
Concurrent Programming— Slide Set 2b Theodore Norvell

Inference rule for Concurrent Execu-
tion

An incorrect attempt
A naive approach is to say that the concurrent execution of
statements establishes postconditions of all the statements.
We might try the following inference rule

` P ⇒ P0 ∧ P1
` {P0} S {Q0}
` {P1} T {Q1}
` Q0 ∧Q1⇒ Q

` {P} co S // T oc {Q}(Co) [Incorrect!]

It allows us to prove correct programs correct. For example

{x = X ∧ y = Y }
co

{x = X} hx := x + 1; i {x = X + 1}
//

{y = Y } hy := y + 1; i {y = Y + 1}
oc
{x = X + 1 ∧ y = Y + 1}
c°2003–2009. Typeset on January 25, 2009 18

Concurrent Programming— Slide Set 2b Theodore Norvell

But it also allows us to prove incorrect programs are correct!

{x = X ∧ y = Y }
co

{y = Y } hx := y + 1; i {x = Y + 1}
//

{x = X} hy := x + 1; i {y = X + 1}
oc
{x = Y + 1 ∧ y = X + 1}

Why? Consider the following interleaving
0 {y = Y } {x = X}
hx := y + 1; i

1 {x = Y + 1}
hy := x + 1; i

2 {y = X + 1}
At point 2, the precondition x = X no longer true.
The assignment x := y + 1 interferes with the assertion
x = X .
Thus the inference rule above is not sound.

c°2003–2009. Typeset on January 25, 2009 19

Concurrent Programming— Slide Set 2b Theodore Norvell

The solution
Instead of Hoare triples, we use proof outlines.
A proof outline is a triple {P}S{Q} where statement S
is annotated by internal assertions. Each substatement of
{P}S{Q} is preceded by an assertion.
The precondition of each statement S is denoted pre(S).
Redo the logic using proof outlines instead of Hoare triples.
Assignment is as before.

` P ⇒ Qx←E

` {P} x := E {Q}(Assign)

Sequential composition requires an internal assertion
` {P} S {Q}
` {Q} T {R}

` {P} S {Q} T {R}(Seq)

So does iteration
` P ∧E ⇒ Q
` {Q} S {P}
` P ∧ ¬E ⇒ R

` {P} while(E) {Q} S {R}(While)

c°2003–2009. Typeset on January 25, 2009 20

Concurrent Programming— Slide Set 2b Theodore Norvell

Now we can state a rule for concurrent composition
` P ⇒ P0 ∧ P1
` {P0} S {Q0}
` {P1} T {Q1}
` Q0 ∧Q1⇒ Q
S does not interfere with {P1}T{Q1}
T does not interfere with {P0}S{Q0}

{P} co {P0} S {Q0} // {P1} T {Q1}oc {Q}(Co)

Interference
An atomic action a interferes with an assertion P if it could
cause P to change from true to false.
But a will only be executed from a state where pre(a) is true,
so we may assume pre(a) is initially true.
So a does not interfere with P iff

` {P ∧ pre(a)} a {P}
A critical assertion of {P0} T {Q0} is an assertion not inside
an await statement.
S does not interfere with {P0} T {Q0} iff no atomic action
in S interferes with any critical assertion in {P0} T {Q0}.

c°2003–2009. Typeset on January 25, 2009 21

Concurrent Programming— Slide Set 2b Theodore Norvell

Techniques for avoiding interference
Disjoint variables

if no variable in an assertion is in the write set of the action,
there is no interference
[[Need example]]

Weakened assertions
Consider

x = 0
co

x = 0
h x := x + 1; i
x = 1

//
x = 0
h x := x + 2; i
x = 2

oc
x = 1 ∧ x = 2

c°2003–2009. Typeset on January 25, 2009 22

Concurrent Programming— Slide Set 2b Theodore Norvell

There is interference:
0 {x = 0} x := x + 2; {x = 0}

We can use a weaker precondition to start each process

x = 0
co

x = 0 ∨ x = 2
h x := x + 1; i
?

//
x = 0 ∨ x = 1
h x := x + 2 ; i
?

oc
?

No interference, so far:
` {(x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1)}

x := x + 2
{x = 0 ∨ x = 2}

c°2003–2009. Typeset on January 25, 2009 23

Concurrent Programming— Slide Set 2b Theodore Norvell

and
` {(x = 0 ∨ x = 1) ∧ (x = 0 ∨ x = 2)}

x := x + 1
{x = 0 ∨ x = 1}

Now complete the outline with the strongest possible
postconditions, & check for interference.

x = 0
co

x = 0 ∨ x = 2
h x := x + 1; i
x = 1 ∨ x = 3

//
x = 0 ∨ x = 1
h x := x + 2 ; i
x = 2 ∨ x = 3

oc
x = 3

c°2003–2009. Typeset on January 25, 2009 24

Concurrent Programming— Slide Set 2b Theodore Norvell

Global invariants
Global invariants are implied by the over-all precondition, and
preserved by all atomic actions.
If G is a global invariant we write

P
Global invariant G
co

L0
a0
L1
a1
L2

//
M0

b0
M1

b1
M2

oc
Q

for
P
co

G ∧ L0
a0
G ∧ L1
a1
G ∧ L2

//
G ∧M0

b0
G ∧M1

b1
G ∧M2

oc
Q

c°2003–2009. Typeset on January 25, 2009 25

Concurrent Programming— Slide Set 2b Theodore Norvell

Now we need to check
• Global invariance: that G is implied by P and preserved

by each action.
P ⇒ G

{G ∧ Li} ai {G}
{G ∧Mi} bi {G}

• Remaining Noninterference: the remaining parts of
non-interference

{Li ∧G ∧Mj} bj {Li}
{Mi ∧G ∧ Lj} ai {Mi}

• Remaining Local Correctness: the remaining parts of
local correctness

P ⇒ L0 ∧M0

{Li ∧G} ai {Li+1}
{Mi ∧G} bi {Mi+1}
G ∧ L2 ∧M2⇒ Q

When all the local assertions Li and Mi use only variables not
changed by the other process, the second step is not needed
(by disjoint variables): global invariance implies freedom from
interference.

c°2003–2009. Typeset on January 25, 2009 26

Concurrent Programming— Slide Set 2b Theodore Norvell

Example: Synchronizing loops (barrier
synchronization)
Assume that A0 and A1 are independent of {c0, c1, s0, s1}

P : c0 = c1 = s0 = s1;
global inv. G0 : s0 ≤ c1 + 1
global inv. G1 : s1 ≤ c0 + 1

P0 : s0 = c0 ≤ c1
while(true) {

P0 : s0 = c0 ≤ c1
s0 += 1;
Q0 : s0 = c0 + 1
A0
Q0 : s0 = c0 + 1
c0 += 1;
R0 : s0 = c0
hawait(c0 ≤ c1)i

}

P1 : s1 = c1 ≤ c0
while(true) {

P1 : s1 = c1 ≤ c0
s1 += 1;
Q1 : s1 = c1 + 1
A1
Q1 : s1 = c1 + 1
c1 += 1;
R1 : s1 = c1
hawait(c1 ≤ c0)i

}

Let G = G0 ∧G1. What we need to show is:

c°2003–2009. Typeset on January 25, 2009 27

Concurrent Programming— Slide Set 2b Theodore Norvell

Global invariance (dv means the proof is by disjoint variables)
• ` P ⇒ G0

• ` {G ∧ P0} s0 += 1; {G0}
• ` {G ∧Q0} c0 += 1; {G0} (dv)
• ` {G ∧ P1} s1 += 1; {G0} (dv)
• ` {G ∧Q1} c1 += 1; {G0}

Remaining Noninterference
• ` {P0 ∧G ∧ P1} s1 += 1; {P0} (dv)
• ` {P0 ∧G ∧Q1} c1 += 1; {P0}
• ` {Q0 ∧G ∧ P1} s1 += 1; {Q0} (dv)
• ` {Q0 ∧G ∧Q1} c1 += 1; {Q0} (dv)
• ` {R0 ∧G ∧ P1} s1 += 1; {R0} (dv)
• ` {R0 ∧G ∧Q1} c1 += 1; {R0} (dv)

Remaining local correctness
• ` P ⇒ P0 • ` {G ∧ P0} s0 += 1; {Q0}
• ` {G ∧Q0} c1 += 1; {R0}
• ` {G ∧R0} hawait(c0 ≤ c1)i {P0}

And symmetrically for postconditions G1, P1, Q1, R1.

c°2003–2009. Typeset on January 25, 2009 28

Concurrent Programming— Slide Set 2b Theodore Norvell

Ghost Variables
Ghost variables (aka thought variables, dummy variables,
and auxiliary variables) are variables that are used for the
purpose of proof, but do not need to be implemented.
Consider

x = 0
co

x = 0
h x := x + 1; i
x = 1

//
x = 0
h x := x + 1; i
x = 1

oc
x = 1

Again there is interference. Note that weakening preconditions
to {x = 0 ∨ x = 1} is to no avail.

c°2003–2009. Typeset on January 25, 2009 29

Concurrent Programming— Slide Set 2b Theodore Norvell

Introduce integer ghost variables a and b, initially 0.

int a := 0, b := 0 ;
x = 0 ∧ a = 0 ∧ b = 0
Global Inv: a + b = x
co

a = 0
h x := x + 1; a := a+ 1; i
a = 1

//
b = 0
h x := x + 1; b := b + 1; i
b = 1

oc
x = 2

Since a and b are each only in the write set of one process,
there is no interference.
That x = 2 finally, follows from the global invariant, together
with a = 1 ∧ b = 1.

c°2003–2009. Typeset on January 25, 2009 30

Concurrent Programming— Slide Set 2b Theodore Norvell

Await statements
Await statements force a delay until an assertion is true before
proceeding.

` {P ∧E} S {Q}
` {P} hawait(E) Si {Q}(Await)

Two techniques:
1. ‘Hide’ assertions via mutual exclusion.
2. Strengthen the precondition via conditional synchroniza-

tion.

Hide assertions

Derived inference rule

` {P} S {Q}
` {P} hSi {Q}(Mutual Exclusion)

c°2003–2009. Typeset on January 25, 2009 31

Concurrent Programming— Slide Set 2b Theodore Norvell

On the left the global invariant is interfered with.

int size := 0 ;
int front := 0 ;
int back := 0 ;
Global Inv:
size = back − front
co

...
hfront := front +1;i
hsize := size - 1 ;i
...

oc

int size := 0 ;
int front := 0 ;
int back := 0 ;
Global Inv:
size = back − front
co

...
hfront := front +1;
size = back − front − 1
size := size - 1 ;i
...

oc

On the right the intermediate state is hidden in the atomic
action.

c°2003–2009. Typeset on January 25, 2009 32

Concurrent Programming— Slide Set 2b Theodore Norvell

Use conditional synchronization

Derived inference rule` P ∧E ⇒ Q

` {P} hawait(E) i {Q}(Conditional synchronization)

Example: On the left, s := s − 1does not respect the global
invariant.

0 {s ≥ 0} s := s− 1; {s ≥ 0}

int s := 0 ;
Global Inv: s ≥ 0
co

... hs := s− 1; i ...
//

... hs := s + 1; i...
oc

int s := 0 ;
Global Inv: s ≥ 0
co

...
hawait(s > 0); i
s > 0
hs := s− 1; i ...

//
... hs := s + 1; i...

oc

Solution. Use conditional synchronization to strengthen the
precondition to s > 0.

c°2003–2009. Typeset on January 25, 2009 33

Concurrent Programming— Slide Set 2b Theodore Norvell

Data Refinement
Introducing one set of variable to represent another.
We do data refinement in three steps:
• Augment: Add new variables and an invariant establishing

their relationship to the preexisting variables.
• Transform: Change the algorithm to use the new variables

rather than certain preexisting variables.
• Diminish: Demote any variables no longer needed to the

status of ghosts

c°2003–2009. Typeset on January 25, 2009 34

Concurrent Programming— Slide Set 2b Theodore Norvell

Example of data refinement
Recall the producer and consumer with a shared buffer.

int buf
int p := 0; # The number of things produced.
int c := 0; # The number of things consumed.
Global inv: 0 ≤ c ≤ p ≤ c + 1

process Producer {
while (true) {

hawait(p = c)i
p = c
buf := next value ;
p := p + 1; } }

process Consumer {
while (true) {

hawait(p > c)i
p = c + 1
use buf
c := c + 1; } }

c°2003–2009. Typeset on January 25, 2009 35

Concurrent Programming— Slide Set 2b Theodore Norvell

Augment with a boolean b.
b says whether p = c or p = c + 1

int buf ;
bool b := true ;
int p := 0, c := 0 ;
Global inv: 0 ≤ c ≤ p ≤ c + 1
Global inv: b = (p = c)

process Producer {
while (true) {
hawait(p = c)i
(p = c) ∧ b
buf := next value ;
hp, b := p+ 1, false; i

}
}

process Consumer {
while (true) {
hawait(p > c)i
(p = c + 1) ∧ ¬b
use buf
hc, b := c + 1, true; i

}
}

c°2003–2009. Typeset on January 25, 2009 36

Concurrent Programming— Slide Set 2b Theodore Norvell

Transform
Rewrite so that p and c are no longer needed to compute the
result.

int buf ;
bool b := true ;
int p := 0, c := 0;
Global inv: 0 ≤ c ≤ p ≤ c + 1
Global inv: b = (p = c)

process Producer {
while (true) {
hawait(b) i
(p = c) ∧ b
buf := next value ;
hp, b := p+ 1, false; i

}
}

process Consumer {
while (true) {
hawait(not b)i
(p = c + 1) ∧ ¬b
use buf
hc, b := c + 1, true; i

}
}

c°2003–2009. Typeset on January 25, 2009 37

Concurrent Programming— Slide Set 2b Theodore Norvell

Diminish
Demote p and c to the status of ghost variables.

int buf ;
bool b := true ;
int p := 0, c := 0;
Global inv: 0 ≤ c ≤ p ≤ c + 1
Global inv: b = (p = c)

process Producer {
while (true) {
hawait(b);i
(p = c) ∧ b
buf := next value ;
hp, b := p+ 1, false; i

}
}

process Consumer {
while (true) {
hawait(not b);i
(p = c + 1) ∧ ¬b
use buf
hc, b := c + 1, true; i

}
}

Now p and c are used only in the reasoning.

c°2003–2009. Typeset on January 25, 2009 38

Concurrent Programming— Slide Set 2b Theodore Norvell

Safety Properties
A property characterizes a set of executions.
A program satisfies a property if every possible execution
(history) of the program is in the set characterized by the
property.
Safety property: Something must always be true (set of
executions in which no undesirable states, or sequences of
states, occur).
• e.g.,

- partial correctness — program never enters a state that is
both terminated and not described by the postcondition.

- absence of deadlock (doesn’t reach a deadlock state)
- mutual exclusion

• finitely refutable: if a safety property does not hold, there is
a finite history that demonstrates this.

• characterized by negation of ‘bad’ things

c°2003–2009. Typeset on January 25, 2009 39

Concurrent Programming— Slide Set 2b Theodore Norvell

Proving Safety
Let B characterize undesirable states
• Show that for any critical assertion C, C ⇒ ¬B, or
• Show that ¬B is a global invariant.
∗ ¬B is true initially,
∗ {pre(S) ∧ ¬B} S {¬B} is valid for all program

statements S

Special Case: Exclusion of configurations

co # process 1
... { P } hai ...

// # process 2
... { Q } hbi ...

oc

If
• P and Q are not interfered with, and
• P ∧Q ≡ false (i.e. ¬P ∨ ¬Q)

then statements a and b can never both be about to be executed.

c°2003–2009. Typeset on January 25, 2009 40

Concurrent Programming— Slide Set 2b Theodore Norvell

Liveness Properties
Something must eventually become true.
• e.g.,

- termination: process must eventually stop
- absence of starvation (processes must eventually get

serviced)
• not finitely refutable: any execution can be extended to

satisfy the property.

c°2003–2009. Typeset on January 25, 2009 41

Concurrent Programming— Slide Set 2b Theodore Norvell

Fairness
Fairness assumptions are assumptions about the nature of the
scheduler.
Often some fairness assumption is required in order for
(liveness) properties to be provable.
An atomic action is eligible if it could be executed next
scheduling policy — determines which eligible action will be
executed next.

bool continue = true;
co

while (continue) skip
//

continue := false;
oc

c°2003–2009. Typeset on January 25, 2009 42

Concurrent Programming— Slide Set 2b Theodore Norvell

Degrees of fairness:

unconditional: Every unconditional atomic action that is
eligible is executed eventually.
weak: Unconditionally fair & every conditional atomic
action for which the condition is continuously true (until it is
executed), will eventually be executed.
strong: Unconditionally fair & every conditional atomic
action for which the condition is true infinitely often, will
eventually be executed.

bool continue := true, try := false ;

co
while (continue) {

try := true ;
try := false ; }

//
h await(try) continue := false ; i

oc

Under weak fairness, the above may not terminate.

c°2003–2009. Typeset on January 25, 2009 43

Concurrent Programming— Slide Set 2b Theodore Norvell

Under strong fairness, it must terminate eventually.
Use fairness:

Often to show liveness properties, one must make use of
fairness assumptions.

c°2003–2009. Typeset on January 25, 2009 44

