
Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

More Shared Memory Programming

Shared data structures

We want to make data structures that can be shared by

threads.

For example, our program to copy a file from one disk to

another used a shared FIFO queue and a shared set.

We start with a very simple data structure to keep track

of money in a bank account.

[Note: To keep things simple I will ignore the fact that

long integers could overflow. In real code, we should

look out for this.]

We have

typedef struct Account {

pthread_mutex_t mtx ;

long balance ; // In 100ths of dollars.

} Account ;

void initialize(Account *p) {

pthread_mutex_init(& p->mtx, NULL) ;

p->balance = 0 ; }

/* Precondition: 0 <= amount */

void deposit(Account *p, long amount) {

assert(amount >= 0) ;

pthread_mutex_lock(& p->mtx) ;

p->balance += amount ;

pthread_mutex_unlock(& p->mtx) ; }

And we can write a withdraw function that is similar.

Typeset June 16, 2016 1

Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

Enforcing an object invariant

Let’s suppose we want to prevent the account balance

from ever going below zero.

Such a restriction is called an object invariant. We should

document it.

The object invariant must be true whenever the object is

no locked.

typedef struct Account {

/* Object invariant: balance >= 0 */

pthread_mutex_t mtx ;

long balance ;

} Account ;

The following will not work

/* Precondition: 0<= amount && amount <= p->balance

*/

void withdraw(Account *p, long amount) {

assert(amount >= 0) ;

pthread_mutex_lock(& p->mtx) ;

p->balance += amount ;

pthread_mutex_unlock(& p->mtx) ; }

The caller can not be sure of what the balance is, since

another thread might change it.

We could do the following

/* Precondition: 0 <= amount */

int withdraw(Account *p, long amount) {

int result ;

assert(amount >= 0) ;

Typeset June 16, 2016 2

Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

pthread_mutex_lock(& p->mtx) ;

if(amount <= p->balance) {

p->balance += amount ;

result = 1 ; }

else result = 0 ;

pthread_mutex_unlock(& p->mtx) ;

return result ; }

In this case the function returns a boolean indicating

whether the withdrawal was successful.

Waiting

Another way to enforce the object invariant is to force

threads that withdraw to wait until there are sufficient

funds in the account.

We want something like this

/* Precondition: 0 <= amount */

void withdraw(Account *p, long amount) {

assert(amount >= 0) ;

pthread_mutex_lock(& p->mtx) ;

wait until amount <= p->balance

p->balance -= amount ;

pthread_mutex_unlock(& p->mtx) ; }

However, if the thread waits while the object is locked,

no thread will be able to deposit, so the thread will wait

forever.

We must unlock the object while waiting.

We want something like the following

/* Precondition: 0 <= amount */

Typeset June 16, 2016 3

Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

void withdraw(Account *p, long amount) {

assert(amount >= 0) ;

pthread_mutex_lock(& p->mtx) ;

while(! amount <= p->balance) {
pthread_mutex_unlock(& p->mtx) ;

wait a little while

pthread_mutex_lock(& p->mtx) ;
}

p->balance -= amount ;

pthread_mutex_unlock(& p->mtx) ; }

There is a nice way to implement the code in the box with

a device called a condition variable.

Each condition variable is associated with some mutex

and allows threads to wait until some condition happens.

We add a condition variable to the Account type and

initialize it

typedef struct Account {

pthread_mutex_t mtx ;

long balance ;

pthread_cond_t bigEnoughBalanceCond ;

} Account ;

void initialize(Account *p) {

pthread_mutex_init(& p->mtx, NULL) ;

pthread_cond_init(& p->bigEnoughBalanceCond,

NULL) ;

p->balance = 0 ; }

Now in withdraw we wait on the condition variable.

/* Precondition: 0 <= amount */

Typeset June 16, 2016 4

Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

void withdraw(Account *p, long amount) {

assert(amount >= 0) ;

pthread_mutex_lock(& p->mtx) ;

while(! (amount <= p->balance)) {

pthread_cond_wait(& p->bigEnoughBalanceCond,

& p->mtx) ; }

p->balance -= amount ;

pthread_mutex_unlock(& p->mtx) ; }

The call

pthread_cond_wait(& p->bigEnoughBalanceCond, &

p->mtx) ;

means

pthread_mutex_unlock(& p->mtx) ;

wait until condition p->bigEnoughBalanceCond is

signalled

pthread_mutex_lock(& p->mtx) ;

Since threads doing a withdrawal may wait for a signal

we should add code to signal whenever a deposit is

made. We add one line to the deposit method

/* Precondition: 0 <= amount */

void deposit(Account *p, long amount) {

assert(amount >= 0) ;

pthread_mutex_lock(& p->mtx) ;

p->balance += amount ;

pthread_cond_broadcast(& p-

>bigEnoughBalanceCond) ;

pthread_mutex_unlock(& p->mtx) ; }

Typeset June 16, 2016 5

Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

The call to pthread_cond_broadcast will ‘wake up’ all

threads waiting on the condition.

[Exercise: Suppose two threads are each waiting to

withdraw $100.00. If another thread deposits $200.00,

will both threads return from their calls to withdraw? You

may assume that there are no other threads. Draw a

message sequence diagram (or other kind of picture)

illustrating what may happen.]

Typeset June 16, 2016 6

Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

A Queue data structure

We will define a data type representing FIFO (first-in,

first-out) queue.

A thread that tries to take from an empty queue must

wait.

A thread that tries to put data into a full queue must wait.

There are two reasons to wait, so we use 2 condition

variables.

typedef struct Queue {

pthread_mutex_t mtx ;

pthread_cond_t notFull ; // When p->size <

p->capacity

pthread_cond_t notEmpty ; // When p->size > 0

// Object invariant: 0 < capacity

int capacity ;

// Object invariant: 0 <= size && size <= capacity

int size ;

// Object invariant: 0 <= next && next < capacity

int next ;

// Object invariant: a points to an array of capacity

integers

int *a ;

} Queue ;

We have a routine for initializing a Queue. This must be

called before the queue is shared.

int initialize(Queue *p, int capacity) {

pthread_mutex_init(& p->mtx, NULL) ;

Typeset June 16, 2016 7

Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

pthread_cond_init(& p->notFull, NULL) ;

pthread_cond_init(& p->notEmpty, NULL) ;

p->capacity = 0 ; p->size = 0 ; p->next = 0 ;

p-> a = calloc(capacity, sizeof(int)) ;

return p->a != NULL ;

}

To put new data on the queue we must wait until there is

space.

We want something like this

void put(Queue *p, int value) {

pthread_mutex_lock(& p->mtx) ;

wait until the queue is not full

add a new item

pthread_mutex_unlock(& p->mtx) ; }

We can implement it like this.

void put(Queue *p, int value) {

pthread_mutex_lock(& p->mtx) ;

/* Wait until the queue is not full */

while(p->size == p->capacity) {

pthread_cond_wait(& p->notFull, & p->mtx) ; }

/* Add a new value */

p->a[(p->next + p->size) % p->capacity] = value ;

++ p->size ;

pthread_cond_broadcast(& p->notEmpty) ;

pthread_mutex_unlock(& p->mtx) ; }

The call to broadcast at the end is because after size has

been incremented, the queue will not be empty anymore.

There may be threads waiting to for this condition.

Typeset June 16, 2016 8

Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

The code for take is similar to the code for put.

int take(Queue *p) {

pthread_mutex_lock(& p->mtx) ;

/* Wait until the queue is not empty */

while(p->size == 0) {

pthread_cond_wait(& p->notEmpty, & p->mtx) ;

}

/* Remove one item. */

int result = p->a[p->next] ;

p->next = (p->next + 1) % p->capacity ;

-- p->size ;

pthread_cond_broadcast(& p->notFull) ;

pthread_mutex_unlock(& p->mtx) ;

return result ; }

[Exercise: We also need a shared structure representing

a set of integers. Threads can put numbers into the set

and they can remove an arbitrary member of the set.

However, to take a number, the thread must wait until the

set is not empty. Implement this data structure.]

Advice: Only use pthread_cond_wait and

pthread_cond_broadcast as illustrated in the

examples above. In particular always put calls to

pthread_cond_wait inside a while loop and put the loop

insize of a lock/unlock pair.

Deadlock

As we have seen the solution to shared memory

problems is often waiting.

Typeset June 16, 2016 9

Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

• Threads must wait to obtain exclusive access

• Threads must wait for conditions to arise.

We wait to ensure safety. Much like walking across a

street in China.

A saftey property is a property that says that the system

will never get into a bad state, e.g. one where object

invariants are violated.

However, waiting has a potential hazard of its own.

We may cause threads to wait forever.

Consider the bank example. We will make a new method

transfer. We lock both accounts because we want to

ensure that there is never a time that that money is

missing or extra money is present.

/* Precondition: 0 <= amount */

void deposit(Account *p, Account *q, long amount) {

assert(amount >= 0) ;

pthread_mutex_lock(& p->mtx) ;

pthread_mutex_lock(& q->mtx) ;

while(amount > p->balance) {

pthread_cond_wait(& p->bigEnoughBalanceCond,

& p->mtx) ; }

p->balance -= amount ;

q->balance +=amount ;

pthread_cond_broadcast(& q-

>bigEnoughBalanceCond) ;

pthread_mutex_unlock(& q->mtx) ;

pthread_mutex_unlock(& p->mtx) ; }

Typeset June 16, 2016 10

Introduction to Computer Systems. Concurrent Programming 2 c© Theodore Norvell

But what happens if we transfer from account a to

account b at the same time?

We could end up with both accounts locked and neither

thread able to proceed.

They will remain locked forever.

This is deadlock.

It is a violation of a liveness property.

Liveness properties state that the system does not get

stuck.

Typeset June 16, 2016 11

