
Introduction to Computer Systems. Networks 2 c© Theodore Norvell

The Sockets API

[Wait! If you are not familiar with file descriptors and the

UNIX read and write system calls, read chapter 10 of

Bryant and O’Hallaron and/or my summary before going

on.]

In this section we take a closer look at how to use TCP

from C using the UNIX interface.

In UNIX and POSIX, TCP is accessed via the Sockets

interface.

Sockets can be used with a number of networking

protocols, not just TCP.

The main data structures include.

• struct sockaddr — includes

∗ an IP address and

∗ a port number

• struct sockaddrinfo — includes

∗ a sockaddr

∗ a family (e.g. IPv4 or IPv6)

∗ a socket type (e.g. streaming or datagram)

∗ a protocol (e.g. TCP or UDP)

• file descriptors

∗ As with disk files, file descriptors are integers that

are obtained from the operating system and that

can be used with the read and write functions.

Making things confusing sockaddr structures look

quite different depending on whether IPv4 or IPv6 is
Typeset June 11, 2016 1



Introduction to Computer Systems. Networks 2 c© Theodore Norvell

being used. The calls use pointers of type struct

sockaddr, but the actual objects should be stored in

a struct sockaddr_storage structure, to ensure

there is enough space.

Some useful functions in the API include

• getaddrinfo

∗ Does DNS lookup

∗ Input:

· A host name. E.g. "server.black.com"

· A port number.

· A set of restrictions. E.g. must be TCP.

∗ Output:

· A list of sockaddrinfo records

∗ It returns a list because a single host name may

map to several IP addresses and the host may

support both IPv4 and IPv6 and TCP and UDP.

• socket

∗ Creates, but does not open, a “socket”

∗ Input:

· a family (e.g. IPv4 or IPv6)

· a socket type (e.g. streaming or datagram)

· a protocol (e.g. TCP or UDP)

∗ Output:

· a file descriptor for the socket

• connect

∗ Used by the client to create a connection.

Typeset June 11, 2016 2



Introduction to Computer Systems. Networks 2 c© Theodore Norvell

∗ Analogous to open for the client

∗ Input:

· a file descriptor for a socket

· the socket address (struct sockaddr) for the

service

• bind

∗ Used by the server to connect a server socket to a

port number.

∗ Input:

· a file descriptor for a socket

· the socket address (struct sockaddr) for the

service

• listen

∗ Used by the server to initiate listening on a port

∗ Input:

· a file descriptor for a bound socket

· the number of connection requests that may be

queued

• accept

∗ Used by the server to create a new connection

∗ Analogous to open for the server

∗ Waits until a connection is requested by a client and

the connection is established

∗ Input:

· a file descriptor for a server socket that is listening

∗ Output:

Typeset June 11, 2016 3



Introduction to Computer Systems. Networks 2 c© Theodore Norvell

· A file descriptor for a new socket.

· The socket address of the new client.

• read

∗ Waits until there is at least one byte can be read or

the connection is closed.

∗ Input

· A file descriptor for a socket.

∗ Output

· A sequence of 0 or more bytes.

∗ 0 bytes means the connection was closed.

• write

∗ Input:

· A file descriptor for a socket.

· A sequence of bytes to send.

• close

∗ Input:

· A file descriptor

∗ Half closes the connection

• select

∗ Input

· A set of file descriptors

∗ Output

· A set of file descriptors that can be read from

∗ select blocks until at least on file descriptor in the

set can be read

∗ The output is a subset of the input.
Typeset June 11, 2016 4



Introduction to Computer Systems. Networks 2 c© Theodore Norvell

∗ Calling read on any file descriptor in the output set

will not block.

Typeset June 11, 2016 5



Introduction to Computer Systems. Networks 2 c© Theodore Norvell

Some examples

The following images illustrate use of the sockets

interface in UNIX

Legend

• Solid horizontal arrows represent calls from the

application the OS.

• Dashed horizontal arrows represent returns from

those calls.

• Diagonal solid arrows represent TCP messages.

• The thin yellow rectangles show activities. For

example the execution of a subroutine.

Typeset June 11, 2016 6



Introduction to Computer Systems. Networks 2 c© Theodore Norvell

Establishing a connection

Typeset June 11, 2016 7



Introduction to Computer Systems. Networks 2 c© Theodore Norvell

Buffered communication.

It is important to understand that each socket endpoint

has two buffers one for sending and one for receiving.

• read calls transfer data from the read buffer to the

application.

• write calls transfer data from the application to the

write buffer.

• The OSs use TCP to transfer from the write buffer on

one host to the read buffer on the other.

The follow image shows reading and writing

Note that the amount read by each read may not relate to

the amount written. In this case, the server sends ‘ni hao’

with one write, but it takes 2 reads to read everything

written.

Typeset June 11, 2016 8



Introduction to Computer Systems. Networks 2 c© Theodore Norvell

Nonblocking writes: Calls to write might not write the

entire message. We may have to call write many times

to completely transfer our message to the write buffer.

Typeset June 11, 2016 9



Introduction to Computer Systems. Networks 2 c© Theodore Norvell

Blocking reads. read will block (i.e. wait) until one of the

following happens

• There is a positive number of bytes it can read.

• The socket is closed.

• An error happens.

The diagram below shows the first two cases

Typeset June 11, 2016 10



Introduction to Computer Systems. Networks 2 c© Theodore Norvell

Closing a connection

Each process closes its endpoint.

End of networks-02.

Typeset June 11, 2016 11


