972.

[2] D. L. Parnas, “Use of abstract interfaces in the development of software for embedded computer systems,”
NRL Report 8047, Naval Research Laboratory, June 1977.

[3] K. H. Britton, R. A. Parker, and D. L. Parnas, “A procedure for designing abstract interfaces for device
interface modules,” in Proc. Int’l Conf. Software Eng. (ICSE), pp. 195–204, 1981.

[4] D. K. Peters, Deriving Real-Time Monitors from System Requirements Documentation. PhD thesis,
McMaster University, Hamilton ON, Jan. 2000.

[5] D. L. Parnas and J. Madey, “Functional documentation for computer systems,” Science of Computer
Programming, vol. 25, pp. 41–61, Oct. 1995.

5

