
Hardware Design and Analysis

of Block Cipher Components

Lu Xiao and Howard M. Heys

Electrical and Computer Engineering
Faculty of Engineering and Applied Science, Memorial University of Newfoundland

St. John’s, NF, Canada A1B 3X5
{xiao,howard}@engr.mun.ca

Abstract. This paper describes the efficient implementation of Max-
imum Distance Separable (MDS) mappings and Substitution-boxes
(S-boxes) in gate-level hardware for application to Substitution-
Permutation Network (SPN) block cipher design. Different implementa-
tions of parameterized MDS mappings and S-boxes are evaluated using
gate count as the space complexity measure and gate levels traversed
as the time complexity measure. On this basis, a method to optimize
MDS codes for hardware is introduced by considering the complexity
analysis of bit parallel multipliers. We also provide a general architec-
ture to implement any invertible S-box which has low space and time
complexities. As an example, two efficient implementations of Rijndael,
the Advanced Encryption Standard (AES), are considered to examine
the different tradeoffs between speed and time.

1 Introduction

In a product cipher, confusion and diffusion are both important to the secu-
rity [1]. One architecture to achieve this is the Substitution-Permutation Net-
work (SPN). In such a cipher, a Substitution-box (S-box) achieves confusion by
performing substitution on a small sub-block. An n×m S-box refers to a map-
ping from an input of n bits to an output of m bits. An S-box is expected to be
nonlinear and resistant to cryptanalyses such as differential attacks [2] and linear
attacks [3]. In recently proposed SPN-based block ciphers (e.g., Rijndael [4], Hie-
rocrypt [5], Anubis [6], and Khazad [7]), permutations between layers of S-boxes
have been replaced by linear transformations in the form of mappings based on
Maximum Distance Separable (MDS) codes to achieve diffusion.

During encryption, as Figure 1 illustrates, typically the input data of each
round is mixed with round key bits before entering the S-boxes. Key mixing
typically consists of the Exclusive-OR (XOR) of key and data bits. The decryp-
tion is composed of the inverse S-boxes, the inverse MDS mappings, and the
key mixtures in reverse order. To maintain similar dataflow in encryption and
decryption, SPNs omit the linear transformation in the last round of encryption.
Instead, one additional key mixture is appended at the end of the cipher for secu-
rity considerations. If the S-box and the MDS mappings are both involutions [8]
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Fig. 1. An SPN with MDS Mappings as Linear Transformation

(i.e., for any input x, f(f(x)) = x where f(·) represents a layer of S-boxes or the
MDS layer), both the encryption and decryption operations can be performed
by the same SPN except for small changes in the round key schedule in the case
of XOR key mixing. We refer to such a cipher as an involution SPN, of which
Anubis and Khazad are examples.

An MDS mapping can be performed through multiplications and additions
over a finite field. In Galois field arithmetic, additions over a finite field are
bit-wise XORs, and multiplications can be calculated as polynomial multiplica-
tions modulo an irreducible polynomial. The MDS mapping used in Rijndael is
implemented efficiently by several applications of “xtime” [4] (i.e., one-bit left
shifting followed by addition with the irreducible polynomial). However, this
method only suits the case that all entries in the generation matrix have both
low Hamming weights and small magnitudes.

As typically the only nonlinear components in a block cipher, S-boxes must
be designed to promote high security. As a result, each bit of an S-box output is
a complicated Boolean function of input bits with a high algebraic order, which
makes it difficult to optimize or evaluate the complexity of S-boxes generally in
hardware1. In Section 4, we propose an efficient hardware model of invertible
S-boxes through the logic minimization of a decoder-switch-encoder circuit. By
use of this model, a good upper bound of the minimum hardware complexity
can be deduced for the S-boxes used in SPNs and some Feistel networks (e.g.,

1 Some special cases with algebraic structure such as the Rijndael S-box can be effi-
ciently optimized.
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Camellia [9]). The model can be used as a technique for the construction of
S-boxes in hardware so that the space and time complexities are low.

In our work, we take the conventional approach that the space complexity
of a hardware implementation is evaluated by the number of 2-input gates and
bit-wise inverters; the time complexity is evaluated by the gate delay as mea-
sured by the number of traversed layers in the gate network. These measures
are not exactly proportional to the real area and delay in a synthesized VLSI
design because logic synthesis involves technology-dependent optimization and
maps a general design to different sets of cells based on targeted technologies. For
example, a 2-input XOR gate is typically larger in area and delay than a 2-input
AND gate in most technologies. As well, it is assumed in this paper that the
overhead caused by routing after logic minimization can be ignored. Although
routing affects the performance in a place-and-routed implementation, it is dif-
ficult to estimate its complexity accurately before synthesis into the targeted
technology.

From previous FPGA and ASIC implementations of block ciphers such as
listed in [10], it is well established that S-boxes normally comprise most of a ci-
pher’s area requirement and delay. Although linear components such as MDS
mappings are known to be much more efficient than S-boxes, it is important for
cipher designers to characterize hardware properties of both S-boxes and MDS
mappings on the same basis as is done through the analysis in this paper.

2 Background

2.1 MDS Mappings

A linear code over Galois field GF(2n) is denoted as an (l, k, d)-code, where l
is the symbol length of the encoded message, k is the symbol length of the
original message, and d is the minimal symbol distance between any two encoded
messages. An (l, k, d)-code is MDS if d = l−k+1. A (2k, k, k+1)-code with
generation matrix G = [I|C], where C is a k×k matrix and I is an identity
matrix, determines an MDS mapping from the input X to the output Y through
matrix multiplication over a Galois field as follows:

fM : X 
→ Y = C · X (1)

where

X =



Xk−1

...
X0


 , Y =



Yk−1

...
Y0


 , C =



Ck−1,k−1 . . . Ck−1,0

...
. . .

...
C0,k−1 . . . C0,0


 .

Each entry in X ,Y, and C is an element in GF(2n).
For a linear transformation, the branch number is defined as the minimum

number of nonzero elements in the input and output when the input elements
are not all zero [11]. It is desirable that a linear transformation has a high branch
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number when it is used after a layer of S-boxes in a block cipher, in order for there
to be low probabilities for differential and linear characteristics [2, 3]. A mapping
based on a (2k, k, k+1)-code has an optimal branch number of k+1.

2.2 Bit-Parallel Multipliers

An MDS mapping can be regarded as matrix multiplication in a Galois field.
Since the generation matrix is constant, each element in the encoded message
is the XOR of several outputs of constant multipliers. As basic operators, bit-
parallel multipliers given in standard base [12, 13] are selected in this paper.
A constant multiplier can be written as a function from element A to element B
over GF(2n) as follows:

fC : A 
→ B = C · A (2)

where C is the constant element in GF(2n). The expression in binary polynomial
form is given as

bn−1x
n−1+ · · ·+ b0 = (cn−1x

n−1+ · · ·+ c0)(an−1x
n−1+ · · ·+a0) mod P (x) (3)

where P (x) is denoted as the irreducible polynomial of degree n. An n×n binary
matrix FC is associated with this constant multiplier such that:




bn−1

bn−2

...
b0


 = FC ×




an−1

an−2

...
a0


 (4)

where

FC =



fn−1,n−1 . . . fn−1,0

...
. . .

...
f0,n−1 . . . f0,0




and fi,j ∈ {0, 1}, 0 ≤ i, j ≤ n−1. The entries in each column of FC are determined
by

fn−1,jx
n−1 + · · ·+ f0,j = xj(cn−1x

n−1 + · · ·+ c0) mod P (x). (5)

Since FC is constant, it is trivial to implement a constant bit-parallel multi-
plier by bit-wise XOR operations. For example, considering a constant multiplier
to perform B = 19H× A over GF(28) where “H” indicates hexadecimal format
and P (x) = x8 + x4 + x3 + x + 1, we get the binary product matrix F19H and
the corresponding Boolean expressions for all bit outputs as the following:

F19H =




0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 1 1 0
1 1 0 0 0 0 1 1
0 1 1 1 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 1 0 0 0 1




⇒




b7 = a4
⊕
a3

b6 = a3
⊕
a2

b5 = a7
⊕
a2

⊕
a1

b4 = a7
⊕
a6

⊕
a1

⊕
a0

b3 = a6
⊕
a5

⊕
a4

⊕
a3

⊕
a0

b2 = a7
⊕
a5

⊕
a2

b1 = a6
⊕
a4

⊕
a1

b0 = a5
⊕
a4

⊕
a0

.
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If we define w(FC) as the count of nonzero entries in FC and wi(FC) as the
count of nonzero entries in the i-th row of FC , the number of 2-input XOR gates
used for the multiplier is upper bounded by w(FC) − n and the delay of gate
levels is max{�log2 wi(FC)�}.

2.3 Three Types of Matrices

In the search of optimized MDS mappings in the next section, we will use three
types of matrices which suit different applications. When an exhaustive matrix
search is impractical, we will limit the search scope to one of the following three
matrix types.

– Circulant matrices: Given k elements α0, . . . , αk−1, a circulant matrix A
is constructed with each entry Ai,j = α(i+j) mod k. The probability that a
circulant matrix is suitable for an MDS mapping C is much higher than that
of a normal square matrix [14].

– Hadamard matrices : Given k elements α0, . . . , αk−1, a Hadamard matrix A
is constructed with each entry Ai,j = αi⊕j . Each Hadamard matrix A over
a finite field has the following properties: A2 = γ · I where γ is a constant.
When γ = 1, A is an involution matrix. An involution MDS mapping is
required by an involution SPN.

– Cauchy matrices: Given 2k elements α0, . . . , αk−1, β0, . . . , βk−1, a Cauchy
matrix A is constructed with each entry Ai,j = 1/(αi⊕βj). Any Cauchy
matrix is MDS when α0, . . . , αk−1 are distinct, β0, . . . , βk−1 are distinct, and
αi �= βj for all i, j [15]. Although a Cauchy matrix can be conveniently used
as matrix C for an MDS mapping, the relation between selected coefficients
(i.e., α0, . . . , αk−1, β0, . . . , βk−1) and corresponding MDS complexity is not
as straightforward as in the former two matrix types. Hence, it is difficult
to select coefficients to construct a Cauchy matrix that can be efficiently
implemented in hardware.

2.4 A Method to Simplify S-box Circuits

In [16], a method of generating a Boolean function through nested multiplexing is
introduced to optimize gate circuits for the 6×4 S-boxes in DES implementations.
Consider that a Boolean function f(a, b, c) with three input bits a, b, and c can
be written as

f(a, b, c) = f1(a, b) · c+ f2(a, b) · c
where f1(a, b) and f2(a, b) are two Boolean functions and “+” denotes OR.
If f3(a, b) = f1(a, b)⊕ f2(a, b), then

f(a, b, c) = f2(a, b)⊕ (f3(a, b) · c) .
Similarly, a Boolean function with an input of 4 bits can be regarded as a mul-
tiplexor using one input bit to select two boolean functions determined by the
other three input bits. This procedure is repeated until a Boolean function has
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6 input bits. A 6×4 DES S-box contains four of these 6-bit Boolean functions.
This general approach can be taken for any size S-box and works well for opti-
mization of small S-boxes such as the 4×4 S-boxes in Serpent [17]. However, in
the case of general invertible 8×8 S-boxes used by many ciphers, this method
can be improved upon, as we shall see.

3 Optimized MDS Mappings for Hardware

3.1 Complexity of MDS Mappings

An MDS mapping has been defined in (1) where each entry Ci,j of matrix C is as-
sociated with a product matrix FCi,j . Replacing each Ci,j in matrix C with FCi,j

as a submatrix, we get an nk×nk binary matrix FC as the following:

FC =




FCk−1,k−1 . . . FCk−1,0

...
. . .

...
FC0,k−1 . . . FC0,0


 .

Because Y is the matrix product of FC and X , the MDS mapping can be straight-
forwardly implemented by a number of XOR gates. The gate count of 2-input
XORs is upper bounded by

GMDS = w(FC)− nk (6)

and the delay is upper bounded by

DMDS = max{�log2 wi(FC)�} (7)

where 0 ≤ i ≤ n−1.

3.2 The Optimization Method

The hardware complexity of an MDS mapping is determined directly by ma-
trix C. In order to improve hardware performance, matrix C should be designed
to produce low hardware complexity. However, not every matrix with low com-
plexity is suitable as an MDS mapping. The mapping associated with matrix C
can be tested using the following theorem:

Theorem 1. [15]: An (l, k, d)-code with generation matrix G = [I|C] is MDS
if, and only if, every square submatrix of C is nonsingular.

To minimize gate count and delay in hardware, we want to find an MDS map-
ping based on a (2k, k, k+1)-code over GF(2n) with low Hamming weights of
w(FC) and wi(FC). Theorem 1 provides us a way to determine whether a matrix
candidate is MDS. Theoretically, the optimal MDS mapping can always be de-
termined through an exhaustive search of all matrix candidates of C. However,
such a search is computationally impractical when k and n get large. In this
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Table 1. Four Choices for MDS Search

Search Options # of Candidates Applicable Cases

Exhaustive 2k2n small k, n

Circulant Matrices 2kn large k, n

Hadamard Matrices 2kn large k, n as well as involution

Cauchy Matrices 22kn no MDS mappings found
in other matrix categories

case, it is reasonable to focus the search on some subsets of candidates which are
likely to yield MDS mappings. The search scope can thus be limited to circulant,
Hadamard, and Cauchy matrices.

Table 1 describes four choices for the MDS search. We adopt an appropri-
ate searching method based on the number of candidates to be tested and the
required MDS features (involution or not). If computation permits, exhaustive
search is preferred. When an exhaustive search is impractical, a search in circu-
lant matrices may be performed for non-involution MDS mappings or a search in
Hadamard matrices may be performed for MDS mappings which are involutions.
Since only a subset of MDS mappings are derived from circulant, Hadamard, or
Cauchy matrices, only exhaustive search over all possible matrices (and therefore
all MDS mappings) is guaranteed to find a truly optimized MDS mapping. How-
ever for large k and n, searching over a subset of MDS mappings is the best that
can be achieved. The objective is to find the candidate with the MDS property
and a low hardware cost. The hardware “cost” could be gate count, delay, or
both. Sometimes, no candidates in the sets of circulant and Hadamard matrices
pass the MDS test. In this case, the optimal mapping will be determined through
a search of Cauchy matrices, where each candidate is deterministically MDS.

Once a candidate is proved to be MDS (or involution MDS), those remaining
candidates with higher hardware cost can be ignored narrowing the search space.
The results generated in this searching method can be used for the hardware
characterization of ciphers with MDS mappings of a specified size.

It is noted that w(FC)− nk just indicates the upper bound of XORs in the
circuit. Two greedy methods introduced in [13] can be applied to the MDS matrix
multiplication in order to further reduce redundancy in the circuit. However, the
improvement of using greedy methods is not significant when w(FC) is already
low.

3.3 MDS Search Results

We have implemented a search for the best MDS mappings of various sizes.
During the search, gate reduction is given higher priority than delay reduction
because the delay difference among mappings is generally not evident. The opti-
mal2 non-involution MDS mappings for bit-parallel implementations for various
2 Here “optimal” means “locally optimal” when the MDS mapping is constrained to

a particular matrix category.
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Table 2. MDS Search Results

Optimal Non-involution MDS Optimal Involution MDS
MDS Galois P (x) Average Delay Delay

Field w(FC) w(FC) (Gate Matrix w(FC) (Gate Matrix
levels) Type levels) Type

(4, 2, 3) GF(22) 7 H 8 9 2 exhaustive 11 2 exhaustive

(4, 2, 3) GF(24) 13 H 32 17 2 exhaustive 21 2 exhaustive

(4, 2, 3) GF(28) 11D H 128 35 3 exhaustive 48 3 exhaustive

(8, 4, 5) GF(24) 13 H 128 76 3 circulant 88 3 Hadamard

(8, 4, 5) GF(28) 11D H 512 164 3 circulant 200 4 Hadamard

(16, 8, 9) GF(24) 13 H 512 464 4 Cauchy 544 5 Cauchy

(16, 8, 9) GF(28) 11D H 2048 784 4 circulant 928 5 Hadamard

sizes of MDS mappings are given in Table 2. As in Rijndael, SPNs using these
optimal MDS mappings are more efficient in encryption than decryption. In
Table 2, the average w(FC) is determined by computing the number of matrix
entries and dividing by two. These average w(FC) values are included to show
how effective the optimization work is for each MDS category.

The optimal involution MDS mappings in terms of our complexity analysis
are also given in Table 2. Since the MDS test of Theorem 1 is computationally
intensive, an involution test will be performed first to eliminate wrong candi-
dates. In [8], an algebraic construction of an involution MDS mapping based
on Cauchy matrices is described. This known MDS mapping is used to prune
remaining candidates that produce higher complexity before a better mapping
is found. These two steps reduce the candidate space dynamically.

The categories in Table 2 correspond to many MDS mappings in real ciphers
(although there are minor differences in Galois field selection). For example,
Square, Rijndael, and Hierocrypt at the lower level have non-involution MDS
mappings based on (8, 4, 5)-codes over GF(28) [14, 4, 5]. SHARK has an non-
involution MDS mapping based on (16, 8, 9)-codes over GF(28) [11]. Hierocrypt
at the higher level has two choices of non-involution MDS mappings, based on
(8, 4, 5)-codes over GF(24) and GF(232), respectively [5]. Anubis has an invo-
lution MDS mapping based on an (8, 4, 5)-code over GF(28) [6]. Khazad has
an involution MDS mapping based on a (16, 8, 9)-code over GF(28) [7]. None
these ciphers have MDS mappings with complexity as low as their correspond-
ing cases listed in the tables. The mappings of Rijndael, Anubis, and Khazad
have MDS mappings that are close to the optimal cases in terms of gate counts
(i.e., w(FC) = 184, 216, and 1296, respectively), while Hierocrypt’s MDS map-
pings have high complexity, similar to the average gate counts.

As Table 2 indicates, the involution MDS mappings are not as efficient as
non-involution MDS mappings after optimization. However, the performance dif-
ference between them is quite small. When used in an SPN, the involution MDS
mapping produces equally optimized performance for both encryption and de-
cryption. When an SPN uses a non-involution MDS mapping optimized only for
encryption, the inverse MDS mapping used in decryption has a higher complex-
ity. For example, the MDS mapping used in Rijndael decryption has w(FC) = 472
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Fig. 2. A General Hardware Structure of Invertible S-boxes

and, hence, needs more gates in hardware than the MDS mapping used for en-
cryption which has w(FC) = 184. When a non-involution MDS mapping is opti-
mized for both encryption and decryption, the overall hardware cost is similar
to an optimized involution MDS mapping.

The real hardware circuits of these MDS mappings produce complexities
with the same trends as shown in Table 2. For example, using Synopsys Design
Compiler (with default optimization strategy) and TSMC’s 0.18 µm CMOS cell
library, we get the area sizes of the optimal non-involution MDS mappings of the
bottom four rows of Table 2 as 1549.0, 3659.0, 8863.0, and 17376.4 µm2, respec-
tively. Their critical time delays are 1.30, 1.33, 2.01, and 2.01 ns, respectively.

4 General Hardware Model of Invertible S-boxes

4.1 Decoder-Switch-Encoder Structure

In this section, we derive a general hardware model of n×n invertible S-boxes
by simplification of a decoder-switch-encoder structure. Using this model, the
upper bounds of optimized gate counts and delay for S-boxes can be deduced.

As shown in Figure 2, the n×2n decoder outputs 2n distinct minterms from
the n-bit S-box input. The switch is a wiring area composed of 2n wires. Each
wire connects an input port Xi to an output port Yj , 0≤ i, j≤ 2n−1. Since the
S-box is invertible, only one input port is connected to an output port. Although
the wiring scheme embodies the S-box mapping, the switch does not cost any
gates. The output of the switch is encoded through a 2n×n encoder, which
produces the n-bit output of the S-box.

4.2 Decoder

The n×2n decoder is implemented by n NOT gates and a number of AND gates.
The NOT gates generate complementary variables of n inputs. The AND gates
produce all 2n minterms from n binary inputs and their complements.

The most straightforward approach is to generate every minterm separately,
which costs 2n · (n − 1) 2-input AND gates plus n bit-wise NOT gates, and
a delay of �log2 n�+1 gate levels. This approach can be improved by eliminating
redundant AND gates in the circuit. The optimized circuit can be generated
using a dynamic programming method.
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for i← 0 to n− 1 do
D(i, i)← 0

for step← 1 to n− 1 do
for i← 0 to n− 1− step do

j = i + step
D(i, j)←∞
for k← i to j − 1 do

temp = D(i, k) + D(k + 1, j) + 2j−i+1

if temp < D(i, j) then D(i, j)← temp
return D(0, n− 1)

Fig. 3. Algorithm to Determine Decoder AND-Gate Count

Consider the dynamic programming algorithm in Figure 3, used to compute
the minimum number of AND gates in the decoder. Let D(i, j) be the minimal
number of 2-input AND gates used for generating all possible minterms com-
posed of literals Ii, · · · , Ij and their complements. Thus, D(i, j) = 0 when i = j.
If we know two optimal results of subproblems, say D(i, k) and D(k+1, j) where
i ≤ k < j, all minterms for Ii, · · · , Ij can be obtained by using AND gates to con-
nect two different minterms in the subproblems, respectively. Since the number
of these pairs is 2j−i+1, this solution needs D(i, k) +D(k + 1, j) + 2j−i+1 AND
gates in total. The algorithm of Figure 3 can be easily modified to determine
the actual gate network used for the decoder. When n = 2k, it can be shown
that the number of 2-input AND gates and bit-wise NOT gates in the decoder
is given by

GDec(n) = n
k∑

i=1

22i−i + n . (8)

The delay, in terms of the number of gate levels, of the decoder is

DDec(n) = �log2 n�+ 1 .

4.3 Encoder

The 2n×n binary encoder can be implemented using a number of 2-input OR
gates. Table 3 gives the truth table of a 16×4 binary encoder. Each output
signal Oi is the OR of the 2n−1 input signals that produce “1” in column Oi

in the truth table; this is denoted as Oi =
∑
Yk. If we separately construct

circuits for these output signals, it would cost n · (2n−1 − 1) 2-input OR gates
and a delay of n−1 gate levels. Fortunately, most OR gates can be saved if the
same intermediate ORed signals are reused.

Considering that the OR is done in a dynamic programming method, some
subproblems used in calculating Oi are also used in calculating Oj if i > j > 0.
For example, as shown in Table 3, the task of calculating On−1 includes the
subproblems of calculating the OR from Y5·2n−3 to Y6·2n−3−1 and calculating
the OR from Y6·2n−3 to Y2n−1. These two subproblems are also included in the
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Table 3. Truth Table of a 2n×n Encoder

Input Output Input Output
Yk O3 O2 O1 O0 Yk On−1 On−2 On−3 · · ·
Y0 0 0 0 0 Y0, · · · , Y2n−3−1 0 0 0 · · ·
Y1 0 0 0 1
Y2 0 0 1 0 Y2n−3 , · · · , Y2n−2−1 0 0 1 · · ·
Y3 0 0 1 1
Y4 0 1 0 0 Y2n−2 , · · · , Y3·2n−3−1 0 1 0 · · ·
Y5 0 1 0 1
Y6 0 1 1 0 Y3·2n−3 , · · · , Y2n−1−1 0 1 1 · · ·
Y7 0 1 1 1
Y8 1 0 0 0 Y2n−1 , · · · , Y5·2n−3−1 1 0 0 · · ·
Y9 1 0 0 1
Y10 1 0 1 0 Y5·2n−3 , · · · , Y6·2n−3−1 1 0 1 · · ·
Y11 1 0 1 1
Y12 1 1 0 0 Y6·2n−3 , · · · , Y7·2n−3−1 1 1 0 · · ·
Y13 1 1 0 1
Y14 1 1 1 0 Y7·2n−3 , · · · , Y2n−1 1 1 1 · · ·
Y15 1 1 1 1

(a) n = 4 (b) n ≥ 4

calculation of On−3 and On−2, respectively. As a result, the OR gates needed
to solve the recurrent subproblems can be saved. Actually, in the procedure of
calculating Oi, only the subproblem of calculating the OR from Y2i to Y2i+1−1

has to be solved because all other 2n−i−1−1 subproblems have been solved in
the procedures of calculating On−1, · · · , Oi+1. In this sense, we need 2i−1 OR
gates for the subproblem that has not been solved and 2n−i−1−1 OR gates to
OR the results of all 2n−i−1 subproblems. In total, the count of OR gates for
the encoder is

GEnc(n) =
n−1∑
i=0

[(2i − 1) + (2n−i−1 − 1)] = 2n+1 − 2n− 2 (9)

and the gate delay is
DEnc(n) = n− 1.

4.4 S-box Complexity

Based on the analysis of the decoder-switch-encoder structure, the hardware
complexity of invertible S-boxes is estimated. Since 8×8 S-boxes are very popular
in current block ciphers (e.g., Rijndael [4], Hierocrypt [5], and Camellia [9]), let
us examine the usability of this model in this case. According to (8) and (9),
the upper bound of the optimal gate count for an 8×8 invertible S-box is 806,
while the gate count before logic minimization is 2816. Through experimental
simplifications using the Synopsys logic synthesis tool [18], we can realize 8×8
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invertible S-boxes with a count of area units close to 800 when the target library
is lsi 10k.db. Since a small part of cells in the library have more than 2 inputs,
the cell count is around 550. Such a result is quite close to the upper bound
when n = 8.

When considering the implementation of an S-box in hardware, the upper
bound of the gate count increases exponentially with the S-box size n, as shown
in Figure 4. Simultaneously, the upper bound of delay increases linearly, as shown
in Figure 5. In these two figures, the S-box optimization model described in [16]
and presented in Section 2 is used as a reference and the decoder-switch-encoder
model is labelled DSE. When the size of an S-box is less than 6, the delay of the
two models are similar and the gate count of the reference model is slightly lower.
As the size of the S-box increases, the decoder-switch-encoder model costs less
in both gate count and delay. The details of gate counts and delays are listed
in Table 4 and Table 5. Given the fact that about half the gates used in the
reference model are XOR gates which are typically more expensive in hardware
than NOT, AND, and OR gates, the decoder-switch-encoder model would appear
to be more useful for hardware design, both as an indication of the upper bound
on the optimal S-box complexity and as a general methodology for implementing
an invertible S-box.

Table 4. Gate Counts of Invertible S-boxes in the Decoder-Switch-Encoder
Model

S-box Size 4×4 6×6 8×8 10×10 12×12 14×14 16×16

NOT # 4 6 8 10 12 14 16
AND # 24 88 304 1120 4272 16712 66144
OR # 22 114 494 2026 8166 32738 131038

Gate Count 50 208 806 3156 12450 49464 197198

Reference Count 36 192 1020 5112 24564 114672 524268
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Table 5. Gate Delays of Invertible S-boxes in the Decoder-Switch-Encoder
Model

S-box Size 4×4 6×6 8×8 10×10 12×12 14×14 16×16

NOT 1 1 1 1 1 1 1
AND 2 3 3 4 4 4 4
OR 3 5 7 9 11 13 15

Delay 6 9 11 14 16 18 20

Reference Delay 6 10 14 18 22 26 30

5 Efficient Rijndael Encryption Implementations

Since Rijndael was selected as AES, it is of great significance to characterize
the implementation of Rijndael in hardware. Each round of Rijndael contains
the following operations to the state (i.e., the intermediate data stored in a two
dimensional array) [4]: (1) a layer of 8×8 S-boxes called ByteSub, (2) a byte-wise
cyclic shift per row called ShiftRow, (3) an MDS mapping based on an (8, 4,
5)-code per column called MixColumn, and (4) the round key mixing through
XORs. The MDS mapping is defined over GF(28) and the S-box performs mul-
tiplicative inverse over GF(28) followed by a bitwise affine operation.

With parallel S-boxes implemented through table lookups, a hardware design
is proposed in [19]. Adhering to the structure of the algorithm specification
of [4] as in Figure 6(a), this design achieves a throughput of 1.82 Gbits/sec
in 0.18 µm CMOS technology, where each S-box costs about 2200 gates. Since
some operations over the composite field GF((24)2) are more compact than over
GF(28), an efficient Rijndael design in composite field arithmetic is proposed
in [20]. A cryptographic core (i.e., essentially one round mainly consisting of 16
S-boxes and the MDS mapping layer) in [20] only costs about 4000 gates and
a delay of 240 gate levels [21] is expected in theory.

Following the normal encryption dataflow, labelled as Design I in Figure 6(a),
we apply the discussed S-box model and MDS bit-parallel implementation
method to ByteSub and MixColumn, respectively. After the first round key K0

is added to the plaintext, the state goes through an iterative round structure.
Regardless of its mathematical definition, ByteSub is implemented as a layer of
16 parallel 8×8 S-boxes using the decoder-switch-encoder model. Then, the state
iteratively proceeds through ShiftRow, MixColumn, and the addition with round
keyKr. ShiftRow is implemented through wiring without any gates needed. Four
bit-parallel MDS mappings perform MixColumn for the 4 columns. As listed in
Table 6, we get an iterative core circuit of one round which costs 13456 gates
and produces a delay of 15 gate levels per round. Because the MDS mappings
are omitted in the last round, the Rijndael encryption of 10 rounds produces
a delay of 148 gate levels, a significant improvement over the delay of 240 gates
levels in the design of [20]. The design needs far fewer gates than in [19].

As shown in Figure 6(b), labelled as Design II, we get a more compact cir-
cuit through hybrid operations over GF(28) and its equivalent composite field
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GF((24)2). The polynomial P1(y) = y4 + y+1 is used to define GF(24) and the
polynomial P2(x) = x2 + x+09H is used to define GF((24)2). Such a composite
field is the same as in the implementation proposed in [20] for ease of compari-
son. The conversion from GF(28) to GF((24)2) is denoted as T (·), and its inverse
is T−1(·).

It has been recognized that the multiplicative inverse over GF((2m)n) can
have a much lower complexity than the equivalent inverse over GF(2mn) [13, 22].
As an example, the equivalent ByteSub over GF((24)2) costs less than one fifth
of the gate count of a general invertible S-box based on the upper bound of
806 in the decoder-switch-encoder S-box model. However, the subfield-based
operation is normally slow. In the implementation of Figure 6(b), the inverse
over the composite field costs a gate delay of 14 (as deduced from [12, 13, 20, 21]).
Given additional overhead for field conversion and ByteSub’s affine function, the
ByteSub instance has a much longer delay path than in the implementation of
Design I. To mitigate this problem, we can incorporate all linear operations into
LT1 in the first nine rounds and LT2 in the last round as shown in Figure 7,
resulting in a delay of 202 gate levels for encryption. The number of gates used in
the iterative core circuit is slightly (about 3%) less than in [20]. The detailed gate
counts and delays for Design II components are listed in Table 7. The Appendix
describes the detailed implementation of LT1 and LT2.

Table 6. Gate Counts and Delays of Operations in Design I

Operations ByteSub MixColumn Key Addition Total Per Round

Gate Count 12896 432 128 13456
Delay (gate levels) 11 3 1 15
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Table 7. Gate Counts and Delays of Operations in Design II

Operations 16×Inversion over LT1 LT2 T (·) Key Total
GF((24)2) [12, 13, 20, 21] Addition Per Round

Gate Count 2384 792 304 208 128 3816
Delay (gate levels) 14 5 3 3 1 20

Figure 8 compares the estimated performance of the two designs of Figure 6.
Design I uses the MDS mapping implementation method and S-box model dis-
cussed in Sections 2 and 4 directly (while “Design I (Ref.)” uses the reference
model in [16] for the S-boxes). In Design II, the method discussed in the Ap-
pendix is used to deduce the linear transformations LT1 and LT2. As Figure 8
shows, Design II gains a delay reduction of 16% and a slight reduction in the
number of gates compared with the implementation of [20]. Design I is a much
faster implementation with about three times as many gates.

The round structures of the two Rijndael designs have been coded in VHDL
and synthesized by using Synopsys Design Compiler and TSMC’s 0.18 µmCMOS
cell library. Setting constraints to tradeoff area and delay during synthesis, we
get the characteristic curves shown in Figure 9. The two end points of each
curve represent the synthesis results with smallest delay and area. In line with
our performance evaluation, Design I can lead to an iterative cipher architecture
with a throughput up to 4 Gbits/sec (i.e., the smallest round critical path is 3.04
ns). On the other hand, Design II is useful for an area-restricted or pipelined
application because of its small area requirement.

6 Conclusions

We have presented a mechanism to select the MDS mappings for optimal hard-
ware implementation of a block cipher. The optimized MDS mapping straight-
forwardly leads to a compact and fast implementation at the gate level. As well,
a general model of invertible S-boxes is proposed and the upper bounds of the
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minimal hardware complexity are deduced through systematic logic minimiza-
tion. Since S-boxes and MDS mappings are both widely used cipher components,
the discussed design, optimization and hardware complexity evaluation provides
an analytical basis for studying the hardware performance of block ciphers. As
an example, two efficient hardware designs of Rijndael encryption are consid-
ered with regards to different tradeoffs between gate count and delay, and their
synthesis results are presented.
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Appendix: Implementation of LT1 and LT2 in Rijndael
Design II

In order to mathematically represent LT1 and LT2, we denote the input state
as {Ui,j} and the output state as {Vi,j}, where i denotes the row index and j
denotes the column index of an element in the state. The binary coefficients
of Ui,j and Vi,j in their polynomial expressions can be written as two tuples Ui,j

and Vi,j , respectively. LT1 can be expressed as



V0,j

V1,j

V2,j

V3,j


 =




FL02 FL03 FL01 FL01

FL01 FL02 FL03 FL01

FL01 FL01 FL02 FL03

FL03 FL01 FL01 FL02







U0,j

U1,j−1

U2,j−2

U3,j−3


 +



T (63H)
T (63H)
T (63H)
T (63H)


 . (10)
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In above equation, FL01, FL02, and FL03 are 8×8 submatrices derived from
the following expression:

FL0i = FT · F0i · FA · F−1
T , i = 1, 2, 3 (11)

where F0i is the product matrix associated with 01H, 02H, or 03H in GF(28)
and matrix FA is associated with the affine function A(·) inside ByteSub (i.e.,
A(X ) = FA · X + 63H). FT is the 8×8 transformation matrix associated with
T (·)(i.e., T (Ui,j) = FT · Ui,j). Its inverse is F−1

T .
Similarly, LT2 is a function defined as




V0,j

V1,j

V2,j

V3,j


 = (FA · F−1

T )




U0,j

U1,j−1

U2,j−2

U3,j−3


 +



63H
63H
63H
63H


 . (12)

Once we know the matrices FT , FL0i, and the result of FA ·F−1
T (as listed in

the following), the gate networks consisting of XORs can be straightforwardly
derived for LT1 and LT2. The greedy method I described in [13] is used to reduce
redundancy in the gate network, where small modifications are made in order to
avoid the increase of delay.

FT =




1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 0
1 1 0 0 0 1 1 0
0 1 0 1 0 0 1 0
0 0 0 0 1 0 1 0
1 1 0 1 1 1 0 1




FL01 =




0 0 0 0 1 0 0 0
0 1 0 1 0 1 0 0
1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0




FL02 =




1 0 1 0 1 0 1 1
1 1 1 1 1 0 1 1
0 0 1 1 1 1 1 0
0 1 1 1 0 1 1 0
0 0 1 1 0 0 1 0
1 1 1 0 1 1 1 0
0 0 1 1 1 1 0 0
0 0 0 0 1 0 1 1




FL03 =




1 0 1 0 0 0 1 1
1 0 1 0 1 1 1 1
1 0 0 1 1 1 0 0
0 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0
1 1 0 0 1 0 1 0
1 0 1 1 0 1 1 0
0 0 0 1 1 1 1 1




FA · F−1
T =




1 0 0 0 0 1 1 0
1 1 0 1 0 0 0 0
1 0 0 0 1 1 1 0
0 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1
0 1 0 1 1 0 0 1
1 0 0 0 1 1 1 1
0 1 1 0 0 1 0 1
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