
Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

Transactional Memory
(Based on S. Peyton Jones, ‘Beautiful concurrency’ in
Beautiful Code,Oram and Wilson (eds) 2007.)
The illusion of mutual exclusion.

Context
Shared memory computations

The problems with locks
Consider back account class

class Account() {
int balance = 0 ;
void withdraw(int n) {

this.lock() ; balance -= n ; this.unlock() ; }
void deposit(int n) {

this.lock() ; balance += n ; this.unlock() ; }
}

This is the usual implementation of synchronized methods.
Consider client code

c°2009. Typeset April 6, 2009 1

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

void transfer(Account from, Account to, int amount) {
from.withdraw(amount) ;
to.deposit(amount) ; }

As we’ve seen, this creates a race condition.
Locks don’t compose:
• We’ve put together two actions that are reasonable on their

own but that when put together give unsafe code.

We can fix it by adding more locking code

void transfer(Account from, Account to, int amount) {
from.lock() ; to.lock() ;
from.withdraw(amount) ;
to.deposit(amount) ;
to.unlock() ; from.unlock() ; }

(Aside: I am assuming that we have re-entrant locks, which
means that a thread can acquire the same lock more than once.)
But now we have a potential deadlock.
Consider

c°2009. Typeset April 6, 2009 2

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

transfer(a, b, 100); k transfer(b, a, 100) ;

We can avoid this by fixing the locking order:

void transfer(Account from, Account to, int amount) {
if(from.compareTo(to) < 0) {

from.lock() ; to.lock() ; }
else {

to.lock() ; from.lock() ; }
from.withdraw(amount) ;
to.deposit(amount) ;
to.unlock() ; from.unlock() ; }

Of course we have to be consistent across the entire system.)
This forces us to lock all objects up front even if we don’t need
them.
For example if we have overdraft protection

void transferWithODP(Account from, Account to,
Account other, int amount) {

...Lock from, to, and other in ascending order....

c°2009. Typeset April 6, 2009 3

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

if(from.balance() >= amount) {
from.withdraw(amount) ;

else other.withdraw(amount) ;
to.deposit(amount) ;
other.unlock() ; to.unlock() ; from.unlock() ; }

Here we locked other, even though it is not needed in most
cases.
We could avoid all these problems by just having one lock that
locks the whole system of accounts, but that would prevent
concurrent operations.

Coping with thread failure
Threads can fail in at least three ways.
• There may be an unexpected exception which prevents

completion of a task
∗ The thread must restore consistency and unlock all

locked objects.
∗ Recovery code often outweighs the “real” code.
∗ For highly reliable software, even unexpected exceptions

must be anticipated.
• The thread may die
c°2009. Typeset April 6, 2009 4

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

∗ If a dead thread holds locks, other threads will get stuck,
causing yet other threads to stick.
∗ Simply breaking locks may lead to inconsistency.
· “WARNING: Terminating a process can cause

undesired results including loss of data and
system instability. The process will not be given
the chance to save its state or data before it is
terminated.” — Windows XP

• The thread may loop or deadlock
∗ Same problems as thread death.

Locks are bad
Here are some of the pitfalls that we must avoid when using
locks like this.
• Taking too few locks — leads to race conditions.
• Taking too many locks — inhibits concurrency
• Locking at too coarse a level — inhibits concurrency
• Taking locks in the wrong order — leads to deadlock
• Taking the wrong locks — is easy
• Error recovery — is hard.

c°2009. Typeset April 6, 2009 5

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

Transactional memory
TM is an approach to mutual exclusion that relies on
• Executing transactions in parallel. I.e. potentially conflict-

ing transactions are allowed to execute in parallel
• Aborting and retrying transactions that can not proceed

because of
∗ an unmet condition
∗ an actual conflict with another transaction

A Syntax for TM
(Based on Haskell’s STM library, but with Java, rather than
Haskell, syntax.)
We divide object fields into two camps. Ordinary fields and
transactional fields.
I will use the syntax

transactional int f ;
We notate transactions as follows.

atomically{ S }
• Essentially this implements hSi
• Code within a transaction can access transactional fields

c°2009. Typeset April 6, 2009 6

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

and thread local variables, but not ordinary fields.
• Code outside of transactions can access ordinary fields and

thread local variables but not transactional fields.
• Methods that access only transactional fields are labelled

transactional.

Example. To transfer we do

atomically{ transfer(from, to, amount) ;}

Here is the transfer routine

transactional void transfer(Account from, Account to,
int amount) {

from.withdraw(amount) ;
to.deposit(amount) ; }

class Account() {
transactional int balance = 0 ;
transactional void withdraw(int n) {

balance -= n ; }

c°2009. Typeset April 6, 2009 7

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

transactional void deposit(int n) {
balance += n ; } }

Note that the transfer, withdraw, and deposit methods can
only be called from within a transaction or other transactional
methods.
Nontransactional methods, on the other hand, must not be
called from within transactional code

Type checking
The type checker can ensure that code ordinary code and
transactional code is not mixed.
We can consider each command and expression to posses one
of four flavours
• transactional — accesses transactional fields and methods
• unsafe — accesses ordinary fields and methods
• pure — accesses no fields or methods
• error — indicates an error

Some type checking rules
flavour(E.f) = transactional

c°2009. Typeset April 6, 2009 8

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

if f is transactional and flavour(E) ∈
{pure, transactional}.Otherwise it is error or unsafe.

flavour(E.m()) = transactional

if m is transactional and flavour(E) ∈
{pure, transactional}.Otherwise it is error or unsafe.

flavour(atomically{S}) = pure
if flavour(S) ∈ {pure, transactional}. Otherwise, it is
error.
Combining code by sequential composition (and most other
composition forms) is the least flavour

flavour(S T) = flavour(S)f flavour(T)

flavour(E + F) = flavour(E)f flavour(F)

where

xf y = y f x

xf x = x

errorf x = error

puref x = x, if x 6= error
transactionalf unsafe = error

c°2009. Typeset April 6, 2009 9

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

A Software TM Implementation
There are a variety of ways to implement software transactional
memory.
Here is one. We use speculative execution with optimistic
concurrency control.
• At the start of each transaction,
∗ save values of thread-local variables that might be

changed
∗ create a thread-local log, initially empty. Each log entry

is of the form
(a, v, v0) or (a, v)

where
∗ a is the address of a transactional variable.
∗ v is the current value of the variable for this transaction
∗ v0 is the original value of the variable, if needed.

• If the first action on a transactional field is to read it, its
current value recorded in the log. (Assume the value of the
field at address a of main memory is 23)

read(a, {})Ã (23, {(a,23, 23)})
• When a transactional field is written, we change only the

c°2009. Typeset April 6, 2009 10

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

log, adding a record if needed.
write(a, 42, {(a,23, 23)}) Ã {(a,42, 23)}
write(b, 13, {(a,42, 23)}) Ã {(b,13), (a,42, 23)}

• Subsequent reads of a field obtain the current value from
the log.
read(a, {(b,13), (a,42, 23)})Ã (42, {(b,13), (a,42, 23)})
• At the end of the transaction, commit:
∗ lock all fields mentioned in the log (aborting if a field is

already locked);
∗ validate: For each entry (a, v, v0) check that m[a] == v0;
∗ if validation succeeds
· write back: for each entry (a, v, v0) or (a, v) set
m[a] := v

· unlock all fields
∗ else
· unlock all variables;
· clear the log;
· restore thread local variables that may have changed;
· restart the transaction

Other implementations are possible.

c°2009. Typeset April 6, 2009 11

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

Side effects
It is crucial that the only effects within the transaction are
changes to transactional fields.
Other effects can not be undone

atomically { if(o.a == o.b) launchTheMissiles() ; }

Conditional synchronization
So far we have only implemented mutual exclusion.
What about conditional synchronization.
We can implement a statement check(B).

transactional void safeTransfer(Account from, Account
to, int amount) {

check(from.balance >= amount) ;
from.withdraw(amount) ;
to.deposit(amount) ; }

We can implement check by
• wiping the log; waiting a little while; restarting the

c°2009. Typeset April 6, 2009 12

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

transaction

Note that check is very much like a conditional wait in
monitors.

Choice
We can introduce a symmetric choice between transactional
statements as follows:

S ¤ T
means try either S or T (choosing fairly), if one fails try the
other.
We could implement this sequentially or in parallel.
If implemented in parallel, the first to succeed kills the other
off — this is called speculative execution.
A biased choice

S £ T
tries S first and only tries T if S fails due to a failure of a
check.

transactional void transferWithODP(Account from,
Account to, Account other, int amount) {

safeTransfer(from, to, amount) ;
£ transfer(other, to, amount) ; }

c°2009. Typeset April 6, 2009 13

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

Transactional code composes via sequencing and choice.

Performance
Software transactional memory is typically far slower than
lock-based approaches.
For example our optimistic concurrency control
implementation requires time to consult the log.
The advantage is ease of programming and assurance that the
software is free of race-conditions and deadlocks.

Wither ACID?
As we saw, in database transactions, systems attempt to
provide Atomicity, Isolation, Consistancy and Durability.
TM is intended to provide
• Atomicity. Each transactions appears atomic to from the

outside.
• Isolation. Depending on implementation technique,

transactions may see variables in intermediate states.
However such a transaction will not successfully commit.

• Consistancy. It is up to the programmer to ensure that

c°2009. Typeset April 6, 2009 14

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

transactions leave the system in a consistant state.
• Durability. No attempt is made in TM to provide durability.

Lack of Isolation
How can transactions be atomic but not isolated?
Remember that transactions may be executed speculatively.
Suppose that we have a global invariant that

o.p ! = null ∨ o.q ! = null
A transaction

T0 : atomically{ if(o.p==null) o.q.a = 0; }
appears unproblematic.
It would seem that it can not dereference a null pointer.
Consider executing in parallel with the following transaction
that swaps o.p with o.q.

T1 : atomically{ T t = o.p; o.p = o.q; o.q = t; }
Assume speculative execution and optimistic concurrency
control.

c°2009. Typeset April 6, 2009 15

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

T0 T1 o.p o.q
r0:=read o.p null x

swaps x null
r0==null ? x null
r1:=read o.q x null
dereference r1 x null

T1 will dereference a null pointer.
Note that T1, having seen o.p == null == o.q, can never
commit.
In a safe language like Java, the lack of isolation is not a big
deal, as the worst that can happen are unexpected exceptions,
which will (by default) cause the transaction to immediately
abort.
In unsafe languages like C and C++, where behaviour in many
situations (e.g. null pointer dereference, unitialized pointer
dereference, array index out of bounds) is undefined, the
consequences could be much worse.

c°2009. Typeset April 6, 2009 16

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

How are we doing?
Let’s look back at the issues with locks
• Taking too few locks — leads to race conditions.
∗ If all shared variables are transactional, type checking

ensures no race conditions
• Taking too many locks — inhibits concurrency
∗ Transactions proceed concurrently

• Locking at too coarse a level — inhibits concurrency
∗ Transactions proceed concurrently

• Taking locks in the wrong order — leads to deadlock
∗ No locks: no deadlock.
∗ However, we can have livelock, if a thread keeps

checking a condition that can never become true.
• Taking the wrong locks
∗ No locks: no wrong locks

• Error recovery
∗ Unexpected exceptions lead to aborted transactions
∗ Dead threads do not “lock-out” live threads.
∗ However, a live thread may be checking a condition that

the dead thread was expected to make true.

c°2009. Typeset April 6, 2009 17

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

Example. Santa
(Adapted from S. Peyton Jones, Beatiful Concurrency.)

class Gate() {
private transactional int permits ;
private final int gateSize ;

public Gate(int size) { gateSize = size ; }

public void pass() {
atomically {

check(permits > 0) ;
permits -= 1 ; } }

public void open() {
atomically { permits = gateSize ; }
atomically { check(permits == 0) ; } } }

class Group {
private final int sz ;
private transactional int room ;

c°2009. Typeset April 6, 2009 18

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

private transactional Gate[] gates ;

public Group(int size) {
atomically {

sz = size ;
room = size ;
gates = new Gate[]{Gate(sz),Gate(sz)} ; }

}

public Gate[] joinGroup() {
atomically {

check(room > 0) ;
room -= 1 ;
return gates ; } }

public transactional Gate[] awaitGroup() {
check(room == 0) ;
Gates oldGates = gates ;
gates = new Gate[] {Gate(sz),Gate(sz)} ;
return oldGates ; } }

c°2009. Typeset April 6, 2009 19

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

class Helper extends Thread {
private final Group group ;

public Helper(Group group) {
this.group = group ; }

protected abstract void helperHook() ;

public void run() {
while(true) {

Gate[] gates = group.joinGroup() ;
gates[0].pass() ;
helperHook() ;
gates[1].pass() ; } } }

class Elf extends Helper {

public Elf(Group elfGroup) {super(elfGroup) ; }

protected void helperHook() { meet with Santa } }

c°2009. Typeset April 6, 2009 20

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

class Santa extends Thread {
private final Group elfGroup ;
private final Group deerGroup ;

public Santa(Group elfGroup, Group deerGroup)
{...}

public void run() {
while(true) {

Gates gates[] ;
Group group ;
atomically {

{ group = deerGroup ;
gates = awaitGroup(group) ; }

£ { group = elfGroup ;
gates = awaitGroup(group) ; } }

gates[0].open() ;
if(group == deerGroup) deliver presents
else meet with elves
gates[1].open() ; } } }

c°2009. Typeset April 6, 2009 21

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

Other interfaces
Above I presented a language based approach:
• I modified the Java language to support TM.

We can also take a library based approach. For example
DSTM2 for Java.
(The following is based on Herlihy, Luchangco, and Moir ‘A
flexible framework for implementing software transactional
memory’, OOPLSA, 2006.)
Objects with transactional fields are defined via programmer
defined interfaces.

@atomic interface INode {
int getValue() ;
void setValue() ;
INode getNext() ;
void setValue(INode) ; }

(Note that only getters and setters are possible. Such objects
are, in essence, records.)
Objects with transactional fields are created via factories that
are synthesized at run time.

c°2009. Typeset April 6, 2009 22

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

public class List {
static Factory<INode> factory =

Thread.makeFactory(INode.class) ;

public void insert(int value) {
INode newNode = factory.create() ;
newNode.setValue(value) ;
newNode.setNext(this.root.getNext()) ;
this.root.setNext(newNode) ; }

...
}

Note that insert is transactional. To execute it safely, we must
create a transaction and execute it atomically.
The equivalent to atomically is a static method named
Thread.doIt.

Thread.doIt(new Runnable() { public void run() {
list.insert(42) ; } });

c°2009. Typeset April 6, 2009 23

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

(Aside: In case you are wondering, DSTM2 provides its own
Thread class. This is not the standard Thread class.)
The implementation of doIt is roughly the following

void doIt(Runnable runnable) {
while(true) {

beginTransaction() ;
try { runnable.run() ; }
catch(Exception e) {

e.printStackTrace();
throw new PanicException("Unhandled

exception " + e); }
if(commitTransaction()) { return ; }

DSTM2 runs above an unmodified JVM.

Hardware Transactional Memory
(Based on Herilhy and Moss, 1993, ISCA.)
Provide each processor with two primary caches.
One is for regular variables. One is for transactional variables.
The transactional cache is
• fully associative — any cache slot can represent any

c°2009. Typeset April 6, 2009 24

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

location
• snoopy — observes bus transactions.

Machine instructions

LT r a — transactional load
ST r a — transactional store
commit label
abort
validate label

Each m.m. word is in one of 3 states
• Memory Only — not cached anywhere
• Exclusive — owned exclusively by one cache
• Shared — cached by one or more caches

Each processor has three states
• No transaction in progress
• Transaction valid
• Transaction invalid

c°2009. Typeset April 6, 2009 25

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

Each entry in the cache is marked with one of 4 tags
• EMPTY — not in use
• NORMAL — not involved in the active transaction
• XCOMMIT — to be discarded on commit
• XABORT — to be discarded on abort

LT and ST instruction actually create 2 entries in the cache.
LT and ST instructions abort the transaction if they can not
obtain access
Example: A successful transaction

NTIP

Addr Value Tag
— — EMPTY
— — EMPTY

LT r1 100−→

Valid

Addr Value Tag
100 42 XCOMMIT
100 42 XABORT

ST r1 100−→

Valid

Addr Value Tag
100 42 XCOMMIT
100 43 XABORT

COMMIT−→

NTIP

Addr Value Tag
— — EMPTY
100 13 NORMAL

c°2009. Typeset April 6, 2009 26

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

Example of with a conflict.
Suppose that the word at location 200 is held by another cache
doing another transaction.
When this cache attempts to obtain ownership of the word, it
is refused and all tentative changes are discarded.

NTIP

Addr Value Tag
— — EMPTY
— — EMPTY

LT r1 100−→

Valid

Addr Value Tag
100 42 XCOMMIT
100 42 XABORT

ST r1 100−→

Valid

Addr Value Tag
100 42 XCOMMIT
100 43 XABORT

ST r2 200−→

Invalid

Addr Value Tag
100 42 NORMAL
— — EMPTY

Other instructions
• commit lab
∗ if mode is valid
· discard XCOMMIT entries

c°2009. Typeset April 6, 2009 27

Concurrent Programming— Slide Set 15 Software Transactional Memory Theodore Norvell

· convert XABORT entries to NORMAL
· mode := “No transaction in progress”

∗ else
· mode := “No transaction in progress”
· branch to lab

• abort
∗ if mode is Valid
· discard XABORT entries
· convert XCOMMIT entries to NORMAL
· mode := “No transaction in progress”

∗ else
· mode := “No transaction in progress”

• validate lab
∗ if mode is Invalid
· mode := “No transaction in progress”
· branch to lab

c°2009. Typeset April 6, 2009 28

