
Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Shared Memory Programming

Reading: Chapter 12 of Computer Systems: A

Programmers Perspective

Shared memory

Consider our concurrent dot-product algorithm.

concurrently for k ∈ {0, ..p}
sum[k] := 0

for i ∈ {
⌊
k×n
p

⌋
, ..
⌊
(k+1)×n

p

⌋
}

sum[k] := sum[k] + a[i]× b[i]
result := 0
for k ∈ {0, ..p} result := result + sum [k]

There are p + 1 threads. There are p ‘worker’ threads

calculating sum and the ‘master thread’ that adds items

of sum.

We assume that arrays a, b, and sum can be accessed

by all threads.

I.e. they represent shared memory.

In this case the worker threads access disjoint sets of

locations and the master thread does not do anything

until the worker threads are finished. It will work.

What happens when two threads access the same

memory location at about the same time?

Typeset June 15, 2016 1

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Race conditions

Consider two parallel train tracks that merge where there

is a bridge.

When two trains both attempt to cross the bridge from

west to east at about the same time several possibilities

exist.

• The north train crosses first; then the south train.

• The south train crosses first; then the north train.

• The trains collide.

[See animation.]

Two agents using the same resource at the same time

can lead to problems.

A program has a race condition when, because of

concurrency, multiple behaviours are possible and some

behaviours are incorrect.

So race conditions are bugs, but they may not be

revealed by testing.

Typeset June 15, 2016 2

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Race conditions while sharing memory

Consider what can happen when two threads attempt to

write to shared memory at the same time

concurrently

...

x := x + 1
...

||
...

x := x + 1
...

end concurrently

print(x)

We consider the program correct if for an input of x = y
the final state is x = y + 2.

Suppose x = 40 to start.

What will it print?

• If the first assignment executes first: 42

• If the second assignment executes first: 42

But storing and fetching are separate memory

operations:

• If both threads fetch 40, and then they both store, the

result will be 41.

Typeset June 15, 2016 3

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Thread 0 Thread 1 Memory

r1 r2 r1 r2 x

40

r1←− fetch(x)
40

r2←− r1 + 1
41

r1←− fetch(x)
40

r2←− r1 + 1
41

x←− store(r2)
41

x←− store(r2)
41

Testing of the above program will likely not reveal the

bug.

This is an example of a race condition.

Typeset June 15, 2016 4

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Mutual exclusion

The solution to many race conditions is mutual exclusion.

This means only one thread uses a resource at a time.

Let’s go back to the train example.

Two trains share a bridge. They use the following

convention.

• We have a bowl with a token in it.

• Before crossing the bridge the train driver must remove

the token from the bowl.

∗ If the bowl is empty the driver must wait until it is

not.

• The driver with the token may cross the bridge.

• After reaching the other side, the driver places the

token back in the bowl.

[See animation.]

Typeset June 15, 2016 5

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

In programming we call the bowl/token a “mutex”.

[Language note: “mutex” is a contraction of “mutual

exclusion”]

Each mutex m has two states: locked and unlocked.

There are two operations on a mutex m

• lock(m) changes the state from unlocked to locked.

∗ If m is unlocked, it immediately becomes locked.

And the call returns.

∗ If m is locked, the thread is blocked; the thread

waits.

∗ If more than one thread tries to lock at the same

time only one succeeds; the others wait.

• unlock(lm)

∗ Should only be executed by the thread that locked

the mutex.

∗ Immediately changes the state to unlocked.

∗ If there are any waiting threads, one (and only one)

waiting thread will then lock the mutex and return

from lock.

Typeset June 15, 2016 6

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

For example we can protect the variable x like this.

var l :Mutex
concurrently

...

lock(l)

x := x + 1
unlock(l)

...

||
...

lock(l)

x := x + 1
unlock(l)

...

end concurrently

print(x)

Typeset June 15, 2016 7

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Three threads try to use a resource protected by mutex

l. Each thread does the following

lock(l)

use resource

unlock(l)

A possible scenario.

Thread A Thread B Thread C l

unlocked

calls lock(l)

lock returns locked

calls lock(l)

calls lock(l)

uses resource

calls unlock(l)

unlock returns lock returns

uses resource

calls unlock(l)

unlock returns lock returns

uses resource

calls unlock(l)

unlock returns unlocked

Typeset June 15, 2016 8

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Another example

Here is another example. Let’s remove the sum array

from the dot product calculation

var result := 0
var l : Mutex // Used to protect result.

concurrently for k ∈ {0, ..p}
var sum := 0
for i ∈ {

⌊
k×n
p

⌋
, ..
⌊
(k+1)×n

p

⌋
}

sum := sum + a[i]× b[i]
lock l

result := result + sum
unlock l

Here each sum variable is local to its thread.

Using a mutex to protect a data structure.

Typeset June 15, 2016 9

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Threads in C and UNIX

Making a new thread with fork.

We can use the UNIX fork system call to create a new

process. Since each process in UNIX has its own thread,

this will create a new thread. Unfortunately for us, each

process has it’s own memory space. So our new process

will not share memory.

Here is an example program that illustrates that

processes do not (by default) share memory.

Typeset June 15, 2016 10

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Program forkExample.c

How it works:

• On line 18 the call to fork creates a new process.

• Both processes run the same program.

• Both processes return from the fork call.

• For the child process the result of fork is 0, so lines

20-28 are executed only by the child.

• For the original (parent) process, the result of fork is >

Typeset June 15, 2016 11

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

0 and is the process identifier of the child.

• Lines 29–37 are executed only by the parent process.

• The exit call on line 28 terminates the child process.

• The waitpid call on line 36 waits until the child process

has terminated.

Running the program we get the following output

The parent process has started. Its PID is 17127

In the parent process, the Child’s pid is 17128.

In the parent process, the address of x is 10d05d038 and its

value is 0.

The child process has started. Its PID is 17128.

In the child process, the address of x is 10d05d038 and its

value is 0.

In the parent process, the final value of x is -100000.

In the child process, the final value of x is 100000.

Notice that outputs from the parent and child are

interleaved: We have concurrency.

Notice that the child and parent have different process

identifiers.

Both the child and parent processes have variable x at

the same address 0x10d05d038.

But since the child and parent have different virtual

memory spaces, this address does not map to the same

physical address.

After the fork there are 2 variables x — one for each

process.

Typeset June 15, 2016 12

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Creating new threads with pthreads.

Unix supports “Posix threads”. There are also

implementations of Posix threads for other operating

systems (e.g., Windows).

Hence forth pthreads = Posix threads.

With pthreads we can make a new thread that is part of

the same process and hence shares memory with the

parent thread.

Here is an example with pthreads

Program twoThreads.c

Notes:

• On line 15 we create a new thread using pthread_create.

• The third argument is a pointer to a function. This is

the code the child thread will execute.

• Each thread says hello 1000 times.
Typeset June 15, 2016 13

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

• On line 19, the main thread waits until the child thread

had finished.

The output looks like this.

hello from parent

HELLO FROM CHILD

hello from parent

hello from parent

HELLO FROM CHILD

hello from parent

HELLO FROM CHILD

HELLO FROM CHILD

...

You can see that there are two threads of control

executing at the same time.

The two threads share memory as you can see from this

example

Typeset June 15, 2016 14

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Program raceCondition.c

The output is

The parent thread has started. Its PID is 17316

The child thread has started. Its PID is 17316

The final value of x is 0

Both threads exist in the same process and they share

the same variable x.

But! Doesn’t this program have a race condition?

Typeset June 15, 2016 15

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Let’s increase the number of iterations from 100 to 1,000.

The final value of x is 0

Let’s increase the number of iterations to 10,000.

The final value of x is 0

Let’s increase the number of iterations to 100,000

The final value of x is -70564

Run it again

The final value of x is -1163

And again

The final value of x is 80629

Now the bug is apparent.

There is a race condition.

Notice that naive testing did not find this bug. This is the

nature of race conditions.

My motto “Testing concurrent programs doesn’t!”

Typeset June 15, 2016 16

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

Using a Mutex

PThreads has a type for mutexes.

Program noRaceCondition.c

Notes:

• On line, 6 a mutex is declared. Its type is pthread_mutex_t.

• On line, 18 it is initialized.

• On line, 11 the thread locks the mutex.

• On line, 12 the thread uses x

• On line 13, the thread unlocks the mutex.

• On lines 24–26, the parent surrounds its use of x with

Typeset June 15, 2016 17

Introduction to Computer Systems. Concurrent Programming 1 c© Theodore Norvell

lock and unlock

The output of the program after 10,000,000 iterations is

The final value of x is 0

Typeset June 15, 2016 18

