Recursive descent parsing

Each language L over alphabet A has an associated recognition problem: Given a finite sequence in A^{*}, determine whether it is in L.
Many, but not all, context free languages can be recognized using a simple technique called recursive descent parsing.
Definition t is a prefix of s if and only if there is a u such that $s=t u$.

The idea is this:

- Start with a suitable CFG $\left(A, N, P, n_{\text {start }}\right)$ for L
- For each nonterminal n in N create a procedure n
- Roughly speaking, the job of procedure n is to try to remove from the input a suitable prefix described by nonterminal n.
- If there is no suitable prefix, the procedure may indicate failure by setting a flag f to false.
- We use variable s to represent the remaining input sequence.
- We'll mark the end of input with a sentinel symbol \$ not in $A \cup N$.

Example: (tree is the start nonterminal)

$$
\begin{aligned}
\text { tree } & \rightarrow[\text { moreTree } \\
\text { tree } & \rightarrow \mathbf{i d} \\
\text { moreTree } & \rightarrow] \\
\text { moreTree } & \rightarrow \text { tree moreTree }
\end{aligned}
$$

Variables:

- f is set to false if an error is encountered
- s is the remaining input. Ends with a $\$$.
- We assume that $t \in A^{*}$; so there is no $\$$ in t.

The main code. Is t in the language?
$f:=$ true $\quad s:=t^{\wedge}[\$]$
Where the procedures are
proc tree() // Try to remove a prefix described by tree.
if $\neg f$ then return end if
if $s(0)=[$ then consume () moreTree()
else $\operatorname{expect}(\mathbf{i d})$ end if
end tree
proc moreTree()
// Try to remove a prefix described by moreTree.
if $\neg f$ then return end if
if $s(0)=]$ then consume()
else tree() moreTree() end if
end moreTree
proc consume() $s:=s[1, . . s$.length $]$ end consume proc expect (a)
if $s(0)=a$ then consume() else $f:=$ false end if end expect

Here is an example call tree showing how this work in a successful recognition. Note how the call tree mimics the parse tree.

Specification of nonterminal procedures

The specification for procedures representing nonterminals
procedure $n()$ // Try to remove a prefix described by n precondition: s is nonempty and ends with a $\$$ changes s, f
postcondition:
There are two possible outcomes

- Error: f is false and s still ends with a $\$$.
- Success: f is true and a prefix of s_{0}, described by n, has been removed. I.e., $\exists u \cdot s_{0}=u s$ and $n \stackrel{*}{\Longrightarrow} u$.

Choosing an outcome:

- If f_{0} is false, Error is the only possible outcome.
- If f_{0} is true but no prefix of s_{0} is described by n, Error is the only possible outcome.
- If f_{0} is true and $\exists t, u, v \in A^{*} \cdot n_{\text {start }} \$ \stackrel{*}{\Longrightarrow} \operatorname{tnv} \$ \xlongequal{*} \operatorname{tuv} \$$ and $u v \$=s_{0}$, then Success is the only possible outcome (and the prefix u removed should meet these conditions).
- Otherwise it doesn't matter which outcome is chosen.

Now assume the initial value of $\mathcal{z o}^{t} \in A^{*}$. We can tell if $\stackrel{t}{\circ}$ is in L as follows

$$
f:=\text { true } ; \quad s:=\mathbb{s}^{\wedge}[\$] ; \quad n_{\text {start }}() ; \quad f:=f \wedge(s(0)=\$)
$$

Some handy procedures

procedure $\operatorname{expect}(a: A)$
// Try to remove a from the start of the s.
precondition: s endswith a $\$$
changes s, f
postcondition:
if f_{0} and $\left([a]\right.$ is a prefix of $\left.s_{0}\right)$
then f and $s_{0}=[a]^{\wedge} s$
else $\neg f$ and s endsswith \mathfrak{c}
if $s(0)=a$ then consume ()
else $f:=$ false end if
end expect
procedure consume()
// Remove the first item from s
precondition: s. length >0 and $s(0) \in A$
changes s
postcondition: $s=s_{0}\left[1, . . s_{0}\right.$.length $]$
$s:=s[1, . . s$.length $]$
end consume

Writing procedures that meet the specification

If a nonterminal n has productions

$$
(n \rightarrow \alpha),(n \rightarrow \beta),(n \rightarrow \gamma) \in P
$$

we write a subroutine like this:
procedure $n()$
// For specification see slide 4
if $\neg f$ then return end if
if ? then $\llbracket \alpha \rrbracket$
else if ? then $\llbracket \beta \rrbracket$
else if ? then $\llbracket \gamma \rrbracket$
else $f:=$ false end if
end n
where, for $a \in A, m \in N, \alpha, \beta \in(A \cup N)^{*}$

$$
\begin{aligned}
\llbracket a \rrbracket & =" \operatorname{expect}(a) " \\
\llbracket m \rrbracket & =\text { " } m()^{\prime} \\
\llbracket \epsilon \rrbracket & =\epsilon \\
\llbracket \alpha \beta \rrbracket & =\llbracket \alpha \rrbracket^{\wedge} \llbracket \beta \rrbracket
\end{aligned}
$$

- Usually the boolean expressions are based on the first few items of s.
- The last case $f:=$ false might be unreachable; in this case it is omitted.
- Note that $\{\neg f\} \llbracket \alpha \rrbracket\{\neg f\}$ is correct

Parsing our programming language

$\operatorname{var} s: A^{*}$.
$\operatorname{var} f: \mathbb{B}$.
procedure $\operatorname{main}()$
read the input into t, combining characters into symbols and throwing out comments and spaces
$f:=$ true
$s:=t^{\wedge}[\$]$
block()
$f:=f \wedge(s(0)=\$)$
$\{f=(t$ is in the programing language $)\}$
if f then print "yep" else print "nope" end if end main

Nonterminal block

$$
\begin{aligned}
& \text { block } \rightarrow \epsilon \\
& \text { block } \rightarrow \text { command block }
\end{aligned}
$$

procedure block() // Version 0
// Try to remove a prefix described by block .
// See the contract on slide 4
if $\neg f$ then return end if
if $s(0) \in$ FirstComm then
command () block()
end if
end block
where FirstComm is $\{\mathbf{i f}$, while $\} \cup \mathcal{I}$.
Why this works:

- When block \rightarrow command block is appropriate, $s(0)$ is in $\{$ if, while $\} \cup \mathcal{I}$;
* you can see this by looking at all the productions for command.
- When block $\rightarrow \epsilon$ is appropriate, $s(0) \in\{\$$, end, else $\}$; * you can see this by looking at all the places block is used in the grammar;
* thus $s(0)$ is not in $\{\mathbf{i f}$, while $\} \cup \mathcal{I}$.
- Thus it is never right to pick the block $\rightarrow \epsilon$ production when $s(0)$ is in FirstComm

Note that we can apply tail recursion removal, if we want. procedure block() // Version 1
// Try to remove a prefix described by block .
// See the contract on slide 4
while $f \wedge s(0) \in\{$ if, while $\} \cup \mathcal{I}$ do
command()
end while
end block
Also acceptable would be
procedure block() // Version 2
// Try to remove a prefix described by block .
// See the contract on slide 4
while $f \wedge s(0) \in\{$ if, while $\} \cup \mathcal{I}$ do
command()
end while
if $s(0) \notin\{\$$, end, else $\}$ then $f:=$ false end if end block

We can either detect the error here (Version 2) or leave the error to be detected later (Versions 0 and 1).

The command nonterminal

command $\rightarrow i:=\exp \quad$ for all $i \in \mathcal{I}$
command \rightarrow if exp then block else block end if
command \rightarrow while exp do block end while
procedure command()
// Try to remove the a prefix described by command .
$/ /$ See the contract for n a few slides back.
if $\neg f$ then return end if
if $s(0)=$ if then
consume () $\exp () \operatorname{expect}($ then $)$ block () $\operatorname{expect}($ else $)$ $b l o c k() \operatorname{expect}(\mathbf{e n d}) \operatorname{expect}(\mathbf{i f})$
elseif $s(0)=$ while then
consume() $\exp () \operatorname{expect}(\mathbf{d o})$ block() expect(end) $\operatorname{expect}($ while $)$
else if $s(0) \in \mathcal{I}$ then

$$
\text { consume }() \operatorname{expect}(:=) \exp ()
$$

else
$f:=$ false
end if
end command

Parsing expressions

Recall that the rules for expressions are

$$
\begin{aligned}
& \exp \rightarrow \text { comparand } \\
& \exp \rightarrow \text { comparand }<\text { comparand }
\end{aligned}
$$

Rewrite these rules to postpone the decision about which production to use until it matters

$$
\begin{aligned}
\exp & \rightarrow \text { comparand } \exp 0 \\
\exp 0 & \rightarrow \epsilon \\
\exp 0 & \rightarrow<\text { comparand }
\end{aligned}
$$

Write the procedures
procedure $\exp ()$
// Try to remove a prefix described by exp.
if $\neg f$ then return end if
comparand () $\exp 0()$
end exp
procedure $\exp 0()$
// Try to remove a prefix described by $\exp 0$
if $s(0)=<$ then consume () comparand () end if end exp 0

In-line the call to $\exp 0$ to get
procedure $\exp ()$
// Try to remove a prefix described by exp.
if $\neg f$ then return end if
comparand()
if $s(0)=<$ then consume () comparand () end if end exp

$$
\begin{aligned}
& \text { comparand } \rightarrow \text { term } \\
& \text { comparand } \rightarrow \text { term }+ \text { comparand } \\
& \text { comparand } \rightarrow \text { term } ~ \text { comparand }
\end{aligned}
$$

rewrite as

$$
\begin{aligned}
\text { comparand } & \rightarrow \text { term comparand0 } \\
\text { comparand0 } & \rightarrow \text { + term comparand0 } \\
\text { comparand } 0 & \rightarrow-\text { term comparand0 } \\
\text { comparand } 0 & \rightarrow \epsilon
\end{aligned}
$$

Write the procedures

procedure comparand()
// Try to remove a prefix described by comparand.
if $\neg f$ then return end if
term () comparand0()
end comparand
procedure comparand0()
// Try to remove a prefix described by comparand0.
if $\neg f$ then return end if
if $s(0) \in\{+,-\}$ then consume () term () comparand 0()
end if
end comparand
After tail recursion removal and inlining, we have procedure comparand()
// Try to remove a prefix described by comparand.
if $\neg f$ then return end if
term()
while $f \wedge s(0) \in\{+,-\}$ do consume () term () end while end comparand

Term is similar to comparand

$$
\begin{aligned}
& \text { term } \rightarrow \text { factor } \\
& \text { term } \rightarrow \text { factor } * \text { term } \\
& \text { term } \rightarrow \text { factor } / \text { term }
\end{aligned}
$$

procedure term ()
// Try to remove a prefix described by term.
if $\neg f$ then return end if
factor()
while $f \wedge s(0) \in\{*, /\}$ do consume () factor () end while end term

$$
\begin{aligned}
& \text { factor } \rightarrow n \quad \text { for all }{ }^{1} n \in \mathcal{N} \\
& \text { factor } \rightarrow i \quad \text { for all } i \in \mathcal{I} \\
& \text { factor } \rightarrow(\exp)
\end{aligned}
$$

procedure factor ()
// Try to remove a prefix described by factor.
if $\neg f$ then return end if
if $s(0) \in \mathcal{N}$ then consume ()
elseif $s(0) \in \mathcal{I}$ then consume()
elseif $s(0)=($ then $\operatorname{consume}() \exp () \operatorname{expect}())$
else $f:=$ false
end if
end factor
Exercise: find a variant expression that shows that we have no infinite loops or infinite recursion.

[^0]
Generating machine code for expressions

Suppose we want to compile code for a stack machine

- The job of the code generated by procedures factor, term, comparand, and exp is to push a value.
- We'll ignore type checking and existence of variables
- We need the following instruction sequences * push (n) pushes a number n on to the stack * fetch (i) pushes the value of variable i onto the stack * mul pops two values off the stack, multiplies them and pushes the result. div is similar to mul procedure factor()
if $\neg f$ then return end if
if $s(0) \in \mathcal{N}$ then $m:=m^{\wedge} \operatorname{push}(s(0))$ consume () elseif $s(0) \in \mathcal{I}$ then $m:=m^{\wedge}$ fetch $(s(0))$ consume ()
elseif $s(0)=($ then consume () $\exp () \operatorname{expect}())$
else $f:=$ false end if
end factor
term, comparand, and exp are similar to each other procedure term ()
if $\neg f$ then return end if
factor()
while $f \wedge s(0) \in\{*, /\}$ do
val op :=s(0) consume() factor()
if $o p=*$ then $m:=m^{\wedge}$ mul else $m:=m^{\wedge}$ div end if end while end term

What about associativity?

We want - and / to be left associative. E.g., 24/6/2 should generate the same code as $(24 / 6) / 2$.
Our original grammar gets associativity "wrong" for / and -.
Consider the parse tree for term $\stackrel{*}{\Longrightarrow} 24 / 6 / 2$.

This seems to associate the /s the wrong way. However, if you trace the actions of the compiler, you will see that the code generated for $24 / 6 / 2$ is correct because the operation is emitted at the right time.

If we look at a version without tail-call optimization, the choice is clearer.
procedure term ()
if $\neg f$ then return end if
factor ()
term0()
end term
procedure term0()
if $\neg f$ then return end if
if $s(0) \in\{*, /\}$ then
val op $:=s(0) \quad$ consume ()
factor ()
// (a) emit instruction here for left associativity term0()
// (b) emit instruction here for right associativity end if
end term0

Precedence

We need that $a+b * c+d * e$ generates the same code as $a+(b * c)+(d * e)$. Because of the way the grammar treats expressions, it does.

Generating code for assignment commands

Instruction

- store (i) pops a value off the stack and stores it in the location for identifier i.
procedure command()
elseif $s(0) \in \mathcal{I}$ then
val $i:=s(0) \quad$ consume()
$\operatorname{expect}(:=)$
$\exp ()$
$m:=m$ ^store (i)
else

Generating code for while commands

Instructions:

- $\operatorname{branch}(a)$ branches to instruction a
- condBranch (d) pops the stack and branches to d if the former top was false.
- l'll assume that the length of condBranch (d) does not depend on d.

If the expression compiles to a sequence x and the block compiles to a sequence y, the while-loop compiles to a sequence

$$
\begin{aligned}
a & : x \\
b & : \\
c: & y \\
& \text { brandBranch }(d) \\
d & :
\end{aligned}
$$

procedure command()

$$
\begin{aligned}
& \text { elseif } s(0)=\text { while then consume() } \\
& \text { val } a:=m \text {. length } \quad \exp () \quad \operatorname{expect}(\mathbf{d o}) \\
& \text { val } b:=m \text {. length } \quad m:=m^{\wedge} \text { condBranch }(0) \\
& \operatorname{val} c:=m \text {. length } \quad \text { block }() \\
& m:=m^{\wedge} \operatorname{branch}(a) \\
& \text { val } d:=m \text {. length } \quad m[b, . . c]:=\operatorname{condBranch}(d) \\
& \operatorname{expect}(\mathrm{end}) \operatorname{expect}(\text { while }) \\
& \text { elseif }
\end{aligned}
$$

The rest of the compiler

I'll leave the rest of the compiler as an exercise:

- If commands,
- expression
- comparand
- block

Going further: Think about how you could

- Add variable declarations
- Add simple types and type checking
- Add procedures and procedure calls
- Add arrays
- Add classes and objects

When can we use recursive descent?

When can we use recursive descent parsing?
When it is possible to choose between the productions for a nonterminal based on

- Information already seen
- The next few symbols of input

In particular there is a set of grammars for which RDP is particularly easy. These grammars allow the choice to be made by looking only at the next item of input. Such a grammar is called "LL(1)".

LL(1)

Recall: If a nonterminal n has productions

$$
(n \rightarrow \alpha),(n \rightarrow \beta),(n \rightarrow \gamma) \in P
$$

we write a subroutine like this:
procedure $n($)
$/ /$ Try to remove a prefix described by n.
if $\neg f$ then return end if
if ? then $\llbracket \alpha \rrbracket$ else if ? then $\llbracket \beta \rrbracket$ else if ? then $\llbracket \gamma \rrbracket$
else $f:=$ false end if
end
Often the guard only needs to look at the next input symbol.
Associate with each production $n \rightarrow \alpha$ with a "selector set" $\operatorname{sel}(n \rightarrow \alpha) \subseteq A \cup\{\$\}$
procedure $n()$
// Try to remove a prefix described by n.
if $\neg f$ then return end if
if $s(0) \in \operatorname{sel}(n \rightarrow \alpha)$ then $\llbracket \alpha \rrbracket$
else if $s(0) \in \operatorname{sel}(n \rightarrow \beta)$ then $\llbracket \beta \rrbracket$
else if $s(0) \in \operatorname{sel}(n \rightarrow \gamma)$ then $\llbracket \gamma \rrbracket$
else $f:=$ false end if
end n
If for all distinct productions $n \rightarrow \alpha, n \rightarrow \beta$, $\operatorname{sel}(n \rightarrow \alpha) \cap \operatorname{sel}(n \rightarrow \beta)=\emptyset$, then the grammar is called $L L(1)$, and we can write a recursive descent parser for it.

Computing selector sets:

- First symbols: If $\alpha \xlongequal{*}$ at with $a \in A$ then $a \in \operatorname{sel}(n \rightarrow$ a)
- Following symbols: $a \in \operatorname{sel}(n \rightarrow \alpha)$ if $\alpha \stackrel{*}{\Rightarrow} \epsilon$ and $a \in A \cup\{\$\}$ can follow n in a derivation from $n_{\text {start }} \$$ i.e. if there is a derivation

$$
n_{\text {start }} \$ \xlongequal{*} \text { tnau } \Longrightarrow \text { t } \alpha a u \stackrel{*}{\Longrightarrow} \text { tau }
$$

with $t \in A^{*}, u \in(A \cup\{\$\})^{*}$.

- Nothing else is in $\operatorname{sel}(n \rightarrow \alpha)$

Example: The start symbol is B

$$
\begin{aligned}
& B \rightarrow C B \quad B \rightarrow \epsilon \\
& C \rightarrow \text { id }:=E \quad C \rightarrow \text { if } E \text { then } B D \text { end if } \\
& D \rightarrow \text { else } B \quad D \rightarrow \epsilon \\
& E \rightarrow \text { id }
\end{aligned}
$$

The selector set of $B \rightarrow C B$ is the first symbols of $C B$ which are $\{\mathbf{i d}, \mathbf{i f}\}$.
The selector set of $B \rightarrow \epsilon$ is the symbols that can follow B which are $\{$ else, end, $\$\}$.
Exercise. Show that the following grammar, with start symbol B, is not $\mathrm{LL}(1)$

$$
\begin{aligned}
& B \rightarrow C B \quad B \rightarrow \epsilon \\
& C \rightarrow \text { id }:=E \quad C \rightarrow\{B\} \quad C \rightarrow \text { if } E \text { then } C D \\
& D \rightarrow \text { else } C \quad D \rightarrow \epsilon \\
& E \rightarrow \text { id }
\end{aligned}
$$

If a grammar is not $L L(1)$, we can still often use recursive descent, e.g., by looking more symbols ahead.
Here are a few tricks of the trade to make a grammar LL(1), or at least more suitable for RDP.

- Factor: Example: Replace

$$
\begin{aligned}
& \text { command } \rightarrow \mathbf{i d}:=\exp \\
& \text { command } \rightarrow \mathbf{i d}(\operatorname{args})
\end{aligned}
$$

with

$$
\begin{aligned}
\text { command } & \rightarrow \text { id more } \\
\text { more } & \rightarrow:=\exp \\
\text { more } & \rightarrow(\operatorname{args})
\end{aligned}
$$

More generally, replace productions

$$
\begin{aligned}
& n \rightarrow \alpha \downarrow \beta \\
& n \rightarrow \alpha \neq \gamma,
\end{aligned}
$$

where $a, b \in A$ and $\alpha, \beta, \gamma \in(A \cup N)^{*}$, with

$$
\begin{aligned}
& n \rightarrow \alpha p \\
& p \rightarrow \not \alpha \beta \\
& p \rightarrow \not \hbar \eta,
\end{aligned}
$$

where p is a fresh nonterminal.

- Remove left recursion: Example: Replace

$$
\begin{aligned}
& \text { type } \rightarrow \text { type }[] \\
& \text { type } \rightarrow \text { int }
\end{aligned}
$$

with

$$
\begin{aligned}
\text { type } & \rightarrow \text { int type } 0 \\
\text { type } 0 & \rightarrow[] \text { type0 } \\
\text { type } 0 & \rightarrow \epsilon
\end{aligned}
$$

More generally, replace

$$
\begin{aligned}
& n \rightarrow n \alpha \\
& n \rightarrow \beta,
\end{aligned}
$$

where $\alpha, \beta \in(A \cup N)^{*}$, with

$$
\begin{aligned}
& n \rightarrow \beta p \\
& p \rightarrow \alpha p \\
& p \rightarrow \epsilon,
\end{aligned}
$$

where p is a fresh nonterminal.
Most formats can be parsed by recursive descent, one way or another.

Tools

While writing recursive descent parsers is straightforward for simple grammars, it can be error prone and tedious as grammars evolve and get larger.
Luckily there are a large number of tools that convert grammars to parsers. Examples:

- JavaCC.
* Allows grammars in which the RHS of each production is a regular expression.
* Produces recursive descent parsers written in Java or $\mathrm{C}++$.
* Calculates the guard expressions automatically for most grammars
* Allows the programmer to intervene in cases the automatic rules don't handle
* Allows the programmer to annotate the grammar with bits of Java (or C++) code that are interpolated into the parser.
- ANTLR 4
* Similar to JavaCC
* Automatic treatment of left recursion and operator precedence
- Yacc/Bison
* Produces bottom-up parsers
* Handles a large class of grammars automatically
* No need to factor or remove left recursion

[^0]: 1 Recall that \mathcal{N} is a finite subset of \mathbb{N}.

