Recursive descent parsing

Each language L over alphabet A has an associated **recognition problem**: Given a finite sequence in A^* , determine whether it is in L.

Many, but not all, context free languages can be recognized using a simple technique called **recursive descent parsing**.

Definition t is a prefix of s if and only if there is a u such that s = tu.

The idea is this:

- Start with a suitable CFG $(A, N, P, n_{\text{start}})$ for L
- For each nonterminal n in N create a procedure n
- Roughly speaking, the job of procedure *n* is to try to remove from the input a suitable prefix described by nonterminal *n*.
- If there is no suitable prefix, the procedure may indicate failure by setting a flag *f* to false.
- We use variable *s* to represent the remaining input sequence.
- We'll mark the end of input with a sentinel symbol $\$ not in $A \cup N.$

Example: (tree is the start nonterminal)

Variables:

- f is set to false if an error is encountered
- s is the remaining input. Ends with a .
- We assume that $t \in A^*$; so there is no \$ in t.

The main code. Is t in the language?

 $f := \text{true} \qquad s := t^{\hat{}}[\$] \qquad \textit{tree}() \qquad f := f \land (s(0) = \$)$

Where the procedures are

proc tree() // Try to remove a prefix described by tree.

if $\neg f$ then return end if

if s(0) = [then *consume() moreTree()*

else *expect*(**id**) end if

end tree

proc moreTree()

// Try to remove a prefix described by moreTree.

if $\neg f$ then return end if

if s(0) =] then *consume()*

else tree() moreTree() end if

end moreTree

proc *consume*() s := s[1, ...s.length] end *consume*

proc expect(a)

if s(0) = a then *consume(*) else f := false end if end *expect*

Here is an example call tree showing how this work in a successful recognition. Note how the call tree mimics the parse tree.

Specification of nonterminal procedures

The specification for procedures representing nonterminals

procedure n() // Try to remove a prefix described by nprecondition: s is nonempty and ends with a changes s, fpostcondition:

There are two possible outcomes

- Error: f is false and s still ends with a .
- Success: f is true and a prefix of s_0 , described by n, has been removed. I.e., $\exists u \cdot s_0 = us$ and $n \stackrel{*}{\Longrightarrow} u$.

Choosing an outcome:

- If f_0 is false, Error is the only possible outcome.
- If f_0 is true but no prefix of s_0 is described by n, Error is the only possible outcome.
- If f₀ is true and ∃t, u, v ∈ A* · n_{start}\$ ⇒ tnv\$ ⇒ tuv\$ and uv\$ = s₀, then Success is the only possible outcome (and the prefix u removed should meet these conditions).
- Otherwise it doesn't matter which outcome is chosen.

Now assume the initial value of $g \in A^*$. We can tell if \overline{g} is in L as follows

 $f := \text{true}; \quad s := \bar{s}(\$); \quad n_{\text{start}}(); \quad f := f \land (s(0) = \$)$

Some handy procedures

```
procedure expect(a : A)

// Try to remove a from the start of the s.

precondition: s contains a $

changes s, f

postcondition:

if f_0 and [a] is a prefix of s_0)

then f and s_0 = [a]^s

ends with

else \neg f and s contains a $

if s(0) = a then consume()

else f := false end if

end expect
```

```
procedure consume()

// Remove the first item from s

precondition: s. length > 0 and s(0) \in A

changes s

postcondition: s = s_0[1, ..s_0.length]

s := s[1, ..s.length]
```

end consume

Writing procedures that meet the specification

If a nonterminal *n* has productions $(n \to \alpha), (n \to \beta), (n \to \gamma) \in P$, we write a subroutine like this: procedure n()// For specification see slide 4 if $\neg f$ then return end if if ? then $\llbracket \alpha \rrbracket$ else if ? then $\llbracket \beta \rrbracket$ else if ? then $\llbracket \beta \rrbracket$ else if ? then $\llbracket \gamma \rrbracket$ else f := false end if end *n* where, for $a \in A, m \in N, \alpha, \beta \in (A \cup N)^*$ $\llbracket a \rrbracket = \text{``expect}(a)$ '' $\llbracket m \rrbracket = \text{``m}()$ '' $\llbracket e \rrbracket = \epsilon$

$$\llbracket \alpha \beta \rrbracket = \llbracket \alpha \rrbracket^{\hat{}} \llbracket \beta \rrbracket$$

- Usually the boolean expressions are based on the first few items of *s*.
- The last case f := false might be unreachable; in this case it is omitted.
- Note that $\{\neg f\} \llbracket \alpha \rrbracket \{\neg f\}$ is correct

Parsing our programming language

 $\begin{array}{l} \operatorname{var} s : A^* \cdot \\ \operatorname{var} f : \mathbb{B} \cdot \\ \operatorname{procedure} \ main() \\ \operatorname{read} \ \text{the input into} \ t, \ \text{combining characters into symbols} \\ \operatorname{and} \ \text{throwing out comments and spaces} \\ f := \operatorname{true} \\ s := t^{\circ}[\$] \end{array}$

block()

 $f := f \land (s(0) = \$)$

{ f = (t is in the programing language) }

if f then print "yep" else print "nope" end if end *main*

Nonterminal block

block $\rightarrow \epsilon$ block \rightarrow command block

procedure *block()* // Version 0 // Try to remove a prefix described by *block*. // See the contract on slide 4 if $\neg f$ then return end if if $s(0) \in FirstComm$ then command() block() end if end *block*

where FirstComm is $\{if, while\} \cup \mathcal{I}$.

Why this works:

- When block \rightarrow command block is appropriate, s(0) is in {if, while} $\cup \mathcal{I}$;
 - * you can see this by looking at all the productions for command.
- When block $\rightarrow \epsilon$ is appropriate, $s(0) \in \{\$, \mathbf{end}, \mathbf{else}\};$ * you can see this by looking at all the places *block* is used in the grammar;

* thus s(0) is not in {if, while} $\cup \mathcal{I}$.

• Thus it is never right to pick the $block \rightarrow \epsilon$ production when s(0) is in *FirstComm*

Note that we can apply tail recursion removal, if we want.

procedure block() // Version 1

// Try to remove a prefix described by *block*.

// See the contract on slide 4

while $f \wedge s(0) \in {\mathbf{if}, \mathbf{while}} \cup \mathcal{I}$ do

command()

end while

end block

Also acceptable would be

```
procedure block() // Version 2

// Try to remove a prefix described by block.

// See the contract on slide 4

while f \land s(0) \in \{if, while\} \cup \mathcal{I} do

command()

end while

if s(0) \notin \{\$, end, else\} then f := false end if

end block
```

We can either detect the error here (Version 2) or leave the error to be detected later (Versions 0 and 1).

The command nonterminal

command	\rightarrow	$i := \exp$ for all $i \in \mathcal{I}$
command	\rightarrow	$\mathbf{if} \exp \mathbf{then} \operatorname{block} \mathbf{else} \operatorname{block} \mathbf{end} \mathbf{if}$
command	\rightarrow	while exp do block end while

procedure *command()*

```
// Try to remove the a prefix described by command.
```

// See the contract for n a few slides back.

if $\neg f$ then return end if

if $s(0) = \mathbf{if}$ then

consume() exp() expect(then) block() expect(else) block() expect(end) expect(if)

elseif s(0) = while then

consume() exp() expect(do) block() expect(end) *expect*(**while**)

```
else if s(0) \in \mathcal{I} then
```

```
consume() expect(:=) exp()
```

else

$$f := \text{false}$$

end if

end command

Parsing expressions

Recall that the rules for expressions are

```
\exp \rightarrow \text{comparand}
```

 $\exp \rightarrow \text{comparand} < \text{comparand}$

Rewrite these rules to postpone the decision about which production to use until it matters

> $\exp \rightarrow \text{comparand } \exp 0$ $\exp 0 \rightarrow \epsilon$ $\exp 0 \rightarrow < comparand$

Write the procedures

procedure *exp()*

```
// Try to remove a prefix described by exp.
```

```
if \neg f then return end if
```

comparand() exp(0)

end exp

```
procedure expO()
```

// Try to remove a prefix described by *exp0*

```
if s(0) = \langle \text{then consume}() \text{ comparand}() \text{ end if}
end exp0
```

In-line the call to exp0 to get

procedure *exp(*)

```
// Try to remove a prefix described by exp.
```

if $\neg f$ then return end if

comparand()

if $s(0) = \langle \text{then } consume() comparand() \text{ end if}$ end exp

comparand \rightarrow term comparand \rightarrow term + comparand comparand \rightarrow term – comparand

rewrite as

comparand \rightarrow term comparand0

 $comparand0 \rightarrow + term comparand0$

 $comparand0 \rightarrow - term comparand0$

comparand $0 \rightarrow \epsilon$

Write the procedures

procedure *comparand()*

// Try to remove a prefix described by *comparand*.

if $\neg f$ then return end if

comparand0() *term()*

end *comparand*

procedure *comparand0()*

// Try to remove a prefix described by *comparand0*.

if $\neg f$ then return end if

if $s(0) \in \{+, -\}$ then consume() term() comparand0() end if

end *comparand*

After tail recursion removal and inlining, we have procedure *comparand()*

// Try to remove a prefix described by *comparand*.

if $\neg f$ then return end if

term()

while $f \wedge s(0) \in \{+, -\}$ do *consume() term()* end while end *comparand*

Term is similar to comparand

term \rightarrow factor term \rightarrow factor * term term \rightarrow factor / term

procedure *term(*)

// Try to remove a prefix described by term.

if $\neg f$ then return end if

factor()

while $f \wedge s(0) \in \{*, /\}$ do *consume() factor()* end while end term

> factor $\rightarrow n$ for all¹ $n \in \mathcal{N}$ factor $\rightarrow i$ for all $i \in \mathcal{I}$ factor \rightarrow (exp)

procedure *factor()*

// Try to remove a prefix described by *factor*. if $\neg f$ then return end if if $s(0) \in \mathcal{N}$ then *consume(*) elseif $s(0) \in \mathcal{I}$ then *consume()* elseif s(0) = (then *consume()* exp() expect()) else f := falseend if end factor

Exercise: find a variant expression that shows that we have no infinite loops or infinite recursion.

Recall that \mathcal{N} is a finite subset of \mathbb{N} . 1

Typeset March 4, 2020

Generating machine code for expressions

Suppose we want to compile code for a stack machine

- The job of the code generated by procedures *factor*, *term*, *comparand*, and *exp* is to push a value.
- We'll ignore type checking and existence of variables
- We need the following instruction sequences

 push(n) pushes a number n on to the stack
 fetch(i) pushes the value of variable i onto the stack
 mul pops two values off the stack, multiplies them
 and pushes the result. div is similar to mul

procedure factor()

```
if \neg f then return end if
```

```
if s(0) \in \mathcal{N} then m := m^{push}(s(0)) consume()
```

```
elseif s(0) \in \mathcal{I} then m := m fetch(s(0)) consume()
```

```
elseif s(0) = ( then consume() exp() expect( ) )
```

else f := false end if

end factor

term, comparand, and exp are similar to each other
procedure term()

```
if \neg f then return end if

factor()

while f \land s(0) \in \{*, /\} do

val op := s(0) consume() factor()

if op = * then m := m mul else m := m div end if

end while

end term
```

What about associativity?

We want - and / to be left associative. E.g., 24/6/2 should generate the same code as (24/6)/2. Our original grammar gets associativity "wrong" for / and -.

Consider the parse tree for $term \stackrel{*}{\Longrightarrow} 24/6/2$.

This seems to associate the /s the wrong way.

However, if you trace the actions of the compiler, you will see that the code generated for 24/6/2 is correct because the operation is emitted at the right time.

If we look at a version without tail-call optimization, the choice is clearer.

```
procedure term()

if \neg f then return end if

factor()

term0()

end term

procedure term0()

if \neg f then return end if

if s(0) \in \{*, /\} then

val op := s(0) consume()

factor()

// (a) emit instruction here for left associativity

term0()

// (b) emit instruction here for right associativity

end if

end term0
```

Precedence

We need that a + b * c + d * e generates the same code as a + (b * c) + (d * e). Because of the way the grammar treats expressions, it does.

Generating code for assignment commands

Instruction

• • •

• store(*i*) pops a value off the stack and stores it in the location for identifier *i*.

```
procedure command()

...

elseif s(0) \in \mathcal{I} then

val i := s(0) consume()

expect(:=)

exp()

m := m^{store}(i)

else
```

Generating code for while commands

Instructions:

- branch(a) branches to instruction a
- condBranch(*d*) pops the stack and branches to *d* if the former top was false.
- I'll assume that the length of condBranch(d) does not depend on d.

If the expression compiles to a sequence x and the block compiles to a sequence y, the while-loop compiles to a sequence

```
a : x
                 b : condBranch(d)
                 c : y
                     branch(a)
                 d:
procedure command()
  elseif s(0) = while then consume()
                       exp()
    val a := m. length
                                    expect(do)
    val b := m. length m := m^{\text{condBranch}}(0)
    val c := m. length block()
    m := m branch(a)
    val d := m. length m[b, ...c] := \text{condBranch}(d)
    expect(end) expect(while)
  elseif
```

. . .

The rest of the compiler

I'll leave the rest of the compiler as an exercise:

- If commands,
- expression
- comparand
- block

Going further: Think about how you could

- Add variable declarations
- Add simple types and type checking
- Add procedures and procedure calls
- Add arrays
- Add classes and objects

When can we use recursive descent?

When can we use recursive descent parsing?

When it is possible to choose between the productions for a nonterminal based on

- Information already seen
- The next few symbols of input

In particular there is a set of grammars for which RDP is particularly easy. These grammars allow the choice to be made by looking only at the next item of input.

Such a grammar is called "LL(1)".

LL(1)

Recall: If a nonterminal n has productions

 $(n \to \alpha), (n \to \beta), (n \to \gamma) \in P$,

we write a subroutine like this:

```
procedure n()
```

// Try to remove a prefix described by n.

```
if \neg f then return end if
```

```
if ? then \llbracket \alpha \rrbracket else if ? then \llbracket \beta \rrbracket else if ? then \llbracket \gamma \rrbracket
```

else f := false end if

end

Often the guard only needs to look at the next input symbol.

Associate with each production $n \rightarrow \alpha$ with a "selector set" sel $(n \to \alpha) \subseteq A \cup \{\$\}$

procedure n()

// Try to remove a prefix described by *n* .

```
if \neg f then return end if
   if s(0) \in sel(n \to \alpha) then \llbracket \alpha \rrbracket
   else if s(0) \in sel(n \to \beta) then [\![\beta]\!]
   else if s(0) \in sel(n \to \gamma) then [\![\gamma]\!]
   else f := false end if
end n
```

If for all distinct productions $n \rightarrow \alpha$, $n \rightarrow \beta$, $\operatorname{sel}(n \to \alpha) \cap \operatorname{sel}(n \to \beta) = \emptyset$, then the grammar is called LL(1), and we can write a recursive descent parser for it.

Computing selector sets:

- First symbols: If $\alpha \stackrel{*}{\Longrightarrow} at$ with $a \in A$ then $a \in sel(n \to a)$ α)
- Following symbols: $a \in sel(n \to \alpha)$ if $\alpha \stackrel{*}{\Longrightarrow} \epsilon$ and $a \in A \cup \{\$\}$ can follow n in a derivation from $n_{\text{start}}\$$ i.e. if there is a derivation

$$n_{\text{start}} \$ \stackrel{*}{\Longrightarrow} tnau \Longrightarrow t\alpha au \stackrel{*}{\Longrightarrow} tau$$
$$A^* \quad u \in (A \sqcup \{\$\})^*$$

with $t \in A^*$, $u \in (A \cup \{\$\})^{\hat{}}$.

• Nothing else is in $sel(n \rightarrow \alpha)$

Example: The start symbol is B

$$B \rightarrow CB \qquad B \rightarrow \epsilon$$

$$C \rightarrow \mathbf{id} := E \qquad C \rightarrow \mathbf{if} \ E \ \mathbf{then} \ B \ D \ \mathbf{end} \ \mathbf{if}$$

$$D \rightarrow \mathbf{else} \ B \qquad D \rightarrow \epsilon$$

$$E \rightarrow \mathbf{id}$$

The selector set of $B \rightarrow CB$ is the first symbols of CBwhich are $\{id, if\}$.

The selector set of $B \rightarrow \epsilon$ is the symbols that can follow B which are {else, end, \$}.

Exercise. Show that the following grammar, with start symbol B, is not LL(1)

$$B \rightarrow CB \qquad B \rightarrow \epsilon$$

$$C \rightarrow \mathbf{id} := E \qquad C \rightarrow \{B\} \qquad C \rightarrow \mathbf{if} \ E \ \mathbf{then} \ C \ D$$

$$D \rightarrow \mathbf{else} \ C \qquad D \rightarrow \epsilon$$

$$E \rightarrow \mathbf{id}$$

If a grammar is not LL(1), we can still often use recursive descent, e.g., by looking more symbols ahead.

Here are a few tricks of the trade to make a grammar LL(1), or at least more suitable for RDP.

• Factor: Example: Replace

command \rightarrow id := exp command \rightarrow id (args)

with

command \rightarrow id more

more \rightarrow := exp

more \rightarrow (args)

More generally, replace productions

 $\begin{array}{l} n \rightarrow \alpha \delta \beta \\ n \rightarrow \alpha \delta \gamma, \\ \text{where } a, b \in A \text{ and } \alpha, \beta, \gamma \in (A \cup N)^*, \text{ with} \\ n \rightarrow \alpha p \\ p \rightarrow \alpha \beta \\ p \rightarrow \delta \gamma, \end{array}$

where p is a fresh nonterminal.

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers

© Theodore Norvell

• Remove left recursion: Example: Replace

$$\begin{array}{l} \text{type} \rightarrow \text{type} \left[\right] \\ \text{type} \rightarrow \text{int} \end{array}$$

with

type
$$\rightarrow$$
 int type0
type0 \rightarrow [] type0
type0 \rightarrow ϵ
More generally, replace

$$\begin{split} n &\to n\alpha \\ n &\to \beta, \\ \text{where } \alpha, \beta \in (A \cup N)^*, \text{ with} \\ n &\to \beta p \\ p &\to \alpha p \\ p &\to \epsilon, \end{split}$$

where p is a fresh nonterminal.

Most formats can be parsed by recursive descent, one way or another.

Tools

While writing recursive descent parsers is straightforward for simple grammars, it can be error prone and tedious as grammars evolve and get larger.

Luckily there are a large number of tools that convert grammars to parsers. Examples:

- JavaCC.
 - * Allows grammars in which the RHS of each production is a regular expression.
 - * Produces recursive descent parsers written in Java or C++.
 - Calculates the guard expressions automatically for most grammars
 - * Allows the programmer to intervene in cases the automatic rules don't handle
 - * Allows the programmer to annotate the grammar with bits of Java (or C++) code that are interpolated into the parser.

• ANTLR 4

- * Similar to JavaCC
- * Automatic treatment of left recursion and operator precedence
- Yacc/Bison
 - * Produces bottom-up parsers
 - * Handles a large class of grammars automatically
 - * No need to factor or remove left recursion