Recursive descent parsing

Each language L over alphabet A has an associated
recognition problem: Given a finite sequence in A*,
determine whether it is in L.

Many, but not all, context free languages can be
recognized using a simple technique called recursive
descent parsing.

Definition ¢ is a prefix of s if and only if there is a v such
that s = tu.

The idea is this:
e Start with a suitable CFG (A, N, P, nga) for L
e For each nonterminal n in N create a procedure n

e Roughly speaking, the job of procedure n is to try to
remove from the input a suitable prefix described by
nonterminal n.

e If there is no suitable prefix, the procedure may
indicate failure by setting a flag f to false.

e We use variable s to represent the remaining input
sequence.

e We'll mark the end of input with a sentinel symbol §
notin AU N.

Example: (tree is the start nonterminal)

tree
tree
morelree
morelree

Variables:

—

—
—
—

| moreTree
id
]

tree morelree

e f is set to false if an error is encountered

e 5 is the remaining input. Ends with a §$.
e We assume that t € A*; so thereisno $in t.

The main code. Is t in the language?

f = true s :=t"[$]

Where the procedures are
proc tree() // Try to remove a prefix described by tree.

if = f then return end if

if s(0) = | then consume() moreTree()

else expect(id) end if
end tree
proc moreTree()

tree()

fi= IAG0) =9

// Try to remove a prefix described by more'lree.
if = f then return end if
if s(0) =] then consume()
else tree() moreTree() end if

end moreTree

proc consume() s := s|1, ..s.length] end consume

proc expect(a)

if 5(0) = a then consume() else f := false end if

end expect

Here is an example call tree showing how this work in a
successful recognition. Note how the call tree mimics the
parse tree.

tree

consume moretree

tree moretree
consume tree moretree
consume moretree tree moretree

consume consume consume

[id [] id] S

Specification of nonterminal procedures

The specification for procedures representing
nonterminals
procedure n() // Try to remove a prefix described by n
precondition: s is nonempty and ends with a $
changes s, f
postcondition:
There are two possible outcomes

e Error: f is false and s still ends with a 3.

e Success: f is true and a prefix of sy, described by n, has
been removed. L.e., u- so = us and n — .

Choosing an outcome:
o If f, is false, Error is the only possible outcome.

e If f; is true but no prefix of s is described by n, Error is
the only possible outcome.

o If fyistrue and 3t, u, v € A* Ngan$ = thv$ = tuv$
and uv$ = s, then Success is the only possible outcome
(and the prefix u removed should meet these conditions).

e Otherwise 1t doesn’t matter which outcome is chosen.

T +
Now assume the-initialvalue of ¥ € A*. We can tell if s)is
in L as follows

g
f=true; s:=%[8]; nga(); f:=fA(s(0)=39)

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

Some handy procedures

procedure expect(a : A)
// Try to remove a from the start of the s.
precondition: s 88E4MHs a $
changes s, f
postcondition:
if fo and([a] is a prefix of s)
then f and sy = [a] s
else = f and s EBhtatns a $
if 5(0) = a then consume()
else f := false end if

end expect

procedure consume()
// Remove the first item from s
precondition: s.length > 0 and s(0) € A
changes s
postcondition: s = sg[1, ..5¢.length]
s := s|1,..s.length]

end consume

theo
Pencil

theo
Pencil

theo
Pencil

theo
Text Box
ends with

theo
Pencil

theo
Text Box
ends with

Writing procedures that meet the specifica-
tion

If a nonterminal n has productions
(n—a),(n—p),(n—7v) P,
we write a subroutine like this:
procedure 7()
// For specification see slide 4
if = f then return end if
if ? then [/
else if ? then]
else if ? then [7]
else f := false end if
end n

where, fora € A,me N,a,B8 € (AUN)"

la] = “expect (a)”
[m] = “m()”

le] =«
leB] = [a]"[8]

e Usually the boolean expressions are based on the first
few items of s.

e The last case f := false might be unreachable; in this
case it is omitted.

e Note that {—f} [a] {—f} is correct

Parsing our programming language
var s : A*-

var f : B-

procedure main()

read the input into ¢, combining characters into symbols
and throwing out comments and spaces

f = true
s :=1t"[9]
block()

fim i A (s(0) =5)

{ f = (tis in the programing language) }

if f then print “yep” else print “nope” end if
end main

Nonterminal block
block — €

block — command block

procedure block() // Version 0
// Try to remove a prefix described by block .
// See the contract on slide 4
if = f then return end if
if 5(0) € FirstComm then
command() block()
end 1f
end block

where FirstComm is {if, while} U 7.
Why this works:
e When block — command block is appropriate, s(0) is in
{if, while} U T;
* you can see this by looking at all the productions for
command.

e When block — ¢ is appropriate, s(0) € {$, end, else};
x you can see this by looking at all the places block is
used in the grammar;
+ thus s(0) is not in {if, while} U Z.

e Thus it is never right to pick the block —e production
when s(0) is in FirstComm

Note that we can apply tail recursion removal, if we want.

procedure block() // Version 1
// Try to remove a prefix described by block .
// See the contract on slide 4
while f A s(0) € {if, while} U7 do
command)()

end while
end block

Also acceptable would be
procedure block() // Version 2
// Try to remove a prefix described by block .
// See the contract on slide 4
while f A s(0) € {if, while} U7 do
command)()
end while
if s(0) ¢ {$, end, else} then f := false end if
end block

We can either detect the error here (Version 2) or leave
the error to be detected later (Versions 0 and 1).

The command nonterminal
command — 7 := exp forallz € Z
command — if exp then block else block end if
command — while exp do block end while

procedure command()
// Try to remove the a prefix described by command .
// See the contract for n a few slides back.
if = f then return end if
if 5(0) = if then
consume() exp() expect(then) block() expect(else)
block() expect(end) expect(if)
elseif s(0) = while then
consume() exp() expect(do) block() expect(end)
expect(while)
else if s(0) € Z then
consume() expect(:=) exp()
else
f = false
end if
end command

Parsing expressions

Recall that the rules for expressions are
exp — comparand
exp — comparand < comparand

Rewrite these rules to postpone the decision about which
production to use until it matters
exp — comparand exp(

expl) — €
exp) — < comparand

Write the procedures
procedure exp()
/l Try to remove a prefix described by exp.
if = f then return end if
comparand() exp0()
end exp

procedure exp0()

// Try to remove a prefix described by exp0

if 5(0) = < then consume() comparand() end if
end exp0

In-line the call to exp0 to get
procedure exp()
// Try to remove a prefix described by exp.
if = f then return end if
comparand()
if 5(0) = < then consume() comparand() end if
end exp

term

l

comparand
term + comparand

l

comparand
term — comparand

l

comparand
rewrite as

comparand term comparand(

comparand(+ term comparand(

— term comparand(

N

N
comparand() —
N

comparand(€

Write the procedures
procedure comparand()
// Try to remove a prefix described by comparand.
if = f then return end if
term() comparand(()
end comparand

procedure comparand(()
// Try to remove a prefix described by comparand0.
if = f then return end if
if s(0) € {+, —} then consume() term() comparand0()

end if
end comparand

After tail recursion removal and inlining, we have
procedure comparand()
// Try to remove a prefix described by comparand.
if = f then return end if
term()
while f A s(0) € {+, —} do consume() term() end while
end comparand

Term is similar to comparand
term — factor
term — factor * term

term — factor / term
procedure term()
/l Try to remove a prefix described by term.
if = f then return end if
factor()

while f A s(0) € {x, /} do consume() factor() end while
end term

factor — n foralll n e \/
factor — 1 forall: € 7
factor — (exp)

procedure factor()
// Try to remove a prefix described by factor.
if = f then return end if
if s(0) € N then consume()
elseif s(0) € Z then consume()
elseif s(0) = (then consume() exp() expect())
else f := false
end if
end factor

Exercise: find a variant expression that shows that we
have no infinite loops or infinite recursion.

I Recall that \V is a finite subset of N.

Generating machine code for expressions

Suppose we want to compile code for a stack machine

e The job of the code generated by procedures factor,
term, comparand, and ezxp is to push a value.

e We'll ignore type checking and existence of variables

e We need the following instruction sequences
+ push(n) pushes a number n on to the stack

* fetch (i) pushes the value of variable ¢ onto the stack

« mul pops two values off the stack, multiplies them
and pushes the result. div is similar to mul

procedure factor()
if = f then return end if
if s(0) € N then m := m " push(s(0)) consume()
elseif s(0) € Z then m := m fetch(s(0)) consume()
elseif s(0) = (then consume() exp() expect())
else f := false end if

end factor

term, comparand, and ezxp are similar to each other
procedure term()
if = f then return end if

factor()
while f A s(0) € {x,/} do

val op := s(0) consume() factor()

if op = * then m := m mul else m := m div end if
end while

end term

What about associativity?

We want — and / to be left associative. E.g., 24/6/2
should generate the same code as (24/6) /2.

Our original grammar gets associativity “wrong” for / and

Consider the parse tree for term = 24/6/2.

term

factor term

factor term

factor

24 / 6 / 2

This seems to associate the /s the wrong way.

However, if you trace the actions of the compiler, you
will see that the code generated for 24/6/2 is correct
because the operation is emitted at the right time.

term

factor consume factor consume factor

consume consume consume
24 / 6 / 2
push(24) push(6) div push(2) div

If we look at a version without tail-call optimization, the
choice is clearer.
procedure term()
if = f then return end if
factor()
termO()
end term
procedure term0()
if = f then return end if

if s(0) € {x, /} then

val op := 5(0) consume()

factor()

// (a) emit instruction here for left associativity
termO()

// (b) emit instruction here for right associativity
end if
end term0

Precedence

We need that a + b * ¢ + d * e generates the same code
as a+ (bx*c)+ (d = e). Because of the way the grammar
treats expressions, it does.

Generating code for assignment commands

Instruction

e store(i) pops a value off the stack and stores it in the
location for identifier <.

procedure command()

elseif s(0) € Z then

val i := s(0) consume()
expect(:=)
exp()

m = m store()
else

Generating code for while commands

Instructions:
e branch(a) branches to instruction a

e condBranch(d) pops the stack and branches to d if the
former top was false.

e I'll assume that the length of condBranch(d) does not
depend on d.

If the expression compiles to a sequence x and the block
compiles to a sequence y, the while-loop compiles to a
sequence

a: T
b : condBranch(d)
c:y
branch(a)
d :

procedure command()

elseif s(0) = while then consume()
val a := m. length exp() expect(do)
val b := m.length m := m condBranch(0)
val ¢ := m. length block()
m := m branch(a)
val d == m.length mlb, ..c| := condBranch(d)
expect(end) expect(while)

elseif

The rest of the compiler

I'll leave the rest of the compiler as an exercise:
e If commands,

e expression
e comparand
e block

Going further: Think about how you could
e Add variable declarations

e Add simple types and type checking
e Add procedures and procedure calls
e Add arrays

e Add classes and objects

When can we use recursive descent?

When can we use recursive descent parsing?

When it is possible to choose between the productions
for a nonterminal based on

e Information already seen
e The next few symbols of input
In particular there is a set of grammars for which RDP is

particularly easy. These grammars allow the choice to
be made by looking only at the next item of input.

Such a grammar is called “LL(1)”.

LL()

Recall: If a nonterminal n has productions
(n—a),(n—p),(n—7)eP,
we write a subroutine like this:
procedure 7()
// Try to remove a prefix described by n .
if = f then return end if
if ? then [«] else if ? then |3] else if ? then [7]
else f := false end if
end

Often the guard only needs to look at the next input
symbol.

Associate with each production n — « with a “selector
set” sel(n — a) € AU {$}
procedure 7()
// Try to remove a prefix described by n .
if = f then return end if
if s(0) € sel(n — «) then [(]
else if s(0) € sel(n — () then |S]
else if s(0) € sel(n — =) then [7]
else f := false end if
end n

If for all distinct productions n — «a, n — [,
selln — a) Nselln — B) = 0, then the grammar is
called LL(1), and we can write a recursive descent
parser for it.

Computing selector sets:
e First symbols: If « = at with a € A then a € sel(n —
a)

e Following symbols: a € sel(n — «) if @« = € and
a € AU {$} can follow n in a derivation from ng.$ —
.e. if there is a derivation

Netartd = tnau = taau = tau
witht € A*, u € (AU {$})".
e Nothing else is in sel(n — «)

Example: The start symbol is B
B — CB B — ¢
C —-id=F C — if F then B D end if
D — else B D — ¢
EF — id
The selector set of B — (B is the first symbols of C'B
which are {id, if }.
The selector set of B — ¢ is the symbols that can follow
B which are {else, end, $}.

Exercise. Show that the following grammar, with start
symbol B, is not LL(1)

B — CB B — ¢

C -id=F (C—{B} C' —if EthenC D
D — else C D — ¢

EF — id

If a grammar is not LL(1), we can still often use recursive
descent, e.g., by looking more symbols ahead.

Here are a few tricks of the trade to make a grammar
LL(1), or at least more suitable for RDP.
e Factor: Example: Replace
command — id := exp
command — id (args)
with
command — id more
more — = exp
more — (args)
More generally, replace productions

where a-b=7and o, 3,7 € (AU N)", with
n — ap
p — pp
p — B,

where p is a fresh nonterminal.

theo
Pencil

e Remove left recursion: Example: Replace
type — type []
type — int

with
type — int typel
type0 — [] typel
type0 — €
More generally, replace
n — noa
n — B,
where o, 5 € (AU N)", with
n — pp
p — ap
p — €
where p is a fresh nonterminal.

Most formats can be parsed by recursive descent, one
way or another.

Tools

While writing recursive descent parsers is straight-
forward for simple grammars, it can be error prone and
tedious as grammars evolve and get larger.

Luckily there are a large number of tools that convert
grammars to parsers. Examples:

e JavaCC.
x Allows grammars in which the RHS of each
production is a regular expression.

«x Produces recursive descent parsers written in Java
or C++.

x Calculates the guard expressions automatically for
most grammars

x Allows the programmer to intervene in cases the
automatic rules don’t handle

x Allows the programmer to annotate the grammar
with bits of Java (or C++) code that are interpolated
into the parser.

e ANTLR 4
x Similar to JavaCC
«x Automatic treatment of left recursion and operator
precedence
e Yacc/Bison
«x Produces bottom-up parsers
x Handles a large class of grammars automatically
+x No need to factor or remove left recursion

