
Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Recursive descent parsing

Each language L over alphabet A has an associated

recognition problem: Given a finite sequence in A∗,
determine whether it is in L.

Many, but not all, context free languages can be

recognized using a simple technique called recursive

descent parsing.

Definition t is a prefix of s if and only if there is a u such

that s = tu.

The idea is this:

• Start with a suitable CFG (A,N, P, nstart) for L

• For each nonterminal n in N create a procedure n

• Roughly speaking, the job of procedure n is to try to

remove from the input a suitable prefix described by

nonterminal n.

• If there is no suitable prefix, the procedure may

indicate failure by setting a flag f to false.

• We use variable s to represent the remaining input

sequence.

• We’ll mark the end of input with a sentinel symbol $
not in A ∪N .

Typeset March 4, 2020 1

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Example: (tree is the start nonterminal)

tree → [moreTree

tree → id

moreTree →]

moreTree → tree moreTree

Variables:

• f is set to false if an error is encountered

• s is the remaining input. Ends with a $.

• We assume that t ∈ A∗; so there is no $ in t.

The main code. Is t in the language?

f := true s := tˆ[$] tree() f := f ∧ (s(0) = $)

Where the procedures are

proc tree() // Try to remove a prefix described by tree.
if ¬f then return end if

if s(0) = [then consume() moreTree()

else expect(id) end if

end tree

proc moreTree()

// Try to remove a prefix described by moreTree.
if ¬f then return end if

if s(0) =] then consume()

else tree() moreTree() end if

end moreTree

proc consume() s := s[1, ..s.length] end consume

proc expect(a)

if s(0) = a then consume() else f := false end if

end expect
Typeset March 4, 2020 2

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Here is an example call tree showing how this work in a

successful recognition. Note how the call tree mimics the

parse tree.

Typeset March 4, 2020 3

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Specification of nonterminal procedures

The specification for procedures representing

nonterminals

procedure n() // Try to remove a prefix described by n
precondition: s is nonempty and ends with a $
changes s, f
postcondition:

There are two possible outcomes

• Error: f is false and s still ends with a $.

• Success: f is true and a prefix of s0, described by n, has

been removed. I.e., ∃u· s0 = us and n
∗
=⇒ u.

Choosing an outcome:

• If f0 is false, Error is the only possible outcome.

• If f0 is true but no prefix of s0 is described by n, Error is

the only possible outcome.

• If f0 is true and ∃t, u, v ∈ A∗· nstart$
∗
=⇒ tnv$

∗
=⇒ tuv$

and uv$ = s0, then Success is the only possible outcome

(and the prefix u removed should meet these conditions).

• Otherwise it doesn’t matter which outcome is chosen.

Now assume the initial value of s ∈ A∗. We can tell if s is

in L as follows

f := true; s := sˆ[$]; nstart(); f := f ∧ (s(0) = $)

Typeset March 4, 2020 4

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

theo
Pencil

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Some handy procedures

procedure expect(a : A)

// Try to remove a from the start of the s.
precondition: s contains a $
changes s, f
postcondition:

if f0 and [a] is a prefix of s
then f and s0 = [a]ˆs
else ¬f and s contains a $

if s(0) = a then consume()

else f := false end if

end expect

procedure consume()

// Remove the first item from s
precondition: s. length > 0 and s(0) ∈ A
changes s
postcondition: s = s0[1, ..s0.length]
s := s[1, ..s.length]

end consume

Typeset March 4, 2020 5

theo
Pencil

theo
Pencil

theo
Pencil

theo
Text Box
ends with

theo
Pencil

theo
Text Box
ends with

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Writing procedures that meet the specifica-

tion

If a nonterminal n has productions

(n→ α) , (n→ β) , (n→ γ) ∈ P ,

we write a subroutine like this:

procedure n()
// For specification see slide 4

if ¬f then return end if

if ? then [[α]]
else if ? then [[β]]
else if ? then [[γ]]
else f := false end if

end n

where, for a ∈ A, m ∈ N , α, β ∈ (A ∪N)∗

[[a]] = “expect (a) ”

[[m]] = “m()”

[[ε]] = ε

[[αβ]] = [[α]]ˆ[[β]]

• Usually the boolean expressions are based on the first

few items of s.

• The last case f := false might be unreachable; in this

case it is omitted.

• Note that {¬f} [[α]] {¬f} is correct

Typeset March 4, 2020 6

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Parsing our programming language

var s : A∗·
var f : B·
proceduremain()

read the input into t, combining characters into symbols

and throwing out comments and spaces

f := true
s := tˆ[$]
block ()
f := f ∧ (s(0) = $)
{ f = (t is in the programing language) }

if f then print “yep” else print “nope” end if

end main

Typeset March 4, 2020 7

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Nonterminal block

block → ε

block → command block

procedure block() // Version 0

// Try to remove a prefix described by block .

// See the contract on slide 4

if ¬f then return end if

if s(0) ∈ FirstComm then

command() block()

end if

end block

where FirstComm is {if ,while} ∪ I.

Why this works:

• When block→ command block is appropriate, s(0) is in

{if ,while} ∪ I;
∗ you can see this by looking at all the productions for

command .

• When block→ ε is appropriate, s(0) ∈ {$, end, else};
∗ you can see this by looking at all the places block is

used in the grammar;

∗ thus s(0) is not in {if ,while} ∪ I.

• Thus it is never right to pick the block →ε production

when s(0) is in FirstComm

Typeset March 4, 2020 8

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Note that we can apply tail recursion removal, if we want.

procedure block() // Version 1

// Try to remove a prefix described by block .

// See the contract on slide 4

while f ∧ s(0) ∈ {if ,while} ∪ I do

command()

end while

end block

Also acceptable would be

procedure block() // Version 2

// Try to remove a prefix described by block .

// See the contract on slide 4

while f ∧ s(0) ∈ {if ,while} ∪ I do

command()

end while

if s(0) /∈ {$, end, else} then f := false end if

end block

We can either detect the error here (Version 2) or leave

the error to be detected later (Versions 0 and 1).

Typeset March 4, 2020 9

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

The command nonterminal

command → i := exp for all i ∈ I

command → if exp then block else block end if

command → while expdo block endwhile

procedure command()

// Try to remove the a prefix described by command .

// See the contract for n a few slides back.

if ¬f then return end if

if s(0) = if then

consume() exp() expect(then) block() expect(else)

block() expect(end) expect(if)

elseif s(0) = while then

consume() exp() expect(do) block() expect(end)

expect(while)

else if s(0) ∈ I then

consume() expect(:=) exp()

else

f := false
end if

end command

Typeset March 4, 2020 10

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Parsing expressions

Recall that the rules for expressions are

exp → comparand

exp → comparand < comparand

Rewrite these rules to postpone the decision about which

production to use until it matters

exp → comparand exp0

exp0 → ε

exp0 → < comparand

Write the procedures

procedure exp()

// Try to remove a prefix described by exp.

if ¬f then return end if

comparand() exp0 ()

end exp

procedure exp0()

// Try to remove a prefix described by exp0

if s(0) = < then consume() comparand() end if

end exp0

In-line the call to exp0 to get

procedure exp()

// Try to remove a prefix described by exp.

if ¬f then return end if

comparand()

if s(0) = < then consume() comparand() end if

end exp

Typeset March 4, 2020 11

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

comparand → term

comparand → term + comparand

comparand → term− comparand

rewrite as

comparand → term comparand0

comparand0 → + term comparand0

comparand0 → − term comparand0

comparand0 → ε

Write the procedures

procedure comparand()

// Try to remove a prefix described by comparand.

if ¬f then return end if

term() comparand0()

end comparand

procedure comparand0()

// Try to remove a prefix described by comparand0.

if ¬f then return end if

if s(0) ∈ {+,−} then consume() term() comparand0()

end if

end comparand

After tail recursion removal and inlining, we have

procedure comparand()

// Try to remove a prefix described by comparand.

if ¬f then return end if

term()

while f ∧ s(0) ∈ {+,−} do consume() term() end while

end comparand
Typeset March 4, 2020 12

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Term is similar to comparand

term → factor

term → factor ∗ term

term → factor / term

procedure term()

// Try to remove a prefix described by term.

if ¬f then return end if

factor()

while f ∧ s(0) ∈ {∗, /} do consume() factor() end while

end term

factor → n for all1 n ∈ N

factor → i for all i ∈ I

factor → (exp)

procedure factor()

// Try to remove a prefix described by factor.

if ¬f then return end if

if s(0) ∈ N then consume()

elseif s(0) ∈ I then consume()

elseif s(0) = (then consume() exp() expect())

else f := false
end if

end factor

Exercise: find a variant expression that shows that we

have no infinite loops or infinite recursion.

1 Recall thatN is a finite subset of N.
Typeset March 4, 2020 13

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Generating machine code for expressions

Suppose we want to compile code for a stack machine

• The job of the code generated by procedures factor ,

term, comparand , and exp is to push a value.

• We’ll ignore type checking and existence of variables

• We need the following instruction sequences

∗ push(n) pushes a number n on to the stack

∗ fetch(i) pushes the value of variable i onto the stack

∗ mul pops two values off the stack, multiplies them

and pushes the result. div is similar to mul

procedure factor()

if ¬f then return end if

if s(0) ∈ N thenm := mˆpush(s(0)) consume()

elseif s(0) ∈ I thenm := mˆfetch(s(0)) consume()

elseif s(0) = (then consume() exp() expect())

else f := false end if

end factor

term, comparand , and exp are similar to each other

procedure term()

if ¬f then return end if

factor()

while f ∧ s(0) ∈ {∗, /} do

val op := s(0) consume() factor()

if op = ∗ thenm := mˆmul elsem := mˆdiv end if

end while

end term

Typeset March 4, 2020 14

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

What about associativity?

We want − and / to be left associative. E.g., 24/6/2
should generate the same code as (24/6)/2.

Our original grammar gets associativity “wrong” for / and

−.

Consider the parse tree for term
∗
=⇒ 24/6/2.

This seems to associate the /s the wrong way.

However, if you trace the actions of the compiler, you

will see that the code generated for 24/6/2 is correct

because the operation is emitted at the right time.

Typeset March 4, 2020 15

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

If we look at a version without tail-call optimization, the

choice is clearer.

procedure term()

if ¬f then return end if

factor()

term0()

end term

procedure term0()

if ¬f then return end if

if s(0) ∈ {∗, /} then

val op := s(0) consume()

factor()

// (a) emit instruction here for left associativity

term0()

// (b) emit instruction here for right associativity

end if

end term0

Typeset March 4, 2020 16

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Precedence

We need that a + b ∗ c + d ∗ e generates the same code

as a + (b ∗ c) + (d ∗ e). Because of the way the grammar

treats expressions, it does.

Typeset March 4, 2020 17

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Generating code for assignment commands

Instruction

• store(i) pops a value off the stack and stores it in the

location for identifier i.

procedure command()

...

elseif s(0) ∈ I then

val i := s(0) consume()

expect(:=)

exp()

m := mˆstore(i)
else

...

Typeset March 4, 2020 18

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Generating code for while commands

Instructions:

• branch(a) branches to instruction a

• condBranch(d) pops the stack and branches to d if the

former top was false.

• I’ll assume that the length of condBranch(d) does not

depend on d.

If the expression compiles to a sequence x and the block

compiles to a sequence y, the while-loop compiles to a

sequence

a : x

b : condBranch(d)

c : y

branch(a)

d :

procedure command()

...

elseif s(0) = while then consume()

val a := m. length exp() expect(do)

val b := m. length m := mˆcondBranch(0)
val c := m. length block()

m := mˆbranch(a)
val d := m. length m[b, ..c] := condBranch(d)
expect(end) expect(while)

elseif

...

Typeset March 4, 2020 19

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

The rest of the compiler

I’ll leave the rest of the compiler as an exercise:

• If commands,

• expression

• comparand

• block

Going further: Think about how you could

• Add variable declarations

• Add simple types and type checking

• Add procedures and procedure calls

• Add arrays

• Add classes and objects

Typeset March 4, 2020 20

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

When can we use recursive descent?

When can we use recursive descent parsing?

When it is possible to choose between the productions

for a nonterminal based on

• Information already seen

• The next few symbols of input

In particular there is a set of grammars for which RDP is

particularly easy. These grammars allow the choice to

be made by looking only at the next item of input.

Such a grammar is called “LL(1)”.

Typeset March 4, 2020 21

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

LL(1)

Recall: If a nonterminal n has productions

(n→ α) , (n→ β) , (n→ γ) ∈ P ,

we write a subroutine like this:

procedure n()
// Try to remove a prefix described by n .

if ¬f then return end if

if ? then [[α]] else if ? then [[β]] else if ? then [[γ]]
else f := false end if

end

Often the guard only needs to look at the next input

symbol.

Associate with each production n → α with a “selector

set” sel(n→ α) ⊆ A ∪ {$}
procedure n()
// Try to remove a prefix described by n .

if ¬f then return end if

if s(0) ∈ sel(n→ α) then [[α]]
else if s(0) ∈ sel(n→ β) then [[β]]
else if s(0) ∈ sel(n→ γ) then [[γ]]
else f := false end if

end n

If for all distinct productions n → α, n → β,

sel(n → α) ∩ sel(n → β) = ∅, then the grammar is

called LL(1), and we can write a recursive descent

parser for it.

Typeset March 4, 2020 22

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Computing selector sets:

• First symbols: If α
∗
=⇒ at with a ∈ A then a ∈ sel(n→

α)

• Following symbols: a ∈ sel(n → α) if α
∗
=⇒ ε and

a ∈ A ∪ {$} can follow n in a derivation from nstart$ —

i.e. if there is a derivation

nstart$
∗
=⇒ tnau =⇒ tαau

∗
=⇒ tau

with t ∈ A∗, u ∈ (A ∪ {$})∗.

• Nothing else is in sel(n→ α)

Example: The start symbol is B

B → CB B → ε

C → id := E C → if E then B D end if

D → else B D → ε

E → id

The selector set of B → CB is the first symbols of CB
which are {id, if}.

The selector set of B → ε is the symbols that can follow

B which are {else, end, $}.

Exercise. Show that the following grammar, with start

symbol B, is not LL(1)

B → CB B → ε

C → id := E C → {B} C → if E then C D

D → else C D→ ε

E → id

Typeset March 4, 2020 23

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

If a grammar is not LL(1), we can still often use recursive

descent, e.g., by looking more symbols ahead.

Here are a few tricks of the trade to make a grammar

LL(1), or at least more suitable for RDP.

• Factor: Example: Replace

command → id := exp

command → id (args)

with

command → id more

more → := exp

more → (args)

More generally, replace productions

n → αaβ

n → αbγ,

where a, b ∈ A and α, β, γ ∈ (A ∪N)∗, with

n → αp

p → aβ

p → bγ,

where p is a fresh nonterminal.

Typeset March 4, 2020 24

theo
Pencil

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

• Remove left recursion: Example: Replace

type → type []

type → int

with

type → int type0

type0 → [] type0

type0 → ε

More generally, replace

n → nα

n → β,

where α, β ∈ (A ∪N)∗, with

n → βp

p → αp

p → ε,

where p is a fresh nonterminal.

Most formats can be parsed by recursive descent, one

way or another.

Typeset March 4, 2020 25

Algorithms: Correctness and Complexity. Slide set 10. Grammars and Recursive Descent Parsers c© Theodore Norvell

Tools

While writing recursive descent parsers is straight-

forward for simple grammars, it can be error prone and

tedious as grammars evolve and get larger.

Luckily there are a large number of tools that convert

grammars to parsers. Examples:

• JavaCC.

∗ Allows grammars in which the RHS of each

production is a regular expression.

∗ Produces recursive descent parsers written in Java

or C++.

∗ Calculates the guard expressions automatically for

most grammars

∗ Allows the programmer to intervene in cases the

automatic rules don’t handle

∗ Allows the programmer to annotate the grammar

with bits of Java (or C++) code that are interpolated

into the parser.

• ANTLR 4

∗ Similar to JavaCC

∗ Automatic treatment of left recursion and operator

precedence

• Yacc/Bison

∗ Produces bottom-up parsers

∗ Handles a large class of grammars automatically

∗ No need to factor or remove left recursion

Typeset March 4, 2020 26

