
Concurrent Programming— Slide Set 2a Theodore Norvell

Processes and Synchronization
Outline
• Basic concepts
• Atomicity
• Axiomatic semantics
• Safety, Liveness, and Fairness

c°2003–2009. Typeset on January 30, 2009 1

Concurrent Programming— Slide Set 2a Theodore Norvell

Terminology
state — the value of all program variables
• (x : 0, y : 0), (x : 0, y : 1), (x : 1, y : 0) , ...

atomic action — indivisible program step
• Each atomic action represents a set of pairs of states.
• hx := x + 1i :

{ ((x : 0, y : 0) , (x : 1, y : 0)) ,

((x : 1, y : 0) , (x : 2, y : 0)) , ...}
history (a.k.a. trace) — a possibly infinite sequence of states
• h(x : 0, y : 0) , (x : 1, y : 0) , (x : 1, y : 1)i

programs — describe a set of histories.
• History of concurrent program results from interleaving of

the actions of each process.
• (co hx := x + 1; i hx := x + 1i // hy := x + 1; i co) :
{ h(x : 0, y : 0) , (x : 1, y : 0) , (x : 2, y : 0) , (x : 2, y : 3)i ,
h(x : 0, y : 0) , (x : 1, y : 0) , (x : 1, y : 2) , (x : 2, y : 2)i ,
h(x : 0, y : 1) , (x : 0, y : 1) , (x : 1, y : 1) , (x : 2, y : 1)i , ... }

c°2003–2009. Typeset on January 30, 2009 2

Concurrent Programming— Slide Set 2a Theodore Norvell

Properties
property — a boolean function of histories
• A property holds for a program if it holds for all possible

histories of the program.
• safety property — something bad never happens
∗ E.g. mutual exclusion.
∗ Safety properties can only be refuted by finite histories
∗ I.e. if a safety property does not hold for a history, there

is some point in the history at which we can tell it does
not hold without needing to see any of the history past
that point.

• liveness property — something good eventually happens
∗ E.g. responsiveness
∗ Liveness properties can only be refuted by infinite

histories.
∗ I.e. Any finite history can always be extended in some

way so that the liveness property holds.

c°2003–2009. Typeset on January 30, 2009 3

Concurrent Programming— Slide Set 2a Theodore Norvell

For sequential programs we are particularly interested in two
kinds of properties.
• partial correctness — the program can not terminate in an

unsatisfactory state (safety)
• termination — program eventually terminates (liveness)
• total correctness — partial correctness and termination: A

combination of a safety and a liveness property.
• Note that all properties that are neither safety nor liveness

properties can be expressed as a combination of safety
and liveness properties. (Alpern & Schneider, ‘Defining
liveness’, IPL 21 (1985) 181–185).

c°2003–2009. Typeset on January 30, 2009 4

Concurrent Programming— Slide Set 2a Theodore Norvell

Independence
Read set — the set of variables an operation (part of a
program) reads, but does not alter.
Write set — the set of variables an operation changes the
value of (and may read).
(By variable, we mean any value that is written or read
atomically.)
Two parts of a program are independent if the write set of each
is disjoint from both the read and write sets of the other part.

Wa ∩ (Rb ∪Wb) = ∅ ∧ Wb ∩ (Ra ∪Wa) = ∅
If program parts are independent, then they’re candidates for
concurrent execution.

c°2003–2009. Typeset on January 30, 2009 5

Concurrent Programming— Slide Set 2a Theodore Norvell

Example: Searching in a file

string line[2];
int r = 0;
read line of input into line[0];
while (!EOF) {

co look for pattern in line[r];
if (pattern is in line[r])

write line[r];
//

read line of input into line[(r+1)%2]
oc
r := (r + 1) % 2; }

Note that the two parallel tasks are independent and thus this
is equivalent to a program where they are done sequentially.
This pattern is called “co inside while”.

To reduce process creation overhead can transform to “while
inside co”.
But then we must synchronize the processes.

c°2003–2009. Typeset on January 30, 2009 6

Concurrent Programming— Slide Set 2a Theodore Norvell

string line[2];
bool full[2] := { false }, done := false;
for all i, full[i] iff line[i] has an unsearched line
co # process 1: check for pattern

int l := 0; # the line to search in
loop {

wait for full[l] or done;
exit when(done)

look for pattern in line[l];
if (pattern is in line[l]) write line[l];
full[l] := false;
l := (l+1) % 2; }

// # process 2: read next line
int r = 0; # line to read into
while (!EOF) {

wait for !full[r];
read next line into line[r];
full[r] := true; # line[r] is full
r := (r+1) % 2; }

done := true;
oc }

c°2003–2009. Typeset on January 30, 2009 7

Concurrent Programming— Slide Set 2a Theodore Norvell

At Most Once Property
For variables that fit in one memory word, we can assume that
reads and writes are atomic.
critical reference — a reference in an expression to a variable
that is changed by another process.
An expression E satisfies the At Most Once property iff
• E contains at most one critical reference.

An assignment x := E satisfies the At Most Once property if
either:
1. E contains at most one critical reference and x is not read

by another process, or
2. E contains no critical references.

Expressions and assignments satisfying AMO will appear to
be atomic.

c°2003–2009. Typeset on January 30, 2009 8

Concurrent Programming— Slide Set 2a Theodore Norvell

Why?
• An expression or assignment consists of a sequence of reads

possibly followed by a single write.
• If the AMO property is obeyed, only one of these reads and

writes is to a critical variable.
• All the other reads and writes can be moved without

affecting (or being affected by) other processes.
• We can move all the reads and writes of an AMO expression

or statement together without affecting any process.

Example

w, z := 42, 13; co y := z + 1; // y := w + 1; oc

P1: R(z)13 W(y)14
P2: R(w)42 W(y)43

We can imagine interchanging the order of the 2nd and 3rd
actions

P1: R(z)13 W(y)14
P2: R(w)42 W(y)43

c°2003–2009. Typeset on January 30, 2009 9

Concurrent Programming— Slide Set 2a Theodore Norvell

Example

w, y := 2, 2; co x := w + y; // y := 10; oc

P1: R(w)2 R(y)2 W(x)4
P2: W(y)10

Because x is not read by another process, we can move the
time of the write to x.

P1: R(w)2 R(y)2 W(x)4
P2: W(y)10

Example

w, y := 2, 2; co x := w + y; // y := 10;x := 13; oc

P1: R(w)2 R(y)10 W(x)12
P2: W(y)10 W(x)13

Three swaps move the assignment together.

P1: R(w)2 R(y)10 W(x)12
P2: W(y)10 W(x)13

c°2003–2009. Typeset on January 30, 2009 10

Concurrent Programming— Slide Set 2a Theodore Norvell

Await Statements
To describe one or more statements that execute atomically:
hawait (E) Si
E is a condition (no side effects),
S is a statement block (one or more statements), that is
guaranteed to terminate.
• Will not execute until E is true.
• No parts of S may be interleaved with statements from

other processes.
• Useful for describing algorithms. Later we’ll look at

implementation.

Abbreviations for special cases

Mutual exclusion: await (true) can be omitted:
hawait (true) Si = hSi

Conditional synchronization. S is skip it may be omitted:
hawait (E) skipi = hawait (E)i

• If E satisfies AMO, it can be implemented by spin loop:

hawait (E)i ≈ while(not E) skip
c°2003–2009. Typeset on January 30, 2009 11

Concurrent Programming— Slide Set 2a Theodore Norvell

Example of await: Producer/Consumer
Copy a[n] into b[n], using buf.
Global invariant: 0 ≤ c ≤ p ≤ c + 1 ≤ n + 1

Therefore p = c or p = c + 1.
Global invariant: p = c + 1⇒ buf = a[c]

int buf , p := 0, c := 0 ;

process Producer {
int a[n];
while(p < n) {

hawait(p = c);i
buf := a[p];
p := p + 1; } }

process Consumer {
int b[n] ;
while(c < n) {

hawait(p > c) ;i
b[c] := buf ;
c := c + 1; } }

Can we use spin loops?
Can you prove the invariants?

c°2003–2009. Typeset on January 30, 2009 12

Concurrent Programming— Slide Set 2a Theodore Norvell

Proof Systems
An axiom system describes a set of theorems by means of a set
of axioms and inference rules.
• Axioms: A distinguished set of formulae that are assumed

to be theorems.

• Inference rules: H1, H2, . . . , Hn

C
If all of Hi (the hypotheses) are true, then we can infer that
C (the conclusion) is a true.

(Hilbert-Style) Proof: Sequence of lines, each of which is
an axiom or can be derived from previous lines by inference
rules.
Theorem: A line in a proof.
I’ll use the notation ` P to indicate that P is a theorem.

c°2003–2009. Typeset on January 30, 2009 13

Concurrent Programming— Slide Set 2a Theodore Norvell

Hoare Logic for Sequential Program-
ming

Hoare Triples
• Formulae are (Hoare) triples of the form {P} S {Q}
• P and Q are conditions referring to the values of program

variables in S and other variables.
• S is one or more program statements.
• Interpretation: {P} S {Q} is true iff, whenever execution

of S starts in a state satisfying P , every state it could
terminate in satisfies Q. (partial correctness)

• P is called the precondition
• Q is called the postcondition

c°2003–2009. Typeset on January 30, 2009 14

Concurrent Programming— Slide Set 2a Theodore Norvell

Examples of valid Hoare triples

{x == 23} x := x + 1; {x == 24}

{0 ≤ x < 10} x := x + 1; {1 ≤ x < 11}

{x == X} x := x + 1; {x == X + 1}

{(x + 1)2+(x + 1)+9 < 20} x := x+1; {x2+x+9 < 20}

{(x + 1)2+(x + 1)+9 < 10} x := x+1; {x2+x+9 < 20}

{x == x0} x := x + 2; y := x/2; {y == x0/2 + 1}

{x == 0} while(true) x := x + 1 {x == π}

c°2003–2009. Typeset on January 30, 2009 15

Concurrent Programming— Slide Set 2a Theodore Norvell

{true}
x := 0;
s := 0;
while(x 6= N) { s+ = A[x]; x+ = 1; }
{s ==PN−1

i=0 A[i]}
Examples of invalid Hoare triples

{0 ≤ x < 10} x := x + 1; {1 ≤ x < 10}

c°2003–2009. Typeset on January 30, 2009 16

Concurrent Programming— Slide Set 2a Theodore Norvell

Axioms/Rules for Sequential Programs
The basic rule for assignments is that the precondition must
imply the substituted postcondition

` P ⇒ Qx←E

` {P} x := E {Q}(Assign)

We can extend this to other programming constructs.
For simultaineous assignment to 2 variables:

` P ⇒ Qx,y←E,F

` {P} x, y := E,F {Q}(Assign)

For skip
` P ⇒ Q

` {P} skip {Q}(Assign)

For sequential composition we have
` {P} S {Q}
` {Q} T {R}
` {P} S T {R}(Seq)

For iteration we have
` {P ∧E} S {P}
` P ∧ ¬E ⇒ Q

` {P} while(E)S {Q}(While)

(P here is called a loop invariant)

c°2003–2009. Typeset on January 30, 2009 17

Concurrent Programming— Slide Set 2a Theodore Norvell

For if statements we have
` {P ∧E} S {Q}
` {P ∧ ¬E} T {Q}

` {P} if(E)S elseT {Q}(if)

c°2003–2009. Typeset on January 30, 2009 18

Concurrent Programming— Slide Set 2a Theodore Norvell

An example proof
Here is part of a Hilbert style proof. (Omitting the proofs of
the various implications.)

10 x 6= N ∧ 0 ≤ x ≤ N ∧ s =Px−1
i=0 A[i]

⇒ 0 ≤ x + 1 ≤ N ∧ s +A[x] =
Px

i=0A[i]
...

11
0 ≤ x + 1 ≤ N ∧ s =Px

i=0A[i]

⇒ 0 ≤ x + 1 ≤ N ∧ s =Px+1−1
i=0 A[i]

...

12 x = N ∧ 0 ≤ x ≤ N ∧ s =Px−1
i=0 A[i]

⇒ s =
PN−1

i=0 A[i]
...

13
{x 6= N ∧ 0 ≤ x ≤ N ∧ s =Px−1

i=0 A[i]}
s := s +A[x];
{0 ≤ x + 1 ≤ N ∧ s =Px

i=0A[i]}
Assign(10)

14
{0 ≤ x + 1 ≤ N ∧ s =Px

i=0A[i]}
x := x + 1;

{0 ≤ x ≤ N ∧ s =Px−1
i=0 A[i]}

Assign(11)

15
{x 6= N ∧ 0 ≤ x ≤ N ∧ s =Px−1

i=0 A[i]}
s := s +A[x]; x := x + 1;

{0 ≤ x ≤ N ∧ s =Px−1
i=0 A[i]}

Seq. (13,14)

16
{0 ≤ x ≤ N ∧ s =Px−1

i=0 A[i]}
while(x 6= N) { s+ = A[x]; x+ = 1; }
{s =PN−1

i=0 A[i]}
While (15,12)

c°2003–2009. Typeset on January 30, 2009 19

Concurrent Programming— Slide Set 2a Theodore Norvell

Proof Outlines
A proof outline summarizes the assertions used in a proof.

{true}
x := 0 ;
{x = 0}
s := 0 ;
{Loop Inv : 0 ≤ x ≤ N ∧ s =Px−1

i=0 A[i]}
while(x 6= N) {

{x 6= N ∧ Loop Inv}
s := s +A[x];
{0 ≤ x + 1 ≤ N ∧ s =Px

i=0A[i]}
x := x + 1;

}
{s =PN−1

i=0 A[i]}

If execution starts in a state satisfying the precondition, then
whenever an assertion is reached, it will be satisfied by the
state at that point in time.

c°2003–2009. Typeset on January 30, 2009 20

Concurrent Programming— Slide Set 2a Theodore Norvell

We still need to prove the basic facts such as
{true}x := 0; {x = 0}

{x = 0}s := 0; {Loop Inv}
...

Loop Inv ∧ x = N ⇒ s =
N−1X
i=0

A[i]

c°2003–2009. Typeset on January 30, 2009 21

