
Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

Approaches to verification of (concur-
rent) systems
Dijkstra noted: Program testing can best show the presence of
errors but never their absence.
In concurrent systems, the nondeterminism arising from
concurrency means that testing does not even show the
absence of errors for the given test inputs.
This has lead to the search for more trustworthy methods of
verification
Proof based systems:
• Manual construction of proofs — e.g. the proofs using

Hoare Logic and Proof Outline Logic..
∗ Pro: this is simply a formalization of the informal

reasoning process that any human must go through in
order to come up with a correct algorithm.
∗ Pro: proofs are easily read and thus reviewed by other

humans.
∗ Con: can be difficult to come up with as the complexity

of the algorithm increases.
∗ Con: lack of education limits the number of available

c°2003, 2005, 2006 Typeset March 30, 2009. 1

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

reviewers
• Automated theorem proving.
∗ AI programs to do this have had limited success.
· Often they need considerable hints.
· E.g. “first prove this lemma”, “use that lemma to

prove this theorem”
· Failure of the system to find a proof often yields little

information about
– Whether there is a bug or whether the AI simply

failed to find a proof.
– If there is a bug, its nature

∗ Example systems: The Boyer-Moore prover. PVS.
Isabelle. HOL. Eves.

• Semiautomated methods
∗ Human comes up with a proof or a proof outline
∗ Machine coompletes and reviews the proof
∗ Example systems: Spec#, ESC-java.

c°2003, 2005, 2006 Typeset March 30, 2009. 2

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

State space exploration:
• Manual enumeration and checking of states
∗ Con: time-consuming to do and review.
∗ Con: only works in finite state cases.

• Automated search of state space
∗ Has proved very effective for finite state systems:

Hardware, communication protocols, simple software
systems.
∗ Compact representations of sets of states has lead to

searches of very large and reasonably complex state
spaces.
∗ Example systems: SPIN, Murphi, TLC, SMV.

Since we have already looked at manual proof construction we
will look state-space exploration methods

c°2003, 2005, 2006 Typeset March 30, 2009. 3

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

State space exploration
We model our algorithm as a (nondeterministic, concurrent)
finite state automaton.
For example, Peterson’s algorithm.

c°2003, 2005, 2006 Typeset March 30, 2009. 4

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

L1(0)

entry/ r(0) := true

L1(0)

entry/ r(0) := true

L1(0)

entry/ r(0) := true

L2(0)

entry/ t := 1

L3(0)

L5(0)
<<critical sect ion>>

L6(0)

entry/ r(0) := false

L1(1)

entry/ r(1) := true

L2(1)

entry/ t := 0

L3(1)

L5(1)
<<critical sect ion>>

L6(1)

entry/ r(1) := false

L4(0) L4(1)

[not r(1)]
[r(1)]

[not r(0)]

[r(0)]

[t=1]
[t=0]

L0(0)
<<noncritical section>> L0(1)

<<noncritical section>>

 / r(0) := false, r(1) := false ; t := 0

[t=0]

[t = 1]

c°2003, 2005, 2006 Typeset March 30, 2009. 5

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

Computing the flattened state machine
We can derive a nonconcurrent, nondeterministic state machine
that is equivalent to the concurrent machine.
For the Peterson’s algorithm example use the following
encoding for state names

(pc(0), pc(1), r(0), r(1), t)

For example
(L0, L0, f, f, 0)

is the initial state.
There are 7× 7× 2× 2× 2 = 392 states.
(However a local analysis shows that the value of r(i) is
determined by the control state of automaton i. Thus it is clear
that at least 3/4 of these states are unreachable.)

Interleaving vs. true concurrency
In interleaving semantics we assume that in each computation
step exactly 1 concurrent automaton advances.
• Thus the successors of (L0, L0, f, f, 0) are
∗ (L1, L0, t, f, 0),
∗ (L0, L1, f, t, 0), and
∗ (L0, L0, f, f, 0) itself.

c°2003, 2005, 2006 Typeset March 30, 2009. 6

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

In true concurrency semantics, we also consider simultaneous
transitions
• So (L1, L1, t, t, 0) is also a successor of (L0, L0, f, f, 0)

In true concurrency we have to decide how concurrent writes
work. When p0 and p1 both write to t at the same time,
what should be the result. One variant is to assume that one
or the other write will succeed. Thus (L1, L1, t, t, 0) and
(L1, L1, t, t, 1) both have successors
• (L2, L2, t, t, 0) and (L2, L2, t, t, 1) as well as
• (L1, L2, t, t, 0) and (L2, L1, t, t, 1)

I’ll assume interleaving from here on.
A portion of the resulting automaton:

c°2003, 2005, 2006 Typeset March 30, 2009. 7

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

L0,L0,f,f,0

L0,L1,f,t,0L1,L0,t,f,0

L2,L0,t,f,1 L1,L1,t,t,0

L3,L0,t,f,1

L5,L0,t,f,1

L6,L0,f,f,1

L0,L0,f,f,1

A state is reachable if there exists a path from the initial state
to it.
The complete automaton has at least 30 reachable states.

c°2003, 2005, 2006 Typeset March 30, 2009. 8

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

Proving properties:
Safety

The safety property that we need to show is mutual
exclusion:
• It is always the case that one process is not in L5.

In terms of the flattened automaton this becomes:
• No reachable state is of the form (L5, L5, ?, ?, ?).

This can easily be shown by examining the full flattened
automaton.

Liveness

The liveness property we need to show is nonstarvation:
• If a process ever reaches state L1 then eventually it will

reach state L5.

We might show this for P0 by showing that there are no cycles
in the graph that both
• Include a state (L1, ?, ?, ?, ?)
• but not a state (L5, ?, ?, ?, ?).

c°2003, 2005, 2006 Typeset March 30, 2009. 9

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

But this is not true. One such cycle is
(L1, L0, t, t, 0)→ (L1, L0, t, t, 0)

In fact the property is not true.
• We should make a fairness assumption:
∗ No process waits forever without making a transition.

In terms of the flattened automaton we can observe
• All infinite paths that
∗ start at the initial state, and
∗ includes a state L1, ?, ?, ?, ?, but
∗ not a subsequent state L5, ?, ?, ?, ?,
∗ violate the fairness assumption

c°2003, 2005, 2006 Typeset March 30, 2009. 10

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

Temporal Logic
Originally temporal logic was invented to account for linguistic
constructs such as:
• “Eventually my prince will come.”
• “We’ll always have Paris.”

First we’ll look at models in non-temporal propositional logic

Propositional models and validity
In propositional logic, a model is a set of primitive
propositions.
A propositional formula is valid in the model if it is true,
assuming exactly the primitive propositions in the model are
true.
For example the sentence p⇒ q ∧ r is valid in models

{p, q, r}, {q}, {r}, {q, r}, and {}
It is not valid in the models

{p, q}, {p, r}, and {p}

c°2003, 2005, 2006 Typeset March 30, 2009. 11

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

A two-time temporal logic
Consider the statement
• If it is nice today, it will be nice and cold tomorrow.

This involves propositions
• it is nice — n

• it is cold — c

And times today and tomorrow .
We use the notationX to mean the next day.
From the point of view of today, we can write the sentence

n⇒ X(n ∧ c)
A model in our two time world is a sequence of two sets of
propositions..
Using 0 for today and 1 for tomorrow, the following is a model

h{n, c}, {n, c}i
Our example sentence n ⇒ X(n ∧ c) happens to be valid in
this model.
Here is another model

h{n, c}, {n}i
our example sentence is invalid in this model.

c°2003, 2005, 2006 Typeset March 30, 2009. 12

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

Infinite time
We can extend this idea to a one-way infinite, discrete model
of time. I.e. times will be natural numbers, and models will be
infinite sequences of sets of propositions.
We use
• X(s) to mean s is true in the next time period (X = neXt)
• G(s) to mean s is true now and at all future times (G =

Global)
• F(s) to mean there exists a time now or in the future when
s is true (F = Future)

• sUt to mean F(t) and s is true for all times from now
(inclusive) until the next time t is true (exclusive). (U =
Until)

h{s}, {s}, {t}, {}, {t}, {s, t}i
This is LTL (Linear Temporal Logic).
Note (Demorgan)

F(p) = ¬G(¬p)

c°2003, 2005, 2006 Typeset March 30, 2009. 13

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

Applying temporal logic
We can state safety properties, liveness properties, and fairness
assumptions in temporal logic.
• Safety properties.
∗ Invariants are easily stated in the formG(P)

• Liveness properties
∗ G(F(Q)) orG(¬G(¬Q))
· Q will be true infinitely often. (It is never the case that
Q will never be true again.)

∗ G(P ⇒ F(Q))
· Any time p is true, q will be true at the same time or

at some future time

• Fairness assumptions are similar to liveness properties.
∗ To show that propertyP is true under fairness assumption
Q we show

Q⇒ P

c°2003, 2005, 2006 Typeset March 30, 2009. 14

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

Peterson’s algorithm again.

Mutual exclusion
The mutual exclusion property is an invariant:

G(¬in(L50) ∨ ¬in(L51))
Nonstarvation
This is a liveness property.

G(in(L10) ⇒ F(in(L50)))

G(in(L11) ⇒ F(in(L51)))

No infinite delay
This is a fairness assumption. Eventually, any thread not in
state 0 will make a transition.

G (in(L10)⇒ F(¬in(L10))
∧G (in(L20)⇒ F(¬in(L20))
∧ · · ·
G (in(L11)⇒ F(¬in(L11))
∧G (in(L21)⇒ F(¬in(L21))
∧ · · ·

c°2003, 2005, 2006 Typeset March 30, 2009. 15

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

Automated analysis using temporal logic
We can assign each state of a nondeterministic finite state
automaton a set of propositions that are true in that state.

p q

p,qr

Then each path in the automaton gives rise to a model. E.g.
(using to mean infinite repetition).D

{p}, {r}, {r}
E

D
{p}, {r}, {r}, {q}, {p, q}, {p, q}

E
D
{p}, {r}, {q}, {p}, {r}, {q}

E

c°2003, 2005, 2006 Typeset March 30, 2009. 16

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

We can check a temporal formula against each of these models.
For example

P : G(p⇒ F(q))
is valid in some models and not in others. But if we add a
fairness assumption, say

Q : G(r ⇒ F(¬r))
then we can show

Q⇒ P
is valid in every model that this automaton describes.
Method: For each subformula, compute the set of states where
it is true.
Luckily there are tools that automate this process.
Next we look at one such tool: SMV.

c°2003, 2005, 2006 Typeset March 30, 2009. 17

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

SMV
SMV developed at CMU and Berkeley by Ken McMillan
• Checks temporal logic formulas against models defined by

automata
• Gives counter-examples when properties fail.
• Mostly used for clocked hardware but applicable to

protocols and software.
• Exists commercial version (FormalCheck) from Cadence.
• Accepts Verliog syntax as well as its native syntax.
• Uses BDD (Binary Decision Diagrams) to efficiently

represent large sets of states: 1020 or more!

The automaton is described using a set of (directed) equations
that must be true in each clock cycle. E.g.

ack1 := req1;
ack2 := req2 & ~req1;

means
G

µ
ack1 = req1

∧ ack2 = (req2 ∧ ¬req1)
¶

c°2003, 2005, 2006 Typeset March 30, 2009. 18

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

E.g. a 2-way arbiter:

module main(req1,req2,ack1,ack2)
{

input req1,req2 : boolean;
output ack1,ack2 : boolean;

ack1 := req1;
ack2 := req2 & ~req1;
...

}

The states of this automaton are (req1, req2, ack1, ack2). The
states are
{(F, F, F, F) , (T, F, T, F) , (T, T, T, F) , (F, T, F, T)}

All reachable states can transition to all others.
Properties are given as a set of assertions

mutex : assert G(~(ack1 & ack2));
serve : assert G((req1 | req2) -> (ack1 | ack2));
waste1 : assert G(ack1 -> req1) ;
waste2 : assert G(ack2 -> req2);

c°2003, 2005, 2006 Typeset March 30, 2009. 19

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

SMV will verify each property or discover a model in which it
is invalid.

States
Local variables can also declared and assignments can
determine their initial and next states.

module main(req1,req2,ack1,ack2)
{

input req1,req2 : boolean;
output ack1,ack2 : boolean;

prev : 1..2 ;

if(prev=2) {
ack1 := req1 ;
ack2 := req2 & ~req1 ; }

else {
ack2 := req2 ;
ack1 := req1 & ~req2 ; }

c°2003, 2005, 2006 Typeset March 30, 2009. 20

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

init(prev) := 1 ;
if(ack1) next(prev) := 1
else if(ack2) next(prev) := 2
else next(prev) := prev
...

}

Aside: The last assignment could be written as

if(ack1) next(prev) := 1
else if(ack2) next(prev) := 2

End of Aside.
In terms of states, there is a transition, for example,

(T, F, T, F, 2)→ (T, T, F, T, 1)

We might prove the following timeliness requirements

fast1 : assert G(req1 -> ack1 | X(req1 -> ack1)) ;
fast2 : assert G(req2 -> ack2 | X(req2 -> ack2)) ;

c°2003, 2005, 2006 Typeset March 30, 2009. 21

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

Back to Peterson’s
Data. We use the following types

typedef INDEX 0..1 ;
typedef PC {L0, L1, L2, L3, L4, L5, L6};

and variables

pc: array INDEX of PC; /* A pair of program counters */
r: array INDEX of boolean;
t: INDEX;

We also use two variables that are never assigned to.
Thus they may take on arbitrary values at each time point.
This models nondeterminism

act: INDEX ; /* The active process. */
arb : boolean ;

Initialization. We initialize the variables

c°2003, 2005, 2006 Typeset March 30, 2009. 22

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

init(t) := 0 ;
forall (i in INDEX) {

init(r[i]) := 0;
init(pc[i]) := L0 ; }

The next state. We make one transition in process 0 or process
1 arbitrarily. Recall act is arbitrarily either 0 or 1:

switch(pc[act]) {
L0: { if(arb) {

next(pc[act]) := L0 ; }
else {

next(pc[act]) := L1 ;
next(r[act]) := 1 ; } }

L1: { next(pc[act]) := L2 ; next(t) := 1-act ; }
L2: { next(pc[act]) := L3 ; }
L3: { if(~r[1-act]) next(pc[act]) := L5 ;

else next(pc[act]) := L4 ; }
L4: { if(t=act) next(pc[act]) := L5 ;

else next(pc[act]) := L3 ; }
L5: { next(pc[act]) := L6 ; next(r[act]) := 0 ;}
L6: { next(pc[act]) := L0 ; } }

c°2003, 2005, 2006 Typeset March 30, 2009. 23

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

Safety. Mutual exclusion is

mutex : assert G (pc[0] ~= L5 | pc[1] ~= L5) ;

Liveness. Nonstarvation properties

forall (i in INDEX) {
nonstarve[i] : assert G(pc[i]=L1 -> F(pc[i]=L5)) ;

}

Fairness. To prove nonstarvation we must make a fairness
assumption.
We can say that act will never exclude one value forever:

forall (i in INDEX) { fair[i]: assert G F(act = i); }

We must tell the checker not to check the fairness assumptions

forall (i in INDEX) { assume fair[i]; }

c°2003, 2005, 2006 Typeset March 30, 2009. 24

Concurrent Programming— Slide Set 12 Model Checking. Theodore Norvell

We must tell the checker to use these assumptions in proving
liveness

forall (i in INDEX) {
using fair[i], fair[1-i] prove nonstarve[i] ; }

c°2003, 2005, 2006 Typeset March 30, 2009. 25

