
Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Concurrent Programming

Some important concepts in concurrent programming

• Multithreading

• Shared memory communication

• Message passing communication

• Race conditions

• Testing

• Synchronization

• Deadlock

• Livelock

• Safety properties

• Liveness properties

• Ahmdahl’s law and Gustafson’s law

• Nonblocking algorithms

Things you should be familiar with:

• Processes (fork, exec, wait)

• Interprocess communication (pipes, TCP sockets)

Typeset June 13, 2016 1

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Outline of this section

• Threads of control

• Threads and processes

• Why program concurrently?

• Concurrent programming architectural patterns

• Architectural patterns for concurrent processes

• Communication between threads.

• Shared Memory Programming

• Threads and Mutexes with PThreads

• Designing sharable objects

• Conditions

• Conditions in PThreads

• Semaphores

Reading: Chapter 12 of Computer Systems: A

Programmers Perspective

Typeset June 13, 2016 2

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Threads of control

In the simplest computer systems there is a single thread

of control

• After an instruction x is executed,

• the next instruction is either

∗ the instruction that follows x or,

∗ if x is a branch, an instruction that x branches to.

However, modern computers allow various forms of

multithreading — i.e. multiple threads of control existing

at the same time.

Why?

• Interrupts: Interrupts cause the main thread of control

to be suspended while the interrupt handler executes.

• Time slicing: After an interrupt, we can arrange that

the CPU starts executing a different thread of control.

• Simultaneous multithreading: The CPU might switch

between two (or more) threads on its own. (Intel calls

this hyperthreading).

• Multiprocessors: There may be more than one CPUs,

each executing a thread of control.

• Distributed systems: When multiple computer systems

cooperate, each runs its own set of threads.

Henceforth: “thread of control” will be abbreviated by

“thread”.

Typeset June 13, 2016 3

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

See animations for time slicing and simultaneous

multithreading.

Typeset June 13, 2016 4

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Threads and Processes

In the early Unix operating system:

• Each process had one thread

• The fork system call was the only way to create a new

thread.

Modern operating systems allow multiple threads within

the same process.

In modern Unix:

• fork creates a process with one thread

• threads can request the OS to create more threads

• all threads in the same process share the same global

(static) and heap memory.

Typeset June 13, 2016 5

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Concurrent application programs and

systems

A concurrent application is a program that is written to

use multiple threads at the same time.

Reasons to do this:

• Programming simplicity

• Speed

• Distribution and reliability

Typeset June 13, 2016 6

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Programming simplicity:

When there are multiple streams of inputs, it may be

simplest to use a separate thread to deal with each one.

• ∗ Consider a music player application: It need to deal

with:

∗ · Zero or more songs being downloaded.

· Playback of zero or one song.

· Interactions with the user

• Each of these is a distinct activity.

• We can use a separate thread to manage each activity

For example, our music player

concurrently

while not done

wait for an input action

change the state of the music player in reaction

||
while not done

wait for a part of a song to be delivered via the network

if not timed out then add that part to a local file

||
while not done

if playing back a song

read a part of the song from disk

if not end of file

play that part through the speakers

Typeset June 13, 2016 7

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Speed

If we have multiple processors, we can speed up a

calculation by expressing it concurrently

Consider computing a dot product: a · b =
∑

i∈{0,..n} aibi
concurrently

sum0 := 0
for i ∈ {0, .. 	n/2
}
sum0 := sum0 + a[i]× b[i]

||
sum1 := 0
for i ∈ {	n/2
 , ..n} · sum1 := sum1 + a[i]× b[i]

end concurrently

result := sum0 + sum1

If we have p processors, we might use a concurrent for

loop to execute p threads at the same time.

concurrently for k ∈ {0, ..p}
sum[k] := 0

for i ∈
{⌊

k×n
p

⌋
, ..
⌊
(k+1)×n

p

⌋}

sum[k] := sum[k] + a[i]× b[i]
result := 0
for k ∈ {0, ..p}
result := result + sum [k]

Typeset June 13, 2016 8

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

A cautionary tale about speed

I tried sorting 10,000,000 numbers using a concurrent

version of the quicksort algorithm

On my older single-processor laptop:

• 1 thread took about 14 seconds,

• 2 threads about 15 seconds.

No surprise there.

But ...

On my partner’s new dual-core (i.e. 2 CPU) laptop:

• 1 thread took about 11 seconds,

• 2 threads took about 20 seconds!

Why?

• The threads communicated a lot.

• When all communication was between threads on the

same CPU, this was efficient.

• When communication was between threads on

different CPUs, it took more time.

∗ Data had to be copied from one processor’s cache

to the other’s, and back, over and over.

After tuning the threads to use less communication, the

algorithm did indeed run almost twice as fast with 2

threads on the dual-core.

Lessons from this:

• Don’t assume that concurrent programs will speed up

just because you add more processors.
Typeset June 13, 2016 9

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

• In fact, they may slow down.

• Communication takes time, even when it is through

shared memory.

• Performance problems, once identified, can be solved.

Looking back at our concurrent dot product.

• We should ensure that sum [k] and sum[k + 1] are not

stored on the same cache-line.

• Otherwise the speed may be severely compromised.

Typeset June 13, 2016 10

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Speed and peripheral devices

Consider a system with one CPU, a magnetic disk (hard

drive) and an optical disk. We wish to copy a file from the

optical disk (100 MB/s) to the hard drive (100 MB/s).

Suppose both devices have block sizes of 16 kB.

Sequential version:

var buffer : array 214 of byte
var len := read(rfd , buffer , 214)
while len > do

write_blocking(wfd , buffer , len) // Assume a write

that writes all len bytes.

len := read(rfd , buffer , 214)

Speed is about 50MB/s.

Synchronous Pipelined version: Overlap the read

and the write

var buffer : array 2 of array 214 of byte
var len : array 2 of int
var i : int := 0
var j : int := 1
len [i] := read(rfd , buffer [i], 214)
while len[i] > 0 do

concurrently

write_blocking(wfd , buffer [i], len [i])
||
len [j] := read(rfd , buffer [j], 214)

end concurrently

i, j := j, i // Swap i and j.

Typeset June 13, 2016 11

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Speed is about 100MB/s.

So multithreading can improve performance even with a

single CPU by better utilizing other hardware.

Asynchronous pipelined (producer consumer) version

If there is variation in the speeds of reads and writes,

we can do slightly better by decoupling the reading and

writing.

We pick a number m to be the number of buffers.

var buffer : array m of array 214 of byte
var len : array m of int

var q : queue of int := empty
var s : set of int := {0, ..m}
concurrently

var i : int
while true

remove an item from s and store it in i
len [i] := read(rfd , buffer [i], 214)
if len [i] = 0 break

add i to the queue

end while

add -1 to the queue

||
var j : int := 0
while true

take an item out of the queue and put it in j
if j < 0 break

write_blocking(wfd , buffer [j], len [j])
add j to s

Typeset June 13, 2016 12

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

end while

end concurrently

Some history In this example the CPU is idle most

of the time. But we can also use multithreading to keep

the CPU doing useful work while it was also waiting for

peripherals.

• E.g. we could add a processing stage to our pipeline

above

reading thread → computing thread → writing thread

Historically, concurrent use of peripherals and the CPU

was the reason that operating systems first implemented

multithreading.

• In the 1950s, 1960s, and 1970s a “batch” of sequential

programs would be run at once, which allowed many

devices (e.g. printers, card-readers, tape drives) and

the CPU to be kept busy.

• By allowing one CPU and several terminals to operate

concurrently, it was possible to allow interactive time-

sharing of a mainframe among many simultaneous

users.

∗ Pioneered in the 1960s — e.g. MULTICS

∗ Common in the 1970s and 1980s — e.g. Unix, VMS

• Further changes to the OS allowed multiple threads

within one OS process.

This is one reason that multithreading operating systems

were common even when most computer systems had

only one CPU.
Typeset June 13, 2016 13

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Distribution

When we have a distributed application, multithreading

is unavoidable.

• Each node must run at least one thread

We looked at reasons to make distributed applications

earlier.

Typeset June 13, 2016 14

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Concurrent application architectural

patterns

• Iterative Parallelism (data parallel)

∗ Multiple loop iterations executed in parallel

• Recursive parallelism (data parallel)

∗ Recursive subroutine calls executed in parallel

• Producers and Consumers (task or data parallel)

∗ One thread feeds output to the next

• Client/Server (task parallel)

∗ Clients make requests, servers respond.

• Peers

∗ Similar threads communicate directly to each other.

Typeset June 13, 2016 15

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Iterative Parallelism

• Execute iterations of loops in parallel

• Typical for scientific computations.

Example: Matrix Multiplication

Compute a := b×c, where a, b and c are n by n

matrices. (n2 inner products)

double a[n,n], b[n,n], c[n,n];

Sequential version:

for [i := 0 to n-1] {

for [j := 0 to n-1] {

c[i,j] := 0.0;

for [k := 0 to n-1]

c[i,j] := c[i,j] + a[i,k] * b[k,j]; } }

In the matrix multiplication algorithm each of the n2

iterations of the dot product computation is independent

of all the others. So:

concurrently for [i := 0 to n-1] { # All rows in ||
concurrently for [j := 0 to n-1] { # All columns in ||

c[i,j] := 0.0;

for [k := 0 to n-1]

c[i,j] := c[i,j] + a[i,k] * b[k,j]; } }

But if there are less than n2 processors then the above

is wasteful. Having many more threads than processors

will slow down computation.

Typeset June 13, 2016 16

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

We can divide the work among P < n threads thus

thread worker[w = 0 to P-1] {

int first :=
(w ∗ n)÷ P� ; # first row of strip

int last :=
((w + 1) * n)÷ P� − 1; # last row of strip

for [i := first to last] {

for [j := 0 to n-1] {

c[i,j] := 0.0;

for [k := 0 to n-1]

c[i,j] := c[i,j] + a[i,k] * b[k,j]; } } }

Typeset June 13, 2016 17

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Recursive Parallelism

Independent recursive procedures:

When a sequence of calls (recursive or not) are

independent, they can run in parallel.

Example: Adaptive Quadrature

Estimate the area under a curve, f (x), on an interval

[left , right].
double quad(double left, right, fleft, fright, area) :

double mid := (left + right) / 2;

double fmid := f(mid);

double larea := (fleft + fmid) * (mid - left) / 2;

double rarea := (fmid + fright) * (right - mid) / 2;

if(abs((larea+rarea) - area)) > EPSILON)

larea := quad(left, mid, fleft, fmid, larea)

rarea := quad(mid, right, fmid, fright, rarea)

return larea + rarea; }

Typeset June 13, 2016 18

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Since recursive calls only use local variables and value

parameters, we can do them in parallel.

double quad(double left, right, fleft, fright, area) :

double mid = (left + right) / 2;

double fmid = f(mid);

double larea = (fleft + fmid) * (mid - left) / 2;

double rarea = (fmid + fright) * (right - mid) / 2;

if(abs((larea+rarea) - area) > EPSILON)

concurrently

larea := quad(left, mid, fleft, fmid, larea)

||
rarea := quad(mid, right, fmid, fright, rarea)

return larea + rarea;

Typeset June 13, 2016 19

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Producers and Consumers (pipelines)

• Threads may act as filters — consuming output from

upstream threads and producing for downstream.

• Example: Unix pipelines

sed -

f Script $* | tbl | eqn | groff Macros -

Pipes acts as bounded FIFO queues.

Typeset June 13, 2016 20

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Clients & Servers

• Dominant pattern for distributed systems.

• Distributed analog to procedure call.

• Examples: Remote file systems, http, ftp, telnet.

• Also OS kernels: Kernel is a set of kernel-mode

threads that services system calls on behalf of user-

level threads.

• Servers may service multiple clients, possibly concur-

rently.

Simple multithreaded server pseudocode:

thread server[s = 1 to n] {

while(system is not shutdown) {

await new client

while true

receive request from client

process request

send reply

if(client requested quit) break

clean up } }

Typeset June 13, 2016 21

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Peers

Similar distributed threads cooperate to accomplish a

task.

Example: Distributed Matrix Multiplication

Assume an n by n matrix and n distributed workers

arranged in a ring. Each worker is responsible for

computing one column of matrix C.

thread worker[i = 0 to n-1] :

double a[n]; # row i of a

double b[n]; # one column of b

double c[n]; # row i of c (result)

receive a ; # row i from coordinator

receive b ; # col i from coordinator

int j = i;

##Inv: b holds column j of matrix B.

loop

c[j] := 0.0 ;

for [k = 0 to n-1] c[j] += a[k] * b[k];

j := (j-1) mod n; # subtract 1 from j

break if j=i

send b to worker[(i+1) mod n];

receive b; # col j

send (i,c) to coordinator

Typeset June 13, 2016 22

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

The coordinator

thread coordinator :

for[i = 0 to n-1] send A[i][*] to worker[i]

for[j = 0 to n-1] send B[*][j] to worker[j]

for[i = 0 to n-1] receive C[i][*] from worker[i]

• First each row of A is sent to a worker.

• Each column of B is sent to a worker.

• The workers pass the columns ofB among themselves

(in a ring) until each worker has seen all n columns of

B.

• The rows of C are now sent from the workers to the

coordinator.

Connectivity required

• Workers in a (1-way) ring.

• All workers connected (2-way) to the coordinator.

Typeset June 13, 2016 23

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Communication between threads in a

concurrent application

Generally threads communicate

• Through shared memory.

• By passing messages between them.

Message

Passing

Shared

memory

Threads in the same

process

Uncommon Yes

Processes on the

same machine

Yes Possible

Processes on different

machines

Yes Not possible

Threads in same process

• Sharing memory: Since threads in the same process

share global and heap memory, communicating by

shared memory is the usual way for such threads to

communicate.

• Message passing: This is less efficient and rarely

done.

Typeset June 13, 2016 24

Introduction to Computer Systems. Concurrent Programming 0 c© Theodore Norvell

Processes on the same machine:

• Sharing memory (in UNIX)

∗ By default processes do not share memory.

∗ The fork system call creates a private address

space for each process.

∗ But it is possible for processes to create mem-

ory segments later and share them with other

processes on the same machine.

• Message passing (in UNIX)

∗ Pipes can be used.

∗ FIFOs are like pipes, but with names.

∗ So can TCP or UDP sockets

Processes on different machines:

• Sharing memory:

∗ Not possible. Otherwise we’d consider it the same

machine.

• TCP or UDP sockets are commonly used.

• So are higher-level protocols such as HTTP and

HTTPS

I’m going to focus on sharing memory on one computer

within one process.

End of slide set.

Typeset June 13, 2016 25

