
Concurrent Programming— Slide Set 0 Theodore Norvell

What is Concurrent Programming?
Concurrent Program: When two or more ‘processes’ cooperate
to achieve a common goal.
‘Processes’ are also called ‘threads’ or ‘tasks’. In this course
we use the terms interchangibly.
• Multiple threads of control
∗ A number of sequential programs (i.e. ‘ordinary’

programs work together to achieve a goal
• Inter-process Communication
∗ Shared variables
∗ Message passing

• Synchronization
∗ Mutual exclusion — processes must execute their critical

sections one at a time.
∗ Conditional synchronization — processes wait until a

condition is true.

Note: Concurrent programming does not require multi-
processors.

Computing Today

c°2003–2008. Typeset January 9, 2009. 1



Concurrent Programming— Slide Set 0 Theodore Norvell

Parallel hardware

• Moore’s law meets the law of diminishing returns
• It’s hard to use 1 billion transistors effectively for a single

CPU
• Instead manufacturers are putting 2 or 4 CPUs on a chip

(multi-core)
• How many will it be in 10 years?
• And they are executing multiple threads with each CPU
∗ Either by context switching or by
∗ simultaineous multithreading (Intel calls it hyperthread-

ing)
• Even the PS3 game system has 9 processors on one chip.

c°2003–2008. Typeset January 9, 2009. 2



Concurrent Programming— Slide Set 0 Theodore Norvell

• Programs won’t go any faster on parallel hardware unless
they are parallel programs.

Distributed Computing

• The internet and other networks mean that applications are
distributed across a network.

• The different parts of such applications must communicate
with each other.

Big problems

Advances in computing only fuel the need for “big iron”
computing.
• Such problems require parallel computation for timely

solution
• Example: airplane wings used to be designed in 2-D cross-

c°2003–2008. Typeset January 9, 2009. 3



Concurrent Programming— Slide Set 0 Theodore Norvell

section

Computers allow 3-D modelling of the whole plane, leading
to novel designs

• Example: Modelling climate change.

c°2003–2008. Typeset January 9, 2009. 4



Concurrent Programming— Slide Set 0 Theodore Norvell

• Example: Sesmic oil exploration.

• Example: Bioinformatics. The Blue Gene super computer
has 32000 processors

c°2003–2008. Typeset January 9, 2009. 5



Concurrent Programming— Slide Set 0 Theodore Norvell

Hardware is inherently parallel

As we move to behavioural hardware design, we find that
hardware design is parallel programming.

Why Use Concurrent Programs?
• Faster processing (when ≥ 1 processor)
• More effective use of resources (e.g. disks)
• Faster response to user
• System is conceptually concurrent
• Fault tolerance
• System is distributed

c°2003–2008. Typeset January 9, 2009. 6



Concurrent Programming— Slide Set 0 Theodore Norvell

What’s different about it?
• Program steps from different processes may be inter-leaved

or concurrent.
• Need to consider other processes.
• Usual reasoning rules don’t apply.
• Programs may fail partially.
• Testing is never sufficient.

c°2003–2008. Typeset January 9, 2009. 7



Concurrent Programming— Slide Set 0 Theodore Norvell

Course Outline (Approximate)
• Following text reasonably closely
• Programming will be done in Java

Topic Lectures (Very Approx)
Architectures & Applications 2
Processes & Synchronization 3
Locks & Barriers 3
Semaphores 2
Monitors 3
Message passing 3
Software Transactional Memory 2
RPC & Rendezvous 2
Interaction Paradigms 4
Scientific Computing 4
Real-time systems (?) 4
Model checking (?) 3
Transaction processing (?) 2

c°2003–2008. Typeset January 9, 2009. 8


