Requirements-based Monitors for Real-Time Systems

Dennis K. Peters
Electrical and Computer Engineering
Faculty of Engineering and Applied Science
Memorial University of Newfoundland
dpeters@engr.mun.ca

http://www.engr.mun.ca/ dpeters/

November 15, 2000

Abstract

Before designing safety- or mission-critical real-time systems, a specification of the
required behaviour of the system should be produced and reviewed by domain experts.
After the system has been implemented, it should be thoroughly tested to ensure that
it behaves correctly. This is best done using a monitor, a system that observes the
behaviour of a target system and reports if that behaviour is consistent with the re-
quirements. Such a monitor can be used both as an oracle during testing and as a
supervisor during operation. Monitors should be based on the documented require-
ments of the system.

This paper discusses design of monitors for real-time systems, and examines the
conditions under which a monitor will produce false reports. We describe the conclu-
sions that can be drawn when using a monitor to observe system behaviour.

1 Introduction

Computer systems are increasingly being used in situations where their correct behaviour
is essential for the safety of people, equipment, the environment and businesses. In many
cases there are real-time requirements on the behaviour of these systems—failure to satisfy
timing constraints is as costly as responding incorrectly.

When designing such safety- or mission-critical real-time systems, good engineering prac-
tice dictates that a clear, precise and unambiguous specification of the required behaviour of
the system be produced and reviewed for correctness by experts in the domain of application
of the system.

After the system has been implemented, it should be tested to ensure that its behaviour
satisfies the requirements. In safety-critical applications the system should be monitored
by an independent safety system to ensure continued correct behaviour. To achieve these
goals there must be a means of quickly determining if the observed behaviour is acceptable
or not; this can be quite difficult for complex real-time systems. A practical approach to
analysing the behaviour of a real-time system is to use a monitor: a system that observes
and analyses the behaviour of another system (the target system). Such a monitor could
be used either as an ‘oracle’[6] during system testing, or as a ‘supervisor’[4] to detect and
report system failure during operation.

This paper examines the relationship between the target system and the monitor, in
particular with respect to the means by which the monitor observes the system behaviour,
and the impact of this on the usefulness of the monitor. It gives some necessary conditions
for monitor feasibility.

This work focuses on monitors for computer-based systems that are intended to observe
and/or control some quantities external to the computer. Such quantities are often best

represented by continuous, rather than discrete, valued functions. In particular, the re-
quirements for any real-time systems will include time, which we model as a continuous
variable.

Section 2 briefly presents the “Four Variable Model”, which relates system and software
requirements in terms of the behaviour of the input and output devices. Section 3 discusses
possible monitor configurations. Section 4 discusses the impact of realistic monitor input
devices on the conclusions that can be drawn from using the monitor, and gives some
necessary conditions that must be satisfied in order for a monitor to be useful. The final
section draws some conclusions and suggests future work.

2 The Four Variable Requirements Model

When specifying system and software requirements it is important to distinguish quantities
that are in the environment, i.e., external to the system, from those that are internal to the
system or artifacts of the description of either the requirements or the design. The “Four
Variable Model” [1, 5], defines environmental quantities as those that are independent of
the chosen solution and are apparent to the “customer”; they are the best quantities to
use when describing the requirements for the system. These quantities will include such
things as physical properties (e.g., temperature, pressure, location of objects), values or
images displayed on output display devices, settings of input switches, dials etc., and states
of controlled devices. Such quantities can be modelled by functions of time.

The environmental quantities of interest can be classified into two (not necessarily dis-
joint) sets: the controlled quantities—those that the system may be required to change
the value of, and the monitored quantities—those that should affect the behaviour of the
system. A monitored state function, denoted m?, is a vector function describing the values
of the monitored quantities for some period. Similarly, a controlled state function, denoted
¢!, describes the values of the controlled quantities.

The environmental quantities cannot usually be directly observed or manipulated by
the system software, but must be measured or controlled by some devices (e.g., sensors,
actuators, relays, buttons), which communicate with the software through the computer’s
input or output registers, represented by program variables. The input quantities are those
program variables that are available to the software and provide information about the
monitored quantities. An input state function denoted i¢ represents the values of the input
quantities. Similarly, the output quantities are those program variables through which the
software can change the value of the controlled quantities. An output state function, denoted
o', represents the values of the output quantities.

Using these four sets of quantities, the system requirements and design, and software
requirements can be expressed in five relations, as follows.

System Requirements, REQ: Characterizes the required behaviours of the system—it
contains only those values of (m?,c?) that are acceptable behaviours of the system.
Note that, since implementations will invariably introduce some amount of unpre-
dictable delay, or inaccuracy in the measurement, calculation, or output of values,
REQ will not be functional for real systems, i.e., there will be more than one accept-
able ¢! for a given m’.

Environmental Constraints, NAT: Characterizes the possible values of the environ-
mental state function—it contains all values of (m!,c!) that are possible in the envi-
ronment. This describes constraints imposed by physical laws of nature independent
of the system to be built.

Input Relation, IN: Characterizes the behaviour of the input devices—the possible values
of i¢ for any instance of mt.

Output Relation, OUT: Characterizes the behaviour of the output devices—the possible
values of ¢! for any instance of o.

REQ
IN SOF ouT
m(t) i) oft o)
IN ouT Input Output
Devices Software Devices
m(t) | c(t) Target System
T
Input Output
Devices Devices
st
Monitor Software Report
Taget System Monitor Software
Report Monitor System
Figure 1: Software Monitor Figure 2: System Monitor

Software Requirements, SOFREQ: Characterizes the set of acceptable behaviours of
the software—those pairs, (i*, 0'), such that any possible environmental state function,

with respect to the given input and output devices and environmental constraints, are
acceptable. This is fully determined by REQ, IN, OUT and NAT.

3 Monitors for Real-Time Systems

Testing a real-time system typically involves running the target system in a test environment,
observing its behaviour and comparing it to that required by its specification. A monitor
is a system that observes the behaviour of a system and determines if it is consistent with
a given specification. That is, an ideal monitor reports the value of REQ (m?, ¢*).

3.1 Monitor Configuration

In this work, the monitor is assumed to consist of some software running on a computer
system. The monitor software cannot, in general, observe the environmental state function,
(mt, ct), directly, but must do so through some input devices that communicate the values
of the environmental quantities to input registers known as the monitor software inputs. A
monitor input state function is a function, s, representing the value of the monitor software
inputs for the periods of monitor operation. The behaviour of the monitor input devices is
characterized by the monitor input relation, IN,on. An environmental state function—input
state function pair is in the monitor input relation, ((m?,c?), s*) € INmen, if and only if st
is a possible monitor input state function for the environmental state function represented
by (m!,c!). Since the monitor must observe all acceptable behaviours, it is required that
domain(INmon) 2 REQNNAT.

The design of the monitor will determine, for each monitored or controlled quantity,
whether it is observed independently of the target system (i.e., using different devices)
or observed directly from the target system software. This results in two basic monitor
configurations, in addition to the obvious mixtures of these approaches:

Software Monitor A software monitor is a monitor that directly observes the target sys-
tem software input and output variables, i.e., st = (g’t, (_)t), as illustrated in Figure 1.

System Monitor A system monitor is a monitor that observes (m?, ¢t) using its own input
devices as illustrated in Figure 2.

4 Practical Monitors

Practical monitors are likely to be implemented using either general- or special-purpose
digital computers. This technology implies certain characteristics of the monitor input
relation, and monitor behaviour, which influence the conclusions that can be drawn from
the monitor output. This section discusses these characteristics, and states some conditions
which must hold in order for the monitor to produce meaningful results.

4.1 Observation Errors

The choice of devices and/or software used by the monitor to observe the environmental
quantities is a major design decision with respect to the monitor system. Assuming that the
monitor is a discrete-time system, there are two basic approaches to observing behaviour:

e Sample (i.e., observe the instantaneous value of) the relevant quantities at intervals.

e Modify the behaviour of the target system, and/or the systems that interact with it, to
have them notify the monitor system of the values of relevant quantities (m?, ¢f, i’ or o)
as they read or change them. Such notification is assumed to include a timestamp in-
dicating the time at which the reported value was observed by the target system.

4.1.1 Discrete Time

Regardless of whether sampling or notification is used, time can only be measured at dis-
crete points: if sampling is used then the sampling period determines the smallest relevant
clock increment, whereas if notification is used it is determined by the precision of the noti-
fication timestamp. If we assume that using the notification approach the monitor receives
notifications for all relevant changes, then this approach is not significantly different from
the sampling approach in which the sampling period is the precision of the notification
timestamp and uninteresting samples discarded. Thus, the results from sampling theory
(e.g., see [3]) can be applied here to show that, for infinite duration signals (behaviours),
it is sufficient to sample at twice the maximum frequency of change in the environmental
quantities. However, the monitor is typically concerned with what has happened between
the most recent two samples, and so the discrete clock will introduce some error in the per-
ceived time of events, which is referred to as the time error. For real-time systems, errors
in measuring time are particularly important.

Consider the behaviours il-

lustrated in Figure 3, in which ml 1, ml I
the values of m and ¢ repre- Actud | ‘ ‘ ‘ ‘ ‘ ‘ ‘

sent that a condition of, re- c f ¢ I
spectively, a monitored and

controlled quantity is either e I e s s e
false (low) or true (high). Sim- Monitor N Monitor B
sc ! sc

ilarly, the values of s.m and

s_c represent the values as they m0 mL m2 m3tme m0 mL m2 m3 time
appear to the monitor soft- &) Minimum delay tolerance b) Minimum response time
ware and the shaded regions i Monitor samples Pre-image of s

represent the image of these

changes under INon~*. Let Figure 3: Time Accuracy

Omon represent the monitor sampling interval (i.e., m; — m;_1) and d be the elapsed time
between the change in m and ¢, as illustrated. Assuming that the change in ¢ is a correct
target system response to the change in m, consider the two cases illustrated.

a) The monitor sees distinct changes. The monitor can determine only that 0 < d <
20mon- This behaviour will be rejected (considered unacceptable) if the specified
maximum delay for that change is less than 26,,,,,. This results in Condition 1, below.

Condition 1 The mazimum time error introduced by the monitor input devices must
be less than %min(Delay), where Delay is the set of mazimum delay tolerances for
the dependent' quantities given in the System Requirements Document (SRD).

b) The monitor sees simultaneous changes. Here the monitor can determine that —d,,on <
d < 6mon (i-e., ¢ could change before m); hence this behaviour will be rejected if ¢ is
only permitted to change following m. The implication is that d,,,, must be less than
the minimum response time of the target system. This constraint can be weakened,
however, by noting that, in order for the target system to have responded to the
change in m, it must have observed its value between the changes in m and ¢, so this
case can be avoided by ensuring that the monitor samples in that interval as well.
Thus we have Condition 2, below, which can be satisfied by ensuring that sampling by
the target and monitor systems is synchronized to within the minimum target system
response time. If event notification from the target system is used, the monitor and
target systems are assured to be synchronized.

Condition 2 The mazimum difference between the time error in the target system
and the time error in the monitor system for the same event must be less than the
minimum time in which the target system might respond to that event.

A monitor system that does not satisfy Condition 1 will be infeasible. A system that
does not satisfy Condition 2 may give false negative results for target systems responding
too quickly.

4.1.2 Quantization and Measurement Error

As with time, other values observed Continuous Discrete Continuous Discrete
by the monitor software must be of fi- ht. hy |
nite precision, so Real valued environ- |
mental quantities must be quantized, T Lt
such that, for example, discrete value =l ' hz,:gj:r o
v; represents all continuous values, z, T 'y
such that I; < x < h;. Whereas time e Ve Y
is continuously increasing, so we know =l Tl{{j;,,f
something about the error, other quan- oy 2 .
tities do not necessarily have this prop- ! ot
erty. As illustrated in Figure 4, if the LT T
quantization is perfect, i.e., h; = l;41, a) Perfect Quantization b) Quantization with Error
the worst case error is half the quan-
tization step size, h; — I;, and no non- Figure 4: Quantization and Error

determinism is introduced. Practical devices will exhibit some measurement error in addition
to quantization, so the actual error will be larger, and INmon will be non-functional.

For a monitor to be feasible, there must be some monitor input state functions, st,
for which all images under INmon_1 are acceptable. Because of the variety of ways that
quantities may be used in the SRD, we cannot state generally applicable conditions on
INon that will ensure that a monitor is feasible. Condition 3 is a necessary, but not
sufficient condition for feasibility.

Condition 3 The mazimum error in observing a particular controlled quantity must be less
than the difference between the mazimum and minimum values of that quantity permitted by
REQ.

4.2 Non-determinism

As mentioned in Section 2, practical requirements documents will be non-functional to allow
for unpredictable delays or errors in calculation or measurement. In particular, if the target

LA quantity c is dependent on m if the value of ¢ may be required to change as a result of a change in
the value of m.

system is to be implemented using a discrete-time system, then, for some small time, r, REQ
must allow events that occur within r of each other to be treated as either a single event
(i.e., simultaneous) or distinct events (i.e., non-simultaneous). The time r is known as the
time resolution for the target system. The monitor system must take this non-determinism
into account when evaluating behaviour.

Consider the behaviour il- N N
lustrated in Figure 5, and the 2| 2 ‘
target time resolution as in- Actual Actud
dicated. The requirements must . .
allow the changes in C1 and @ @

C2 to be treated as either si- Monitor Monitor

multaneous or not in both cases cl : : c

illus‘grated. Assuming that the e e G e
monitor system samples at the \\t
-+ Monitor samples Pre-image of s \arga resolution
N

indicated times, it will observe
the changes either simultane-
ously or not, but can certainly
tell that they occurred within 26,,,, of each other. If 8,,,, is less than half the time reso-
lution required for the target, which is required to satisfy Condition 1, then in both cases
all images of s* under IN,hon ! allow the changes to be interpreted as happening in either
order or simultaneously, so the monitor accepts a behaviour in which the target system
interprets them in either way. The monitor software must take this non-determinism into
account.

In the case of the software monitor configuration, as illustrated in Figure 1, the monitor
software and the target system software are assured to see the same values (i.e., s' = (i*,0")),
so the monitor implementation can require deterministic behaviour.

N

Figure 5: Event Resolution

4.3 Response Time

Clearly the delay introduced by the monitor input devices will impose a lower limit on the
monitor response time—the maximum time between a failure occurring and the monitor
reporting it—since a monitor cannot report a failure before it is evident in st. The choice
of input devices can also affect the amount of processing required by the monitor software,
which will also affect response time, although less predictably so. For example, input devices
may be available that can directly report the value of relevant conditions (e.g., sensors to
detect if a robot has touched a wall) whereas a different choice of input devices would require
that the monitor software perform some, possibly expensive, calculations (e.g., search a list
of wall locations to determine if the robot is touching any).

5 Conclusions

This paper presents some necessary conditions for a monitor for a real-time system to be
feasible and useful. These conditions can be used to help determine if a particular monitor
design is sufficient for the target system.

Monitors, such as described in this work, are well suited to automated testing of systems,
where they function as an oracle, reporting if the behaviour is acceptable or not. This
application offers significant improvement over non-automated testing since test cases can
be evaluated quickly and errors in behaviour are quickly and reliably detected.

In a similar way, monitors can be used as supervisors to observe the behaviour of the
target system in operation and report failures as they occur. Such a supervisor could be
used as a redundant safety system to initiate corrective or preventative action when a failure
is detected.

5.1 Future Work

We have validated this work using a few software monitors that were automatically generated
from system requirements documentation.[2] Further study, using different target systems
and using the system monitor configuration discussed in Section 3.1 would undoubtedly lead
to new insight.

Further work is also needed to enhance techniques for specifying the behaviour of input
and output devices, and to develop analysis techniques that will permit designers to easily
determine if a particular set of monitor input devices is sufficient for the monitoring task at
hand.

References

[1] D. L. Parnas and J. Madey. Functional documentation for computer systems. Science
of Computer Programming, 25(1):41-61, Oct. 1995.

[2] D. K. Peters. Deriving Real-Time Monitors from System Requirements Documentation.
PhD thesis, McMaster University, Hamilton ON, Jan. 2000.

[3] J. G. Proakis and D. G. Manolakis. Digital Signal Processing Principles, Algorithms and
Applications. Maxwell Macmillan, second edition, 1992.

[4] D. Simser and R. E. Seviora. Supervision of real-time systems using optimistic path
prediction and rollbacks. In Proc. Int’l Symp. Software Reliability Eng. (ISSRE), pages
340-349, Oct. 1996.

[5] A. J. van Schouwen, D. L. Parnas, and J. Madey. Documentation of requirements for
computer systems. In Proc. Int’l Symp. Requirements Eng. (RE ’93), pages 198-207.
IEEE, Jan. 1993.

[6] E. J. Weyuker. On testing non-testable programs. The Computer Journal, 25(4):465—
470, 1982.

