
Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Transactions and Commits
• Transactions. The ACID properties
• Concurrency between transactions
• Recovery
• Control of concurrency by
∗ Two phase locking
∗ Timestamping
∗ Optimistic Concurrency Control

• Deadlock prevention, detection and recovery
• Distributed Transactions
∗ Concurrency Control
∗ Distributed Commitment

c°2003, 2005. Typeset March 26, 2008 1

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Transactions
A Transaction is a sequence of actions intended to be executed
atomically.
We bracket the transaction with start and either commit or
abort.
For example:

start ;
Amount bal = balance(accountA)
A.debit(bal) ;
B.credit(bal)
if(B.checkBal(1000)) {

B.debit(1000) ;
C.credit(1000) ;
commit ; }

else abort ;

c°2003, 2005. Typeset March 26, 2008 2

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

ACID properties.
• Atomicity: The transaction is either completely done, or

none of it is done. If the transaction aborts itself or is
aborted because of a failure, then it is as if the transaction
had never started.
∗ In the example, if abort is reached, the money transferred

from A to B must be transferred back.
• Consistency: The transaction takes the system from one

consistent state to another.
∗ Example. In a banking system, the books should balance

after each transaction.
• Isolation: The intermediate results of the transaction are not

revealed to other transaction.
∗ In example above, no other transaction sees the state in

which money has been withdrawn from A but is not yet
deposited in B.

• Durability. The once the transaction is committed, subse-
quent failures can be recovered.

c°2003, 2005. Typeset March 26, 2008 3

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Concurrency
Consider two transactions: T is a transfer

start
co

A.debit(1000)
//

B.credit(1000)
oc
commit

S calculates the total in two accounts.

start
co

x := A.read()
//

y := B.read()
oc
Statement.print(x+y)
commit

c°2003, 2005. Typeset March 26, 2008 4

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

For efficiency we might want to run the transactions
concurrently. There is concurrency available both within
and between the transactions.
The effect of running a set of transactions should be the same
as if they were executed sequentially in some order.
In the example, the effect should be S;T or T;S
Each transaction is a directed acyclic graph where
• Nodes are atomic actions on objects
• Edges express ordering constraints

c°2003, 2005. Typeset March 26, 2008 5

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Clearly these two transactions can interfere with each other, so
we must be careful executing them concurrently:

Interleaving 0 Interleaving 1
S : x := A.read() T: A.debit(1000)
T: A.debit(1000) S: x := A.read()
T: B.credit(1000) S: y := B.read()
S: y := B.read() T: B.credit(1000)
S : Statement.print(x+y) S : Statement.print(x+y)

Neither of these execution sequences agrees with either serial
order.
Two operations a and b on the same object are conflicting if
the don’t commute

o.a(); o.b() 6= o.b(); o.a()

Given a set of transactions we add edges between conflicting
operations from different transactions such that there is a total
order on transactions

T0, T1, ..., Tn−1
and edges between transactions respect this order

Ti : o.a()→ Tj : o.b()⇒ i < j

c°2003, 2005. Typeset March 26, 2008 6

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

The operations in the graph can be executed concurrently in
any order so long as the arrows are respected.

c°2003, 2005. Typeset March 26, 2008 7

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Dealing with aborts by write-ahead
A transaction may “abort” because of
• self-abort: transaction decides it has failed.
• failure of server
• aborted to resolve deadlock
• aborted because of cascading aborts

In the last three cases, the transaction should be restarted later.
Undo: To implement aborts, each operation must be capable
of being undone

o.a(); o.undo(a) = skip

(skip is the identity operations.)
Redo: In addition operations can be redone.

o.a() = o.a(); o.undo(a); o.redo(a)

Undo and Redo must be “idempotent” so
o.undo(a); o.undo(a) = o.undo(a)

o.a(); o.redo(a) = o.a()

c°2003, 2005. Typeset March 26, 2008 8

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Write-ahead logs

To facilitate undo and redo we keep a “write-ahead log” in
persistent store.
Records in “write-ahead logs” contain
• Transaction identifier
• Object identifier
• Operation within transaction
• Enough information to undo the operation (e.g. part of

original state)
• Enough information to redo the operation (e.g. part of final

state)

Also logged are: start, commit, and abort operations.
To execute an operation:
• Read the object state
• Calculate the new state
• Write to the write-ahead log.
• Write to the object.

It is important that the write to the log goes to nonvolitile
memory (e.g. disk).

c°2003, 2005. Typeset March 26, 2008 9

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Checkpointing

Periodically
• Write a checkpoint record to the log including a list of all

active transactions.
• Force all object data to disk.

c°2003, 2005. Typeset March 26, 2008 10

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Recovery

After crash. Object state is recovered from disk
• Transactions committed before the last checkpoint.
∗ No action required.

• Transaction committed since last checkpoint
∗ Transaction is redone (from last checkpoint)

• Transactions not committed
∗ Transaction is undone (to last checkpoint)
∗ Transaction is restarted

c°2003, 2005. Typeset March 26, 2008 11

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Cascading Aborts

If a transaction t is aborted, but transaction s has used an
object that was modified by t.
• Then s must be aborted too and restarted later.

c°2003, 2005. Typeset March 26, 2008 12

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Concurrency Control
How do we keep concurrent transactions from conflicting.

Concurrency control via locking
Locking is not sufficient.

S : Lock(A) ;
x := A.read() ;
Unlock(A) ;

T: Lock(A) ;
A.debit(1000) ;
Unlock(A) ;
Lock(B) ;
B.credit(1000) ;
Unlock(B)

Lock(B) ;
y := B.read() ;
Unlock(B) ;
S: Lock(Stmt) ;
Stmt.print(x+y) ;
Unlock(Stmt) ;

c°2003, 2005. Typeset March 26, 2008 13

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Two phase-locking (2PL):

• Locking phase: Transactions acquire locks on objects as
they need them.

• Unlocking phase: No lock is released until all locks needed
have been acquired

Result: Transactions can not interfere since conflicting pairs
are scheduled in the same order
Example:

S : Lock(A) ; x := A.read() ;
Lock(B) ; y := B.read() ; T: Lock(A) ...
Lock(Stmt) ; T delays
Unlock(A) ;

... ; A.debit(1000) ;
Lock(B) ...

Unlock(B) ; T delays
Stmt.print(x+y) ; ... ; Unlock(A) ;
Unlock(Stmt) ;

B.credit(1000) ; Unlock(B) ;

Strict two-phase locking Locks are only released as part
of commit or abort.

c°2003, 2005. Typeset March 26, 2008 14

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Concurrency control by time stamp ordering
(TSO)
Each transaction is given a time stamp ts(t)
Each object is stamped with the ts(t) of the last transaction to
operate on it.
When t executes an operation on object o

lock(o);
if(ts(o) > ts(t)) { unlock(o); abort(t); }
else { do operation ; ts(o) := ts(t); unlock(o); }

Example
S: start ;
S : x := A.read() ; T: start ;

T: A.debit(1000) ... aborts
S: y := B.read() ;
S: Stmt.print(x+y);

Strict TSO

Locks are held until commit or abort.

c°2003, 2005. Typeset March 26, 2008 15

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Optimistic concurrency control
At commit time, the history of actions on each object is
inspected.
If all histories are consistent with some serialization order
• The commit succeeds
• Otherwise: The transaction aborts and is rescheduled.

Each transaction has three phases
1. Execution: Make shadow copies of objects and execute on

those, recording the history of actions.
2. Validation: Following commit, check the history for

consistency with some serialization order.
3. Update: Objects are written to persistent store.

But the last phase is inefficient as it must be done atomically.
Instead objects can be written back nonatomically.
Another transaction might start with an inconsistent set of
objects
• A transaction is only allowed to commit if
∗ At its start time all objects were consistent
∗ Its history is consistent with a serialization order

c°2003, 2005. Typeset March 26, 2008 16

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Deadlock
Locking can lead to deadlock

S : Lock(A) ; T: Lock(B)
S: Lock(B)... T: Lock(A) ...

Deadlock prevention

Deadlocks can be prevented if every transaction obtains locks
in a fixed order.

Deadlock detection

We make a “resource allocation graph” with edges
• From locked resource r to transaction t that holds the lock.
−→

• From transaction t to resource r when t is waiting for a lock
on r. 99K

Deadlock exists when there is a cycle in the graph.

c°2003, 2005. Typeset March 26, 2008 17

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Alternatively, an object can assume deadlock if obtaining a
lock times out.

Deadlock resolution.

Deadlock can be resolved by aborting transactions.

c°2003, 2005. Typeset March 26, 2008 18

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Distributed Transactions
Transaction processing is distributed over multiple servers
Each object has a “home server”
Operations implemented by RPC

Concurrency Control
2 phase locking

Deadlock detection is difficult since knowledge of the
“resource allocation graph” is distributed.
But time-outs can be used.

Time stamp ordering

We can use Lamport’s logical clocks for time stamps.
Optimistic Concurrency Control

Logical clocks are used for timestamps.
Information from multiple nodes must be used to determine if
serialization is possible.

c°2003, 2005. Typeset March 26, 2008 19

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Distributed Commit
Regardless of the method of concurrency control,
• multiple servers must agree on whether a transaction

commits or aborts.

Partial failure: Some servers may fail while others remain up.
Two phase commit (2PC)

One server serves as “commit manager”.
1. First phase

a. The commit manager requests each server to vote
b. Each server votes for commit or abort.
c. Servers that vote for abort stop

2. Second phase
a. The commit manager tallies votes. Commit requires

unanimity.
b. The commit manager sends result to servers that voted

for commit.
c. Remaining servers commit or abort

c°2003, 2005. Typeset March 26, 2008 20

Concurrent Programming— Slide Set 10 Transactions. Theodore Norvell

Coping with failure in 2PC Nodes may fail. Links may
fail.
Assumption: Sender is informed of any communications
failure.
Assuming manager runs.
• Request (1.a.) lost. Server doesn’t vote
∗ Manager assumes “abort”

• Server fails to vote (1.b.) or vote is lost.
∗ Manager assumes vote is to “abort”

• Server crashes before result arrives or result is lost
∗ Server requests a resend.

If manager crashes
• Before all votes are in
∗ Can default to abort on recovery.

• Before sending all results
∗ Servers will time out and request a resend
∗ Manager must be ready to resend after recovery

c°2003, 2005. Typeset March 26, 2008 21

