
146 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

Requirements-based Monitors for Real-Time
Systems

Dennis K. Peters,Member, IEEE and
David Lorge Parnas,Senior Member, IEEE

Abstract—Before designing safety- or mission-critical real-time
systems, a specification of the required behavior of the system
should be produced and reviewed by domain experts. After the
system has been implemented, it should be thoroughly tested to en-
sure that it behaves correctly. This is best done using a monitor, a
system that observes the behavior of a target system and reports if
that behavior is consistent with the requirements. Such a monitor
can be used both as an oracle during testing and as a supervisor
during operation. Monitors should be based on the documented
requirements of the system.

If the target system is required to monitor or control real-valued
quantities, then the requirements, which are expressed in terms of
the monitored and controlled quantities, will allow a range of be-
haviors to account for errors and imprecision in observation and
control of these quantities. Even if the controlled variables are dis-
crete valued, the requirements must specify the timing tolerance.
Because of the limitations of the devices used by the monitor to ob-
serve the environmental quantities, there is unavoidable potential
for false reports, both negative and positive.

This paper discusses design of monitors for real-time systems,
and examines the conditions under which a monitor will produce
false reports. We describe the conclusions that can be drawn when
using a monitor to observe system behavior.

Index Terms—Automated testing, Test oracle, Real-time system,
Supervisor

I. I NTRODUCTION

COMPUTER systems are increasingly being used in situ-
ations where their correct behavior is essential for the

safety of people, equipment, the environment and businesses.
In many cases there arereal-time requirements on the behav-
ior of these systems — failure to satisfy timing constraints is as
costly as responding incorrectly.

When designing such safety- or mission-critical real-time
systems, good engineering practice dictates that a clear, pre-
cise and unambiguous specification of the required behavior of
the system be produced and reviewed for correctness by experts
in the domain of application of the system. Research suggests
that such reviews are more effective if the system behavioral
requirements documentation:

Dennis Peters is with Electrical and Computer Engineering, Faculty of En-
gineering and Applied Science, Memorial University of Newfoundland, St.
John’s, Newfoundland, Canada A1B 3X5, E-mail: dpeters@engr.mun.ca

David Parnas is with Department of Computing and Software, Faculty of
Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4K1, E-
mail: parnas@mcmaster.ca

Manuscript received Mar. 2001; revised Sept. 2001; accepted Sept. 2001.
Recommended for acceptance by M.J. Harrold and A. Bertolino. For
information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 115154.

• expresses the required behavior in terms of the quantities
from the environment in which the system operates (i.e.,
external to the system),

• uses terminology and notation that is familiar to, or can be
learned by, the domain experts, and

• is structured to permit independent review and application
of small parts of the document.[13]

After the system has been implemented, it should be tested
to ensure that its behavior satisfies the requirements. In safety-
critical applications the system should be monitored by an inde-
pendent safety system to ensure continued correct behavior. To
achieve these goals there must be a means of quickly determin-
ing if the observed behavior is acceptable or not; this can be
quite difficult for complex real-time systems. Several authors
(e.g., [40]) have suggested that a practical approach to analyz-
ing the behavior of a real-time system is to use amonitor: a
system that observes and analyzes the behavior of another sys-
tem (thetarget system). Such a monitor could be used either
as an ‘oracle’[43] during system testing, or, for a limited class
of systems, as a ‘supervisor’[36] to detect and report system
failure during operation.

This paper examines the relationship between the target sys-
tem and the monitor, in particular with respect to the means by
which the monitor observes the system behavior, and the impact
of this on the usefulness of the monitor. It gives some necessary
conditions for monitor feasibility. In related work [27] we have
developed techniques for automatically generating software to
implement a monitor from a System Requirements Document
(SRD) written in a notation that is based on the method pre-
sented in [41], which developed from the A-7E project at the
US Naval Research Laboratory.[14]

This work focuses on monitors for computer-based systems
that are intended to observe and/or control some quantities ex-
ternal to the computer. Such quantities are often best repre-
sented by continuous, rather than discrete, valued functions. In
particular, the requirements for any real-time systems will in-
clude time, which we model as a continuous variable.

The remainder of this section defines the notation and termi-
nology used in this paper. Section II introduces a system that
is used as a running example throughout the remainder of the
paper. Section III briefly presents the “Four Variable Model”,
which relates system and software requirements in terms of the
behavior of the input and output devices. Section IV formally
defines a monitor and its accuracy, and discusses possible mon-
itor configurations. Section V discusses the impact of realis-
tic monitor input devices on the conclusions that can be drawn

0098–5589/02/$17.00c© 2002 IEEE

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 147

from using the monitor, and gives some necessary conditions
that must be satisfied in order for a monitor to be useful. The
final section draws some conclusions and suggests future work.

A. Notation and Terminology

There are at least two systems of interest in any application
of this work:
• The target systemis the system to be monitored. Its re-

quired behavior is specified in the System Requirements
Document (SRD).

• Themonitor systemis the system that observes the behav-
ior of the target system and reports whether or not it con-
forms to the SRD.

As discussed further in Section IV-B, in some configurations
these two systems may share components.

The following notational conventions are used in this paper.

The symbol “
df=” is used to represent “is defined as”, so, for

example “f(x) df= x + 5” defines the functionf. The common
bracketing notation for describing an open or closed range of
real numbers is used, e.g.,(x, y] = {z ∈ Real | x < z ≤ y},
and this is extended to ranges of fixed-precision numbers
by replacing “,” with “. . .”, so, for example,[0.0 . . . 0.7] =
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}.

For a set,R, thecharacteristic predicate, R, is the predicate
such thatR(x) is true if and only if x ∈ R, i.e., R(x) ⇔
x ∈ R. We say that the predicateR characterizesthe setR.
By convention sets are denoted in bold font, e.g.,R, and the
characteristic predicate of the set is denoted with the same name
but not bolded, e.g.,R(x).

II. EXAMPLE : MAZE-TRACING ROBOT

The Maze-tracing robot is based on a course project for a
software design and documentation course taught to undergrad-
uate computer engineering students at McMaster University.
Although it is a contrived example, it is “real” in that the soft-
ware is expected to control real hardware using vendor supplied
interface libraries, and the safety requirements are strictly en-
forceable and have potentially costly consequences if violated
(i.e., damage to laboratory equipment).

The environment relevant to the target system consists of
• a draw-bot, which is a three-jointed (two horizontal, one

vertical) robot arm on a fixed base that is capable of mov-
ing a pen to mark on paper,

• a two-dimensional maze placed within reach of the draw-
bot,

• three momentary contact buttons labeled “stop”, “home”
and “back”, and

• a human operator.
The target system consists of
• a computer (with software) capable of controlling the

robot, interpreting commands from the operator and dis-
playing messages, and

• interface hardware to interface with the robot and the but-
tons.

The system is required to control the draw-bot such that it
traces a path on the maze from the beginning to the end (if such

Fig. 1. Sample Maze

a path exists) without coming too close to any maze wall. The
goal is to complete the path as quickly as possible. Since the
maximum speed of the draw-bot is fixed, a shortest path through
the maze should be chosen by the system.

We represent the location of the draw-bot pen tip using a
Boolean,mcpenDown, to indicate if the pen is touching the
maze surface or not, and a pair,(mcpenPos.x, mcpenPos.y) of
reals, representing the location in the horizontal plane where
the pen tip is touching the maze (ifmcpenDown is true) or
would touch the maze if lowered (ifmcpenDown is false). The
location is specified by the distance, in millimeters, from the
respective axis, which are parallel (x = 0) and perpendicular (y
= 0) to the front edge of the robot arm base. The extent of the
region of interest is defined by the constantsMIN X, MAX X,
MIN Y andMAX Y. The origin is the center of the robot base
post. The home location of the pen-tip, to which it is returned
on initialization of the draw-bot, is(HOME X,HOME Y).

As illustrated in Figure 2, the maze is contained within
a M WIDTH mm × M HEIGHTmm region of the horizon-
tal plane bounded by the linesx = −M X OFFSET, y =
M Y OFFSET, x = −M X OFFSET + M WIDTH andy =
M Y OFFSET + M HEIGHT, which are the external walls of
the maze. The internal walls of the maze are segments of the
lines x = −M X OFFSET + n × M CELL SIZE mm and
y = M Y OFFSET+n×M CELL SIZE mm, wheren is an in-
teger (i.e., a square grid with line spacingM CELL SIZE mm).
The endpoints of the walls lie at intersections of these grid lines.
Figure 1 is a sample maze with dashed lines indicating the pos-
sible wall locations.

III. T HE FOUR VARIABLE REQUIREMENTSMODEL

As pointed out, e.g. in [41], [42], [44], it is important when
specifying system and software requirements to distinguish

148 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

���

���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

M_X_OFFSET

M_WIDTH

M_CELL_SIZE

Maze

Robot Base

M
_Y

_O
FF

SE
T

M
_H

E
IG

H
T

M
_C

E
L

L
_S

IZ
E

x

y

Fig. 2. Robot and Maze Parameters

quantities that are in the environment, i.e., external to the sys-
tem, from those that are internal to the system or artifacts of the
description of either the requirements or the design. Environ-
mental quantities are those that are independent of the chosen
solution and are apparent to the “customer”; they are the best
quantities to use when describing the requirements for the sys-
tem since they are the quantities that the customer will be con-
cerned with and knowledgeable about. These quantities will in-
clude such things as physical properties (e.g., temperature, pres-
sure, location of objects), values or images displayed on output
display devices, settings of input switches, dials etc., and states
of controlled devices. Variables internal to the system are inap-
propriate for system requirements specification since they are
artifacts of the solution, not the problem, and will be unfamiliar
to the customer. The requirements for thesoftwarealone can be
expressed in terms of variables internal to the system, see Sec-
tion III-D. The “Four Variable Model”, introduced in [24], [41],
[42], gives a model for system requirements and design and is
adopted here as a framework for describing requirements.

It is widely accepted (e.g., see [14], [24], [30], [42]) that en-

vironmental quantities can be modeled by functions of time.
Given the environmental quantities relevant to a particular sys-
tem, q1, q2, . . . , qn, of typesQ1,Q2, . . .Qn, respectively, we
can represent the behavior of the system in its environment by
anenvironmental state function, S : Real → Q1×Q2× . . .×
Qn, defined on all intervals of system operation. For conve-

nience we defineSt df= Q1 ×Q2 × . . .×Qn (i.e.,St is the set
of possible environmental states).

The environmental quantities of interest can be classified into
two (not necessarily disjoint) sets: thecontrolledquantities —
those that the system may be required to change the value of,
and themonitoredquantities — those that should affect the be-
havior of the system.1 Assuming that the monitored quantities
areq1, q2, . . . , qi, themonitored state function, mt : Real →
Q1 ×Q2 × . . . ×Qi, is derived from the environmental state
function by including only the monitored quantities. Similarly,

1There may also be environmental quantities that are neither monitored nor
controlled but are relevant to the design or analysis of the system. These quan-
tities are not relevant to the the four-variable model and so are not considered
in this presentation.

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 149

if the controlled quantities areqj , qj+1, . . . , qn, thecontrolled
state function, ct : Real → Qj × Qj+1 × . . . × Qn, is
derived. In this paper, a pair of functions(mt, ct) will de-
note an environmental state function. With respect to a par-
ticular target system,M denotes the set of functions of type
Real → Q1 × Q2 × . . . × Qi, (type correct for a moni-
tored state function) andC denotes the set of functions of type
Real → Qj ×Qj+1 × . . .×Qn (type correct for a controlled
state function). The environmental quantities relevant to the
Maze Tracing Robot are given in Figure 3.

We usually are only interested in the environmental state
function during the periods when the system is operating (i.e.,
it is turned on). An environmental state function defined on
the (possibly infinite) time interval of a single execution of the
system is known as abehaviorof the system. A behavior is
acceptableif it describes a situation in which the system is op-
erating in a manner that is consistent with the requirements.

A. System Requirements

Thesystem behavioral requirements(or, where the meaning
is clear from context,system requirements) characterize the set
of acceptable behaviors. Since the system is expected to ob-
serve the monitored quantities and control the values of the
controlled quantities accordingly, it is natural to express this
as a relation,REQ ⊆ M × C. A behavior is acceptable if
and only ifREQ(mt, ct) is true. Note that, since implemen-
tations will invariably introduce some amount of unpredictable
delay, or inaccuracy in the measurement, calculation, or output
of values, for real systems,REQ will be a relation that is not
a function, i.e., there will be more than one acceptablect for a
givenmt.

In many casesREQ will be independent of the actual date
and time, and will depend only on the time elapsed since some
event (e.g., the system being turned on). In these cases, equiv-
alence classes of behaviors can be represented by the behavior
formed by translation along the time axis such that time = 0
corresponds to that event. In cases where aspects of the date
or time (e.g., day of month, hour of day) are significant, time =
0 will need to be chosen to correspond to an appropriate clock
time and appropriate functions defined to determine the needed
quantities.

The following is an informal description of the system be-
havioral requirements for the Maze-tracing Robot. A formal
requirements document is given in [27].

1) Safety Requirements:If at any time the stop button is
pressed (mstopButton = sDown) the robot must stop moving
within RESPONSE TIME seconds and must remain stationary
until the stop button is released (mstopButton = sUp).

When the pen is down (mcpenDown = true) the pen tip must
never come withinWALL SPACE mm of a wall point.

2) Messages: Whenever a significant event occurs (i.e., a
button is pressed or released, the pen reaches the start or end
point of the maze or the home position, or an error is detected)
the system must display a diagnostic message describing the
event and the system’s response to it.

3) Performance: The performance goal for the system is to
minimize the time between the pen first touching the paper and
it being returned to its home position.

4) Initialization: When the system is started it must at-
tempt to find a legal path through the maze. If an error oc-
curs (e.g., maze read failure) or if there is no path through the
maze, then an appropriate diagnostic message must be output
and the system must halt without turning on the robot power
(cpowerOn = false).

5) Starting: After it has been determined that there is a
path through the maze, the robot power must be turned on
(cpowerOn = true), which initializes the pen to the home po-
sition (mcpenPos = (HOME X,HOME Y)) with the pen up
(mcpenDown = false). The pen must then be moved to the
start position of the maze.

6) Forward: Once the starting position has been reached the
pen must be lowered (mcpenDown = true) and a path traced
through the maze to the end. When the pen reaches the end of
the maze it must be raised (mcpenDown = false) and returned
to the home position.

7) Reverse: If at any time while the path is being traced the
“back” button is pressed (mbackButton = sDown) the Draw-
bot is required to reverse the direction of its tracing within
RESPONSE TIME seconds and begin to re-trace its path back
to the beginning. It should continue to re-trace its path only as
long as the “back” button is held down — when it is released
the Draw-bot should continue in the forward direction. If, while
reversing, it reaches the start position it should stop there un-
til either the “back” button is released or the “home” button is
pressed.

8) Home: If at any time while the path is being traced (in ei-
ther direction) the “home” button is pressed (mhomeButton =
sDown) the Draw-bot is required to stop tracing within
RESPONSE TIME seconds, raise the pen (mcpenDown =
false) and return to the home position, without making any fur-
ther marks.

9) Done: When the pen has been returned to the home po-
sition, the power must be turned off (cpowerOn = false) and
the system must halt.

B. Environmental Constraints

The possible values of the environmental state function are
constrained by physical laws independent of the system to be
built. For example,
• the rate of change (or higher order derivatives) of a quan-

tity may be constrained by some natural laws,
• some quantities may be related to each other (e.g., pressure

and temperature in a closed container),
• values may be only able to change in certain ways (e.g.,

positions of selector switches), or
• certain events may not be able to occur simultaneously.
These laws are described by the relationNAT ⊆ M × C,

which contains all values of(mt, ct) that are possible in the
environment.

In the case of the Maze-tracing Robot, some environmental
constraints are as follows:
• Since the home position is guaranteed to be outside the

maze andmmazeStart andmmazeEnd are inside the maze
and more thanPOS TOL mm from the maze wall, the pen
cannot be withinPOS TOL mm of both the home position
and either ofmmazeStart or mmazeEnd.

150 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

Fig. 3. Maze-tracing Robot Environmental Quantities

• The pen tip can move at a maximum of 2.0mm/s.

C. System Design

The environmental quantities cannot usually be directly ob-
served or manipulated by the system software, but must be
measured or controlled by some devices (e.g., sensors, actu-
ators, relays, buttons), which communicate with the software
through the computer’s input or output registers, represented
by program variables. Theinput quantities are those program
variables that are available to the software and provide in-
formation about the monitored quantities. For input quanti-
ties,i1, i2, . . . , in, of typesI1, I2, . . . , In, respectively, aninput
state functionis a function,it : Real → I1 × I2 × . . . × In,
representing the values of the input quantities during system op-
eration. Similarly, theoutputquantities are those program vari-
ables through which the software can change the value of the
controlled quantities. For output quantities,o1, o2, . . . , om, of
typesO1,O2, . . . ,Om, respectively, anoutput state function
is a function,ot : Real → O1×O2× . . .×Om, representing
the values of the output quantities during system operation. For
convenience, with respect to a particular system being specified,
the set of functions of typeReal → I1×I2×. . .×In is denoted
I, and the set of functions of typeReal → O1×O2×. . .×Om

Software

SOFREQIN

Input
Devices

Output
Devices

OUT

o(t)i(t)

Target System

REQ

m(t) c(t)

Fig. 4. System Design

is denotedO. The behavior of the interface between the en-
vironment and the software is described by the input relation,
IN ⊆ M× I, which characterizes the possible values ofit for
any instance ofmt, and the output relation,OUT ⊆ O × C,
which characterizes the possible values ofct for any instance of
ot. Figure 4 illustrates the data flow between the components in
the system design, and the relations that describe the behavior
of these component.

For the Maze-tracing Robot system, the interface with the
draw-bot is through a vendor-supplied software library, which
allows a program to query the state of the input buttons and to

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 151

set the angle of the joints in the draw-bot arm, and thus control
the position of the pen tip. The maze information is represented
in a data file listing the locations of the maze walls and the
start and stop positions. The input and output state functions
thus represent the values of these variables as functions of time
(e.g., the angle that each joint has most recently been set to at
any time) and theIN andOUT relations relate these values to
the actual maze, draw-bot position, and button status.

D. Software Requirements

In [24] the actual software behavior is described by thesoft-
ware behavior relation, SOF, and an expression is given for
software acceptability. In this work, as in [12], we are interested
in characterizing all acceptable software, so we use thesoftware
requirements relation, SOFREQ, which characterizes the set
of acceptable behaviors of the software — those pairs,

(
it, ot

)
,

such that any possible environmental state function, with re-
spect to the given input and output devices and environmental
constraints, is acceptable. This is fully determined byREQ,
IN, OUT andNAT, as follows

SOFREQ df={(
it, ot

)
|
(
∀mt, ct,

(
IN

(
mt, it

)
∧OUT

(
ot, ct

)
∧

NAT
(
mt, ct

))
⇒ REQ

(
mt, ct

))}
(1)

To understand the difference betweenSOFREQ andSOF,
consider the simple requirements given in [11], wheremt, ct,
it, andot are all taken to beReal valued (which is not realistic
for it andot) and the environment, requirements and system
design are as follows:

NAT df=
(
∀t, ct(t) > 0 ∧mt(t) < 0

)
REQ df=

(
∀t, ct(t + 3) = −mt(t)

)
IN df=

(
∀t, it(t + 1) = mt(t)

)
OUT df=

(
∀t, ct(t + 1) = ot(t)

)
SOF describes the behavior of a particular software implemen-
tation, whereasSOFREQ characterizes all acceptable soft-
ware behaviors. For this example, sinceREQ, IN andOUT
are all functions,SOFREQ contains only relations that are
functions on all possible (i.e., negative) inputs:SOFREQ ={(

it, ot
)
| ∀t, (it(t) < 0) ⇒ (ot(t + 1) = −it(t))

}
. In partic-

ular, theSOF given in [11] is not inSOFREQ, since, as the
authors correctly point out, it does not represent acceptable soft-
ware behavior.

Note that in many casesREQ(mt, ct) ⇒ NAT(mt, ct).
Further, any observed behavior must be inNAT, since, by def-
inition, behaviors not inNAT are not possible.

IV. M ONITORS FORREAL TIME SYSTEMS

Testing a real-time system typically involves running the tar-
get system in a test environment, observing its behavior and

comparing it to that required by its specification. Making this
comparison can be quite difficult since the requirements may
be complex. Amonitor is a system that observes the behav-
ior of a system and determines if it is consistent with a given
specification. That is, we consider a monitor to be ideal if it
accurately reports the value of the predicateREQ(mt, ct) for
each observed behavior.

A. Using Monitors

A monitor can be used to check the behavior of a target sys-
tem either while the target system is executing or post-facto,
using a recording of the behavior. In either case, the monitor
should report ifall behaviors exhibited by the target system are
acceptable (i.e., inREQ). For a given behavior(mt, ct) on
some interval[ti, tf] and anyt0 ∈ (ti, tf], the prefix behavior,(
m̂t, ĉt

)
, formed by considering(mt, ct) on [ti, t0] only, i.e.,

(
m̂t, ĉt

)
(t) df=

{
(mt, ct) (t) for t ∈ [ti, t0]
undefined otherwise

is also a behavior of the system. Thus, if
(
m̂t, ĉt

)
6∈ REQ,

the system has behaved unacceptably and the monitor should
report a failure. That is, since a behavior captures the sequence
of actions by the target system from some initial time up to
the present, once a behavior has failed, no continuation of that
behavior will be considered acceptable since it too will not be in
REQ. For example, any behavior of the Maze-tracing Robot is
unacceptable if the pen has touched a maze wall at some time,
regardless of how long it operates without touching the wall
after the collision.

This interpretation restricts these techniques to what [1] calls
safety properties— if a behavior is unacceptable then no ex-
tension of that behavior is acceptable. Once a monitor has de-
tected a failure, no further analysis of that behavior will give a
different result. In applications such as supervision[36], where
continued analysis of the behavior may be needed following de-
tection of a failure, some intervention, either automatic or man-
ual, will be required before the monitor will report acceptable
behavior again. For example, if corrective action is taken in re-
sponse to the failure, and the target system is restored to some
known state, then the monitor will need to be re-initialized to
correspond to that state. If, on the other hand, the target sys-
tem is such that it can be assumed to return to some known
state following an error, then the monitor can be designed to
re-initialize itself correspondingly. Both of these cases can be
viewed as a new behavior beginning when the system returns
to a known state and hence the behavior would be reported as
acceptable until a new failure occurs.

In [1], safety properties are distinguished fromliveness prop-
erties— those requirements such that, for a given requirement
and any finite duration behavior, the behavior can always be ex-
tended such that it satisfies the requirement. These include the
common notions of liveness (the system must respond eventu-
ally) and fairness (if requested often enough eventually a given
response will occur) as well as statistical properties on the be-
havior (e.g., the average response time must be less thanT).
No monitor can determine that a target system does not satisfy
such a requirement, since that can only be determined using

152 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

Input
Devices

IN

Target System

Software

SOF

Monitor Software

OUT

Output
Devices

i(t) o(t) c(t)m(t)

Report

REQ

Fig. 5. Software Monitor

infinite behaviors (e.g., a pending request could be serviced in
the future). For real systems, however, liveness requirements
are rarely strong enough to specify the true requirements, and
should be converted into requirements that can be checked for
finite duration behaviors (e.g., the system must respond to re-
quests within a fixed time limit), which can be checked by a
monitor.

B. Monitor Configuration

In this work, the monitor is assumed to consist of some soft-
ware running on a computer system. This software cannot, in
general, observe the environmental state function,(mt, ct), di-
rectly, but must do so through some input devices that com-
municate the values of the environmental quantities to input
registers known as themonitor software inputs. For monitor
software inputs,s1, s2, . . . , sn, of typesS1,S2, . . .Sn, respec-
tively, amonitor input state functionis a function,st : Real →
S1 × S2 × . . .Sn, representing the value of the monitor soft-
ware inputs for the periods of monitor operation. With re-
spect to a particular monitor system, the set of all functions
of typeReal → S1 × S2 × . . .Sn is denotedS. The behav-
ior of the monitor input devices is characterized by the mon-
itor input relation,INmon ⊆ (M×C) × S. An environ-
mental state function–input state function pair is in the mon-
itor input relation, ((mt, ct) , st) ∈ INmon, if and only if
st is a possible monitor input state function for the environ-
mental state function represented by(mt, ct). Since the mon-
itor must observe all acceptable behaviors, it is required that
domain(INmon) ⊇ REQ ∩NAT.

The design of the monitor will determine, for each monitored
or controlled quantity, whether it is observed independently of
the target system (i.e., using different devices) or observed di-
rectly from the target system software. This results in two basic
monitor configurations, in addition to the obvious mixtures of
these approaches:

1) A software monitoris a monitor that directly observes
the target system software input and output variables, i.e.,
st =

(
it, ot

)
, as illustrated in Figure 5. In this case

INmon is related toIN andOUT as follows.

INmon =
{((

mt, ct
)
,
(
it, ot

)) ∣∣IN (
mt, it

)
∧

OUT
(
ot, ct

)}
(2)

Software monitors include all of the monitor “architec-
tures” discussed in [39].

2) A system monitoris a monitor that observes(mt, ct) us-
ing its own input devices as illustrated in Figure 6.

For the Maze-tracing Robot system, a software monitor ob-
serves the maze data file together with the sequence of calls,
including argument and return values, to the draw-bot interface
library. From these, the monitor can determine exactly the in-
put and output state functions. A system monitor, on the other
hand, requires some additional sensor hardware. For example
the maze could be placed on a digitizing tablet so that a monitor
could detect the position of the pen tip.

The software component of the monitor determines if the tar-
get system behavior is consistent withREQ under the assump-
tion that the monitor system’s input devices are functioning cor-
rectly, as described inINmon. The software must take into
account the fact thatINmon is usually a relation that is not a
function, which we characterize by the two extreme approaches
of a pessimistic or an optimistic monitor. A pessimistic monitor
requires thatall behaviors that could have resulted in a partic-
ular observation of the target system behavior,st, be inREQ,
so the monitor software determines ifst is in the pessimistic
monitor set,MONpe, which is defined as

MONpe
df={

st ∈ range(INmon)
∣∣∣(∀ (

mt, ct
)
∈ M×C,(

INmon

((
mt, ct

)
, st

)
∧NAT

(
mt, ct

))
⇒ REQ

(
mt, ct

))}
(3)

If MONpe(st) is true then the behavior is certainly
acceptable, i.e.,(MONpe(st) ∧ INmon ((mt, ct) , st)) ⇒
REQ(mt, ct). A more optimistic view is to check ifany be-
havior that could have resulted inst is in REQ. The optimistic
monitor set,MONop, is defined as

MONop
df={

st ∈ range(INmon)
∣∣∣(∃ (

mt, ct
)
∈ M×C,

INmon

((
mt, ct

)
, st

)
∧NAT

(
mt, ct

)
∧ REQ

(
mt, ct

))}
(4)

and includes those observations that may, but do not necessar-
ily, represent acceptable behavior. A monitor that evaluates
MONop will not give false negative results — reports that an
acceptable behavior is unacceptable — but is not appropriate
for safety-critical systems since it may give false positive re-
sults — unacceptable behavior reported as acceptable. The dif-
ference betweenMONpe andMONop, or, more specifically
their inverse image underINmon, is indicative of the appropri-
ateness of the monitor input devices as reflected inINmon.

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 153

s(t)

Software

SOFIN

Input
Devices

Output
Devices

OUT

o(t)i(t)

Target System

REQ

Monitor Input Devices

Monitor Software

Monitor System

m(t) c(t)

Report

Fig. 6. System Monitor

Accepted by
optimistic monitor

Accepted by
pessimistic monitor

Wall

Wall

WALL_SPACE

Perceived pen location

Possible actual pen locations

FP

FN

Fig. 7. Optimistic and Pessimistic Maze-tracing Robot Monitor

Consider, for example, a system monitor for the Maze-
tracing Robot that uses a digitizing tablet to determine the pen
position, and the state illustrated in Figure 7. If the tablet is
such that the monitor can determine the pen position to within
±2 mm, indicated by the dashed circle around the perceived
pen location, then a pessimistic monitor will report a failure if
it perceives the pen to be withinWALL SPACE + 2 mm of a
wall, as indicated by the darker shaded region. An optimistic
monitor, on the other hand, would only report a failure if it per-
ceives the pen to be withinWALL SPACE−2 mm of a wall, as
indicated by the lighter shaded region. Clearly ifWALL SPACE
is less than2 mm then this overly optimistic — the wall itself
would be inside the region accepted by the optimistic monitor,
and thus accurately reported collisions with the wall would still
be accepted.

A realistic monitor may combine these approaches, for ex-
ample being pessimistic with regard to some quantities, and
optimistic with regard to some others.

In the case of the software monitor configuration, and
neglecting impossible behaviors (i.e.,(mt, ct) 6∈ NAT),
MONpe = SOFREQ — a software monitor determines if
the target software is behaving in an acceptable manner.

From the above definitions we can see thatMONop(st) 6⇒
MONpe(st) — the pessimistic monitor will reject some be-

haviors that are accepted by the optimistic one. Also, if we
assume that the input devices are working, i.e., for any ob-
served monitor input state function,st, there is a possible cor-
responding environmental state function:∃ (mt, ct) ∈ M ×
C, (INmon ((mt, ct) , st) ∧NAT(mt, ct)), then the reverse im-
plication holds, i.e.,MONpe(st) ⇒ MONop(st) — if a be-
havior is acceptable using the pessimistic approach, then it is
acceptable using an optimistic approach. Both of these are con-
sistent with our intuition.

In cases whereINmon and INmon
−1 are both functions

(i.e., each(mt, ct) maps to only onest, which can be uniquely
mapped back to(mt, ct)), and again assuming that any ob-
served monitor input state function results from a possible envi-
ronmental state function,MONpe = MONop. As discussed
in Section V, for real input devices and discrete time systems,
bothINmon andINmon

−1 are relations that are not functions.

C. Accuracy

The accuracy of a monitor is determined by the set of pos-
sible false negatives, denotedFN, which is the intersection of
REQ with the set of actual behaviors that the monitor may
report as being unacceptable. The behaviors that may be re-
ported as unacceptable are those in the image ofMONpe un-
derINmon

−1, as follows.

NEG df=
{(

mt, ct
)
∈ M×C |

(
∃st ∈ S, INmon

((
mt, ct

)
, st

)
∧ ¬MONpe(st)

)}
=

{(
mt, ct

)
∈ M×C |

(
IM

(
mt, ct

)
∩REQ

)
6= ∅

}
(5)

whereIM (mt, ct) is the image of(mt, ct) underINmon ◦
INmon

−1:

IM
(
mt, ct

) df=
{(

m̃t, c̃t
)
|((

mt, ct
)
,
(
m̃t, c̃t

))
∈

(
INmon ◦ INmon

−1
)}

(6)

IM (mt, ct) represents, for a given actual behavior, the set of
behaviors that could be perceived the same by the software
component of the monitor — it indicates the set of behaviors
that the pessimistic monitor must consider to have possibly oc-
curred. Thus,FN is

FN df= REQ ∩NEG

=
{(

mt, ct
)
∈ M×C

∣∣∣REQ
(
mt, ct

)
∧(

IM
(
mt, ct

)
∩REQ

)
6= ∅

} (7)

Referring to Figure 7,FN contains all actual pen positions
in the region between the region accepted by the pessimistic
monitor and the lineWALL SPACE from the wall.

ConsiderFN under the best and worst case scenarios with
respect toINmon. In the best caseINmon is the identity
relation, perfectly relaying the values of(mt, ct) to the soft-
ware component of the monitor. In this case,IM (mt, ct) =

154 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

{(mt, ct)}, NEG = REQ and FN = ∅ — the software
of the monitor can detect exactly if the behavior is accept-
able or not. In the worst caseINmon is a constant function,
mapping all values of(mt, ct) to the same value. In this case
IM (mt, ct) = domain(INmon), NEG = domain(INmon)
andFN = REQ — under no circumstances can the monitor
be sure that the behavior is acceptable. In this case the monitor
will be infeasible.

Definition 1: A monitor is said to beinfeasiblewith respect
to a monitor input relation,INmon, system requirements rela-
tion, REQ, and environmental constraints,NAT, if and only
if MONpe = ∅.

Note that infeasibility is an extreme case: it indicates that
the monitor input devices are such that no behaviors will be
accepted. The size ofFN relative to the operational domain is
a more precise measure of monitor usefulness.

Clearly if INmon is the identity relation, thenMONpe =
REQ and so, assuming a non-emptyREQ, the monitor is fea-
sible.

For an alternative view of accuracy, consider the set of false
positives that may be reported by a monitor using the optimistic
approach defined in Eq. (4), as follows.

POS df=
{(

mt, ct
)
∈ M×C |

(
∃st ∈ S, INmon

((
mt, ct

)
, st

)
∧MONop(st)

)}
=

{(
mt, ct

)
|
(
IM

(
mt, ct

)
∩REQ

)
6= ∅

}
(8)

whereIM is as defined in Eq. (6). The false positive set,FP,
is thus

FP df= REQ ∩POS

=
{(

mt, ct
)
∈ M×C

∣∣¬REQ
(
mt, ct

)
∧(

IM
(
mt, ct

)
∩REQ

)
6= ∅

} (9)

In Figure 7,FP contains all the actual locations in the region
between theWALL SPACE line and the edge of the region ac-
cepted by the optimistic monitor. Considering theINmon sce-
narios from above, in the best caseFP = ∅ and in the worst
caseFP = domain(INmon) — the monitor will report all
observations as acceptable behavior.

For realistic casesFN andFP will be non-empty and should
be used during monitor system design to determine if the mon-
itor is accurate enough for the particular application. This is
discussed further in the next section.

V. PRACTICAL MONITORS

Practical monitors are likely to be implemented using either
general- or special-purpose digital computers. This technology
implies certain characteristics of the monitor input relation, and
monitor behavior, which influence the conclusions that can be
drawn from the monitor output. This section discusses these
characteristics, and states some conditions which must hold in
order for the monitor to produce meaningful results.

m2 m3m0 m1 m2 m3m0 m1

Monitor samples Pre-image of s

a) Minimum delay tolerance b) Minimum response time

d dm

c

s_c

Monitor

Actual

s_m

time

m

c

s_m

s_c

Monitor

Actual

time

Fig. 8. Time Accuracy

A. Observation Errors

The choice of devices and/or software used by the monitor to
observe the environmental quantities is a major design decision
with respect to the monitor system. Design of a general mech-
anism for observing target system behavior in a non-intrusive
manner is beyond the scope of this work — readers interested
in that topic are referred to [35] for a survey of the relevant lit-
erature. The following are some factors that should be taken
into consideration in choosing monitor input devices.

Assuming that the monitor is a discrete-time system, there
are two basic approaches to observing behavior:
• Sample (i.e., observe the instantaneous value of) the rele-

vant quantities at intervals.
• Modify the behavior of the target system, and/or the sys-

tems that interact with it, to have them notify the monitor
system of the values of relevant quantities (mt, ct, it or ot)
as they read or change them. Such notification is assumed
to include atimestampindicating the time at which the re-
ported value was observed by the target system.

1) Discrete Time: Regardless of whether sampling or noti-
fication is used, time can only be measured at discrete points: if
sampling is used then the sampling period determines the small-
est relevant clock increment, whereas if notification is used it is
determined by the precision of the notification timestamp. If
we assume that the monitor receives notifications for all rele-
vant changes, then the notification approach is not significantly
different from a sampling approach where the sampling period
is the precision of the notification timestamp and uninterest-
ing samples discarded. Thus, the results from sampling theory
(e.g., see [29]) can be applied here to show that, for infinite du-
ration signals (behaviors), it is sufficient to sample at twice the
maximum frequency of change in the environmental quantities.
However, the monitor is typically concerned with what has hap-
pened between the most recent two samples, and so the discrete
clock will introduce some error in the perceived time of events,
which is referred to as thetime error. For real-time systems,
errors in measuring time are particularly important.

Consider the behaviors illustrated in Figure 8, in which the
values ofm andc represent that a condition of, respectively, a
monitored and controlled quantity is eitherfalse (low) or true
(high). Similarly, the values ofs m ands c represent the values
as they appear to the software component of the monitor, and
the shaded regions represent the image of these changes under

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 155

INmon
−1 — from the point of view of the software all that is

known is that the changes occurred at some time in the shaded
regions. Letδmon represent the monitor sampling interval (i.e.,
mi−mi−1) andd be the elapsed time between the change inm
andc, as illustrated. Assuming that the change inc is a correct
target system response to the change inm, consider the two
cases illustrated.

a) The monitor sees distinct changes. The monitor can de-
termine only that0 < d < 2δmon. This behavior will be
rejected (considered unacceptable) if the specified maxi-
mum delay for that change is less than2δmon. This results
in Condition 1, below.
Condition 1: The maximum time error introduced by the
monitor input devices for a particular event must be less
than 1

2min(Delay), whereDelay is the set of maximum
delay tolerances for the dependent2 quantities given in the
SRD.

b) The monitor sees simultaneous changes. Here the mon-
itor can determine that−δmon < d < δmon (i.e., c could
change beforem); hence this behavior will be rejected if
c is only permitted to change followingm. The implica-
tion is thatδmon must be less than the minimum response
time of the target system. This constraint can be weak-
ened, however, by noting that, in order for the target sys-
tem to have responded to the change inm, it must have
observed its value between the changes inm andc, so this
case can be avoided by ensuring that the monitor samples
in that interval as well. Thus we have Condition 2, below,
which can be satisfied by ensuring that sampling by the
target and monitor systems is synchronized to within the
minimum target system response time. If event notifica-
tion from the target system is used, the monitor and target
systems are assured to be synchronized.
Condition 2: The maximum difference between the time
error in the target system and the time error in the moni-
tor system for the same event must be less than the mini-
mum time in which the target system might respond to that
event.

With respect to a particular event and the systems response to
it, a monitor system that does not satisfy Condition 2 may give
false negative results for target systems responding too quickly.
A monitor system that satisfies Condition 2, but does not satisfy
Condition 1, will consider all behaviors containing that event
and response to be unacceptable, so it will be practically infea-
sible with respect to that event.

2) Quantization and Measurement Error:As with time,
other values observed by the software component of the mon-
itor must be of finite precision, soReal valued environmen-
tal quantities must be quantized, such that, for example, dis-
crete valuevi represents all continuous values,x, such that
li < x ≤ hi. Whereas time is continuously increasing, so we
know something about the error, other quantities do not neces-
sarily have this property. As illustrated in Figure 9, if the quan-
tization is perfect, i.e.,hi = li+1, the worst case error is half the
quantization step size,hi− li, and no non-determinism is intro-
duced. Practical devices will exhibit some measurement error

2A quantityc is dependent onm if the value ofc may be required to change
as a result of a change in the value ofm.

v

v

v

h = l

h

Continuous Discrete

l

2

1

h = l
1 2

2 3

3

3

1

v

v

v

Continuous Discrete

h

l

h

l

h

l

3

2

1

1

2

1

3

2

3

a) Perfect Quantization b) Quantization with Error

Fig. 9. Quantization and Error

in addition to quantization, so the actual error will be larger, and
INmon will be a relation that is not a function.

For a monitor to be feasible, there must be some monitor in-
put state functions,st, for which all images underINmon

−1

are acceptable. Because of the variety of ways that quantities
may be used in the SRD, we cannot state generally applicable
conditions onINmon that will ensure that a monitor is feasi-
ble. Condition 3 is a necessary, but not sufficient condition for
feasibility.

Condition 3: The maximum error in observing a particular
controlled quantity must be less than the difference between
the maximum and minimum values of that quantity permitted
by REQ.

As an example, consider the digitizing tablet used by a Maze-
tracing Robot system monitor, as mentioned above. If the
tablet is such that the error in the perceived pen position is±ε,
then the monitor will be infeasible if(ε + WALL SPACE) >
1
2M CELL SIZE since the pen could not touch the paper such
that the monitor is sure it is not too close to a wall.

B. Non-determinism

As mentioned in Section III-A, practical requirements docu-
ments will specify relations that are not functions, so that they
allow for unpredictable delays or errors in calculation or mea-
surement. In particular, if the target system is to be imple-
mented using a discrete-time system, then, for some small time,
r, REQ must allow events that occur withinr of each other to
be treated as either a single event (i.e., simultaneous) or distinct
events (i.e., non-simultaneous). The timer is known as the
time resolutionfor the target system and must be stated as part
of the requirements specification. The required time resolution
will depend on the system being specified. For systems where
simultaneous, or almost simultaneous, events may be treated in-
dividually in any order,r can be comparatively large, whereas
systems that make a significant distinction between simulta-
neous and non-simultaneous events, or for which the order of
events is important, will require a smaller value. The monitor
system must take the non-determinism inREQ due to the time
resolution into account when evaluating behavior.

156 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

���������
���������
���������

���������
���������
��������������������
�����������
�����������

�����������
�����������
�����������

m2 m3m0 m1

Monitor

Actual

�����������
�����������
�����������

�����������
�����������
����������������������
�����������
�����������

�����������
�����������
�����������

m2 m3m0 m1

Monitor

Actual

Monitor samples Pre-image of s 	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

Target resolution

c1

c2

c1

c2

time

c1

c2

c1

c2

time

Fig. 10. Event Resolution

Consider the behavior illustrated in Figure 10, and the target
time resolution as indicated — the hatched regions indicating
the period following each event during which the requirements
allow other events to be treated as simultaneous with it, but
also allow them to be treated as non-simultaneous. Thus, the
requirements allow the changes inC1 andC2 to be treated as
either simultaneous or not in both cases illustrated. Assuming
that the monitor system samples at the indicated times, it will
observe the changes either simultaneously (left figure) or not
(right figure), but can certainly tell that they occurred within
2δmon of each other. Ifδmon is less than half the time resolu-
tion required for the target system, which is required to satisfy
Condition 1, then in both cases all images ofst underINmon

−1

allow the changes to be interpreted as happening in either order
or simultaneously, soMONpe accepts a behavior in which the
target system interprets them in either way. The monitor must
take this non-determinism into account. In the case where the
change inC2 is a result of the target system’s response to the
change inC1, then Condition 2 requires that a monitor sample
occur between the changes inC1 andC2, i.e., the situation illus-
trated in right figure in Figure 10, so the events will be observed
as non-simultaneous.

In the case of the software monitor configuration, as illus-
trated in Figure 5, the software components of the monitor
and the target system are assured to see the same values (i.e.,
st =

(
it, ot

)
), so the monitor implementation can require de-

terministic behavior.

C. Response Time

Clearly the delay introduced by the monitor input devices
will impose a lower limit on the monitor response time — the
maximum time between a failure occurring and the monitor re-
porting it — since a monitor cannot report a failure before it is
evident inst. The choice of input devices can also affect the
amount of processing required by the software component of
the monitor, which will also affect response time, although less
predictably so. For example, input devices may be available
that can directly report the value of relevant conditions (e.g.,
sensors to detect if the Maze-tracing Robot pen has touched a
wall) whereas a different choice of input devices would require
that the software perform some, possibly expensive, calcula-
tions (e.g., search a list of wall locations to determine if the pen
is touching any).

D. Computational Resources

Using any notation that is expressive enough to describe re-
alistic target system requirements, it is certainly possible to
express requirements such thatMONpe(st) is either not com-
putable, or is computable only using an impractical amount of
computational resources. Some possible causes of this are:
• REQ(mt, ct) or NAT(mt, ct) may not be practically

computable. As in [26], this may result from specification
errors such as infinite recursions in function or predicate
definitions, or from computation ofMONpe(st) requiring
quantification over large sets. Specification authors must
take care to avoid these situations, if possible.

• INmon may be such that the pre-image ofst is not eas-
ily computed. Since real-valued monitored and controlled
quantities are permitted, the pre-image ofst will often be
infinite, but, for most practical input devices, will be easily
described by simple predicates, characterizing a range of
possible values, for example. If this is not the case, how-
ever, it may be impractical to determine if all elements of
the pre-image are acceptable.

Careful review of the SRD and judicious choice of monitor
input devices may help to avoid these situations.

VI. RELATED WORK

The design of a system to automatically generate software
monitors from a formal system requirements document is dis-
cussed in [27].

This work does not address the challenges associated with
gathering accurate and sufficiently precise information about
the run-time behavior of a target system without changing its
behavior. These issues are addressed in [10], [20], [21], [39],
[35], among others.

In [5], Brockmeyeret al. discuss a tool for “monitoring and
assertion-checking” as part of the Modechart toolset. The mon-
itor in that work is an additional modechart state machine that
is simulated concurrently with the target system specification
to determine if the specification has certain critical properties.
Since that monitor observes the behavior of thespecification
rather than the target system, it is not a monitor in the sense of
this work, although it could possibly be used as a monitor if an
appropriate interface with the target system were added.

Fickas and Feather [9] propose thatrequirements monitorsbe
installed as components of systems. These monitors collect and
report information about the run-time behavior of the system,
which can be used to determine if it conforms with the require-
ments. They advocate this as a technique for gathering informa-
tion about changing requirements or environmental conditions,
and suggest that certain operating parameters could be automat-
ically adjusted by the monitor. They propose that the monitor
observe specific aspects of the behavior that are likely to in-
dicate that assumptions about the environment are no longer
valid.

Systems that address the oracle problem (see [3] for an ex-
cellent survey) can be classified by the subset of properties that
they consider, most restricting their analysis to one of the fol-
lowing classes:

PETERS AND PARNAS: REQUIREMENTS-BASED MONITORS FOR REAL-TIME SYSTEMS 157

1) Functional properties— the values of the outputs for
given inputs, which can be checked either by observing
the start and stop states for a program, as in [28], [38],
[19], [32]; by comparing the behavior of an abstract data
type with that specified in a model-based specification
notation, as in [37], [16], [22], [31]; or by comparing the
run-time behavior of a reactive system with a finite state
machine model, as in [36].

2) Temporal properties— the order of events, which can be
checked by comparing the sequence of observed events
with that specified by either a temporal logic [7], [8];
a finite state machine model [15], [6]; or a context-free
grammar [2].

3) Timing constraints— the time elapsed between events,
which can be expressed using a real-time logic [23], [17];
or as extensions on a finite state machine model [25],
[34].

This paper contributes to this body of work in two ways:
Firstly, it considers all three of these classes of properties,
which we have only seen done in one other work [18]. Sec-
ondly, it considers system, rather than just software, monitors.
That is, it views the monitor as an external device, which does
not have access to the internal variables of the target system.

VII. C ONCLUSIONS

This paper presents a precise definition of a monitor for a
real-time system, and identifies some necessary conditions for a
monitor to be feasible and useful. The conditions are not partic-
ularly surprising, and it would seem likely that they have been
observed before, for example in relation to control theory, but
we have not been able to find them formalized elsewhere. These
conditions can be used to help determine if a particular monitor
design is sufficient for the target system.

Monitors, such as described in this work, are well suited to
automated testing of systems, where they function as an ora-
cle, reporting if the behavior is acceptable or not. This applica-
tion offers significant improvement over non-automated testing
since test cases can be evaluated quickly and errors in behavior
are quickly and reliably detected.

In a similar way, monitors can be used as supervisors to ob-
serve the behavior of the target system in operation and report
failures as they occur. Such a supervisor could be used as a re-
dundant safety system to initiate corrective or preventative ac-
tion when a failure is detected.

A. Future Work

We have conducted some investigations using a few soft-
ware monitors, including one for the Maze-tracing Robot sys-
tem, that were automatically generated from system require-
ments documentation.[27] Further study, using different target
systems and using the system monitor configuration discussed
in Section IV-B would undoubtedly lead to new insight.

Further work is also needed to enhance techniques for spec-
ifying the behavior of input and output devices, and to develop
analysis techniques that will permit designers to easily deter-
mine if a particular set of monitor input devices is sufficient for
the monitoring task at hand.

ACKNOWLEDGMENTS

Many friends and colleagues at McMaster University have
helped to improve this work through informal discussions and
helpful comments offered on earlier versions. In particular Drs.
Ryszard Janicki, Jan Madey, Martin von Mohrenschildt, Emil
Sekerinski and Jeffery Zucker have each offered helpful and
constructive comments. Dr. von Mohrenschildt also collabo-
rated in the development of the Maze Tracer system used as an
example in this paper. Comments from the anonymous referees
have also helped to improve this paper.

Constance Heitmeyer and her group at the US Naval Re-
search Laboratory, Center for High Assurance Computer Sys-
tems, were helpful in the initial formulation of the problem
statement.

The financial support received from the Natural Sciences and
Engineering Research Council (NSERC), Communications and
Information Technology Ontario, (CITO), the Telecommunica-
tions Research Institute of Ontario (TRIO), McMaster Univer-
sity and Memorial University of Newfoundland is gratefully ac-
knowledged.

REFERENCES

[1] B. Alpern and F. B. Schneider, “Defining Liveness,”Information Process-
ing Letters, vol. 21, pp. 181–185, Oct. 1985.

[2] M. Auguston and P. Fritzson, “PARFORMAN—An Assertions Language
for Specifying Behavior When Debugging Parallel Applications,”Int’l
J. of Software Engineering and Knowledge Engineering, vol. 6, no. 4,
pp. 609–640, 1996.

[3] L. Baresi and M. Young, “Test Oracles,” Tech. Rep. CIS-TR-01-02, Uni-
versity of Oregon, Dept. of Computer and Information Science, Aug.
2001. Available at http://www.cs.uoregon.edu/˜michal/pubs/oracles.html.

[4] J. P. Bowen and M. Hinchey, eds.,ZUM The Z Formal Specification No-
tation, no. 260 in Lecture Notes in Computer Science, Springer, 1995.

[5] M. Brockmeyer, F. Jahanian, C. Heitmeyer, and B. Labaw, “An Approach
to Monitoring and Assertion-Checking of Real Time Specifications in
Modechart,” inProc. Workshop on Parallel and Distributed Real-Time
Systems, pp. 236–243, Apr. 1996.

[6] M. Diaz, G. Juanole, and J. Courtiat, “Observer—A Concept for Formal
On-Line Validation of Distributed Systems,”IEEE Trans. Software Engi-
neering, vol. 20, no. 12, pp. 900–912, Dec. 1994.

[7] L. K. Dillon and Y. S. Ramakrishna, “Generating Oracles from Your Fra-
vorite Temporal Logic Specificaitons,” inSymposium on the Foundations
of Software Engineering, ACM SIGSOFT, Oct. 1996. published in Soft-
ware Engineering Notes, vol. 21, no. 6.

[8] L. K. Dillon and Q. Yu, “Oracles for Checking Temporal Properties of
Concurrent Systems,” inSymposium on the Foundations of Software En-
gineering, pp. 140–153, ACM SIGSOFT, Dec. 1994. published in Soft-
ware Engineering Notes, vol. 19, no. 5.

[9] S. Fickas and M. Feather, “Requirements Monitoring in Dynamic Envi-
ronments,” inProc. Int’l Symp. Requirements Eng. (RE ’95), pp. 140–147,
IEEE, Mar. 1995.

[10] C. Fidge, “Fundamentals of Distributed System Observation,”IEEE Soft-
ware, vol. 13, no. 6, pp. 77–83, Nov. 1996.

[11] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, “A Reference
Model for Requirements and Specifications,”IEEE Software, pp. 37–43,
May/June 2000.

[12] C. L. Heitmeyer, A. Bull, C. Gasarch, and B. G. Labaw, “SCR*: A Toolset
for Specifying and Analyzing Requirements,” inProc. Conf. Computer
Assurance (COMPASS), (Gaithersburg, MD), pp. 109–122, National In-
stitute of Standards and Technology, June 1995.

[13] K. L. Heninger, “Specifying Software Requirements for Complex Sys-
tems: New Techniques and their Application,”IEEE Trans. Software En-
gineering, vol. SE-6, no. 1, pp. 2–13, Jan. 1980.

[14] K. L. Heninger, D. L. Parnas, J. E. Shore, and J. Kallander, “Software Re-
quirements for the A-7E Aircraft,” Tech. Rep. MR 3876, Naval Research
Laboratory, 1978.

[15] M. Hlady, R. Kovacevic, J. J. Li, B. R. Pekilis, D. Prairie, T. Savor, and
R. E. Seviora, “An Approach to Automatic Detection of Software Fail-
ures,” in Proc. Int’l Symp. Software Reliability Eng. (ISSRE), pp. 314–
323, IEEE Computer Society Press, Oct. 1995.

158 REPRINT FROM: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

[16] H. Hörcher, “Improving Software Tests using Z Specifications,” in Bowen
and Hinchey [4], pp. 152–166.

[17] F. Jahanian, R. Rajkumar, and S. C. V. Raju, “Runtime Monitoring of
Timing Constraints in Distributed Real-Time Systems,”Real-Time Sys-
tems, vol. 7, no. 3, pp. 247–273, 1994.

[18] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, “Runtime
Assurance Based On Formal Specifications,” inProc. of Int’l Conf. on
Parallel and Distributed Processing Techniques and Applications, June
1999.

[19] D. Luckham, F. von Henke, B. Krieg-Brückner, and O. Owe,ANNA A
Language for Annotating Ada Programs Reference Manual. No. 260 in
Lecture Notes in Computer Science, Springer-Verlag, 1987.

[20] M. Mansouri-Samani and M. Sloman, “Monitoring Distributed Systems
(A Survey),” Research Report DOC92/23, Imperial College, Dept. of
Computing, 180 Queen’s Gate, London SW7 2BZ, UK, Apr. 1993.

[21] M. Mansouri-Samani and M. Sloman, “GEM: A Generalised Event Moni-
toring Language for Distributed Systems,” Tech. Rep. DOC95/8, Imperial
College, Dept. of Computing, 180 Queen’s Gate, London SW7 2BZ, UK,
July 1995.

[22] E. Mikk, “Compilation of Z Specifications into C for Automatic Test Re-
sult Evaluation,” in Bowen and Hinchey [4], pp. 167–180.

[23] A. K. Mok and G. Liu, “Efficient Run-Time Monitoring of Timing Con-
straints,” in RTAS ’97 [33].

[24] D. L. Parnas and J. Madey, “Functional Documentation for Computer
Systems,”Science of Computer Programming, vol. 25, no. 1, pp. 41–61,
Oct. 1995.

[25] B. R. Pekilis and R. E. Seviora, “Detection of Response Time Failures
fo Real-Time Software,” inProc. Int’l Symp. Software Reliability Eng.
(ISSRE), IEEE Computer Society Press, Nov. 1997.

[26] D. K. Peters, “Generating a Test Oracle from Program Documentation,”
M. Eng. thesis, McMaster University, Dept. of Electrical and Computer
Engineering, Hamilton, ON, Apr. 1995.

[27] D. K. Peters,Deriving Real-Time Monitors from System Requirements
Documentation. PhD thesis, McMaster University, Hamilton ON, Jan.
2000.

[28] D. K. Peters and D. L. Parnas, “Using Test Oracles Generated from Pro-
gram Documentation,”IEEE Trans. Software Engineering, vol. 24, no. 3,
pp. 161–173, Mar. 1998.

[29] J. G. Proakis and D. G. Manolakis,Digital Signal Processing Principles,
Algorithms and Applications. Maxwell Macmillan, second ed., 1992.

[30] A. P. Ravn, H. Rischel, and K. M. Hansen, “Specifying and Verifying Re-
quirements of Real-Time Systems,”IEEE Trans. Software Engineering,
vol. 19, no. 1, pp. 41–55, Jan. 1993.

[31] D. J. Richardson, S. L. Aha, and T. O. O’Malley, “Specification-based
Test Oracles for Reactive Systems,” inProc. Int’l Conf. Software Eng.
(ICSE), pp. 105–118, May 1992.

[32] D. S. Rosenblum, “A Practical Approach to Programming With Asser-
tions,” IEEE Trans. Software Engineering, vol. 21, no. 1, pp. 19–31, Jan.
1995.

[33] Real-Time Technology and Applications Symposium, June 1997.
[34] T. Savor and R. E. Seviora, “An Approach to Automatic Detection of

Software Failures in Real-Time Systems,” in RTAS ’97 [33].
[35] U. Schmid, “Monitoring Distributed Real-Time Systems,”Real-Time Sys-

tems, vol. 7, no. 1, pp. 33–56, July 1994.
[36] D. Simser and R. E. Seviora, “Supervision of Real-Time Systems Using

Optimistic Path Prediction and Rollbacks,” inProc. Int’l Symp. Software
Reliability Eng. (ISSRE), pp. 340–349, IEEE Computer Society Press,
Oct. 1996.

[37] P. Stocks and D. Carrington, “Test Template Framework: A Specification-
Based Testing Case Study,” inProc. Int’l Symp. Software Testing and
Analysis (ISSTA ’93), pp. 11–18, ACM SIGSOFT Software Engeering
Notes, vol. 18, no. 3, June 1993.

[38] Sun Microsystems Inc.,ADL Language Reference Manual for ANSI C
programmers, Release 1.1, document reference miti/0002/d/r1.1 ed., Dec.
1996.

[39] J. J. Tsai, Y. Bi, S. J. H. Yang, and R. A. W. Smith, eds.,Distributed Real-
Time Systems : Monitoring, Visualization, Debugging, and Analysis. John
Wiley & Sons, 1996.

[40] J. J. Tsai and S. J. Yang, eds.,Monitoring and Debugging of Distributed
Real-Time Systems. IEEE Computer Society Press, 1995.

[41] A. J. van Schouwen, “The A-7 Requirements Model: Re-examination for
Real-Time Systems and An Application to Monitoring Systems,” Tech.
Rep. TR 90-276, Queen’s University, Kingston, Ontario, 1990. also
printed as CRL Report No. 242, Telecommunications Research Institute
of Ontario (TRIO).

[42] A. J. van Schouwen, D. L. Parnas, and J. Madey, “Documentation of Re-
quirements for Computer Systems,” inProc. Int’l Symp. Requirements
Eng. (RE ’93), pp. 198–207, IEEE, Jan. 1993.

[43] E. J. Weyuker, “On Testing Non-testable Programs,”The Computer Jour-
nal, vol. 25, no. 4, pp. 465–470, 1982.

[44] P. Zave and M. Jackson, “Four Dark Corners of Requirements Engineer-
ing,” ACM Trans. Software Eng. and Methodology, vol. 6, no. 1, pp. 1–30,
Jan. 1997.

Dennis K. Petersreceived the BEng (electrical) de-
gree from Memorial University of Newfoundland in
1990. He received the MEng degree (computer) and
the PhD degree from the Department of Electrical and
Computer Engineering at McMaster University, On-
tario, in 1995 and 2000, respectively. He is an assis-
tant professor of Electrical and Computer Engineer-
ing at Memorial University of Newfoundland, where
he has been since 1998. He is currently research-
ing documentation, design and analysis techniques
for software and computer systems, with particular

interests in real-time systems. He also has a strong interest in software engi-
neering education. He is a licensed Professional Engineer in the province of
Newfoundland and a member of the IEEE, IEEE Computer Society, ACM, and
ACM SIGSOFT.

David Lorge Parnas received his PhD in electri-
cal engineering from Carnegie Mellon University,
and honorary doctorates from the ETH in Zurich,
Switzerland, and the Catholic University of Louvain,
Belgium. Dr. Parnas is a professor in the Faculty of
Engineering Computing and Software Department at
McMaster University, Ontario, where he is Director
of the Software Engineering Program; he is also an
associate member of the Department of Electrical and
Computer Engineering. The author of more than 190
papers and reports, Dr. Parnas is interested in most

aspects of computer system design. Dr. Parnas won an ACM Best Paper Award
in 1979, and two Most Influential Paper awards from the International Con-
ference on Software Engineering. He is the 1998 winner of ACM SIGSOFT’s
Outstanding Research award. He is licensed as a Professional Engineer in the
province of Ontario. Dr. Parnas is a fellow of the Royal Society of Canada, a
fellow of the ACM, a senior member of the IEEE, and a member of the IEEE
Computer Society.

