
Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Locks and Barriers
Reading Chapter 3 of Andrews.
• Critical sections and locks
∗ Abstract solution
∗ Hardware Solution
∗ Software Solutions
· After-you
· Safe-Sluice
· Peterson’s algorithm

• Barriers
∗ Abstract solution
∗ Various solutions
∗ Application

c°2003 — 2009 Typeset January 28, 2009. 1

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Critical Sections
So how can we implement atomicity?
Suppose a concurrent program has a number of unconditional
atomic actions hS0i , hS1i,..., hSni.
And, no variable written in any of these actions is read
anywhere outside any of the actions.
Then we can implement each of these actions as follows

hSii −→ CSEnter Si CSExit
Si is called a critical section.
We need to ensure that, as a global invariant,
At most one thread has executed CSEnter more often than it

has executed CSExit.

c°2003 — 2009 Typeset January 28, 2009. 2

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

To simplify, we will assume each thread has one critical
section.

init
process CS[i = 1 to n] {

while (...) {
noncritical section
CSEnter
critical section
CSExit }

}

Assume any thread entering its critical section will eventually
leave it.

Mutual Exclusion: At most one thread is in its critical section
at time.
Absence of Deadlock: If two or more threads are trying to
enter, one will succeed.
Absence of Unnecessary Delay: A thread gets to enter CS
without unnecessary delay.
Eventual Entry: A thread trying to enter CS will eventually
succeed.
c°2003 — 2009 Typeset January 28, 2009. 3

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Specification of the problem
Let’s use a variable to count the number of threads that are
executing their critical section.

int #in := 0;
desired global invariant: 0 ≤ #in ≤ 1
process CS[i = 1 to n] {

while (true) {
noncritical section
h#in := #in + 1; i
critical section
h#in := #in − 1; i } }

Both assignments interfere with the desired global invariant.

c°2003 — 2009 Typeset January 28, 2009. 4

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

A correct algorithm (but a failed proof)
We can eliminate the interference from h#in := #in + 1; i
using the techinque of “Strengthen the precondition via
conditional synchronization.”

int #in := 0;
desired global invariant: 0 ≤ #in ≤ 1
process CS[i = 1 to n] {

while (true) {
noncritical section
hawait(#in = 0) #in := #in + 1; i
critical section
#in = 1
h#in := #in − 1; i } }

The problen is that h#in := #in − 1; i in one thread interferes
with the assertion #in = 1 in all other threads.
We could use the conditional synchronization trick again, but
does it make sense that a thread should wait to leave the critical
section?
No. The algorithm is correct. The proof needs fixing.

c°2003 — 2009 Typeset January 28, 2009. 5

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

A better way to count
Because of mutual exclusion, no other thread can be at the
problematic assertion. Can we strengthen its precondition to
show that?
We count the threads in the critical section with a boolean
array in. Now define # to be the population count function

#in =
X

i∈{1,..,n}
toInt(in[i])

where toInt(false) = 0 and toInt(true) = 1

bool in[1 : n] := ([n]false);
global invariant: 0 ≤ #in ≤ 1
process CS[i = 1 to n] {

while (true) {
noncritical section
hawait(#in = 0) in[i] := true; i
critical section
in[i] — by disjoint variables
hin[i] := false; i } }

c°2003 — 2009 Typeset January 28, 2009. 6

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Data refining the coarse-grained solution.
Introduce a boolean variable lock defined by the global
invariant

lock = (#in = 1)
Demote the in array to a ghost variable.

bool lock := false;
bool in[1 : n] := ([n]false); # ghost var
global invariant: 0 ≤ #in ≤ 1 ∧ lock = (#in = 1)
process CS[i = 1 to n] {

while (true) {
noncritical section
hawait(¬lock) in[i] := true; lock := true; i
critical section
in[i] — by disjoint variables
hin[i] := false; lock := false; i } }

Now we are back to our earlier correct algorithm, but with the
improvement of using a boolean counter. (And of having a
correct proof.)
But! How can we implement the first await-statement
atomically?
c°2003 — 2009 Typeset January 28, 2009. 7

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

A Hardware Solution
Modern CPUs offer instructions to aid mutual exclusion. One
such is Test-and-set.
Test-and-set atomically reads and writes a variable as follows.

TS ri rj is hri :=M [rj]; M [rj] := true; i

On a uniprocessor turn off all interrupts.
On a multi-processor, cooperation of bus&caches is needed.
Refine the above course grained solution with:

bool lock := false;
process CS[i = 1 to n] {

while (true) {
noncritical section
do { r1 := &lock ;

TS r0 r1
} while(r0);
critical section
lock := false; } }

c°2003 — 2009 Typeset January 28, 2009. 8

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

However, this does not ensure eventual entry given weak-
fairness.

“Software” Solutions
One can also enforce mutual exclusion using only store and
fetch instructions to communicate.
• Peterson’s tie-breaker algorithm — see next few slides
• The Bakery algorithm — see Andrews’s book
• Dekker’s algorithm — see exercise 3.1 in Andrews’s book

c°2003 — 2009 Typeset January 28, 2009. 9

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

The after-you algorithm
The after-you algorithm for mutual exclusion is

init: int t := 0 ; # turn indicator ## invariant t ∈ {0, 1}

P0 :
t := 1;
hawait(t = 0)i
{t = 0}
CS0

P1 :
t := 0;
hawait(t = 1)i
{t = 1}
CS1

There is no interference since {t = 0}t := 0{t = 0}
This enforces mutual exclusion. Since we can’t have both
t = 0 and t = 1 at the same time.
It is deadlock free, since t must be either 0 or 1.
But it does cause unnecessary delay since P1 can not enter
until P0 sets t to 1.
It does not ensure eventual entry either.
In short after-you is a good start, but not a suitable algorithm.

c°2003 — 2009 Typeset January 28, 2009. 10

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Safe-Sluice
The safe-sluice algorithm is:

init: bool r[2] := [false, false] # Request flags

P0 :
r[0] := true;
hawait(¬r[1])i
{A0}
CS0
r[0] := false;

P1 :
r[1] := true;
hawait(¬r[0])i
{A1}
CS1
r[1] := false;

Safe-sluice enforces mutual exclusion.
But it can lead to deadlock. Consider if both set their request
flags before either executes the await.
We will fix this problem later.
First let’s prove that mutual exclusion is enforced.
We would like to find predicates A0 and A1 such that
• A0 is true when P0 is in its critical section.
• A1 is true when P1 is in its critical section.

c°2003 — 2009 Typeset January 28, 2009. 11

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

• Both can’t be true at once: ¬(A0 ∧A1)
We might try

A0 , r[0] ∧ ¬r[1] A1 , r[1] ∧ ¬r[0]
A0 is true as soon as P0 enters, but the assignment r[1] := true
interferes with this A0.

A second try
We introduce a “ghost variable” t into the safe-sluice.
The purpose of t is to facilitate reasoning and so we don’t need
to include it in the implementation.
When r[0] and r[1], then t = i indicates that Pi was first to set
its request flag..

c°2003 — 2009 Typeset January 28, 2009. 12

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

init: bool r[2] := [false, false] # Request flags
init: int t := 0 # ghost variable ## invariant t ∈ {0, 1}

P0 :
hr[0] := true; t := 1;i
hawait(¬r[1])i
{A0}
CS0
r[0] := false;

P1 :
hr[1] := true; t := 0;i
hawait(¬r[0])i
{A1}
CS1
r[1] := false;

Now consider A0 , r[0] ∧ (¬r[1] ∨ t = 0)
There is no interference since

{A0} hr[1] := true; t := 0i {A0}
And we have

A0 ∧A1
= r[0] ∧ (¬r[1] ∨ t = 0) ∧ r[1] ∧ (¬r[0] ∨ t = 1)
= r[0] ∧ r[1] ∧ t = 0 ∧ t = 1
= false

c°2003 — 2009 Typeset January 28, 2009. 13

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Eliminating deadlock
If both threads get stuck in the safe sluice, then why not use t
to decide which should be unstuck?
If t = i then Pi gets to go.
We change the wait condition. Note Ai is still a postcondition
of the awaits.
t is no longer a mere ghost variable.

init: bool r[2] := [false, false] # Request flags
init: int t := 0 # Turn indicator ## invariant t ∈ {0, 1}

P0 :
hr[0] := true; t := 1; i
hawait(¬r[1] ∨ t = 0)i
{A0}
CS0
r[0] := false ;

P1 :
hr[1] := true; t := 0; i
hawait(¬r[0] ∨ t = 1)i
{A1}
CS1
r[1] := false;

Since t is either 0 or 1, one or the other can always proceed.

c°2003 — 2009 Typeset January 28, 2009. 14

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Splitting the atomic assignment
Peterson’s key insight is that the atomic pair of assignments
can be split (if you split it the right way) and the algorithm still
works. This gives us Peterson’s tie breaker algorithm:

init: bool r[2] := [false, false] # Request flags
init: int t := 0 # Turn indicator ## invariant t ∈ {0, 1}

P0 :
r[0] := true
t := 1;
hawait(¬r[1] ∨ t = 0)i
{B0}
CS0
r[0] := false;

P1 :
r[1] := true
t := 0;
hawait(¬r[0] ∨ t = 1)i
{B1}
CS1
r[1] := false;

Let’s prove mutual exclusion.
We need B0 and B1 such that ¬(B0 ∧B1).
We can’t use B0 = A0 because of interference from
r[1] := true .

c°2003 — 2009 Typeset January 28, 2009. 15

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

We have
{A0} r[1] := true ; t := 0; {A0}

but not
{A0} r[1] := true {A0}

There is a nasty spot between these two statements.
So we introduce a ghost variable n[i] to indicate when Pi is in
the nasty spot.
This gives:

c°2003 — 2009 Typeset January 28, 2009. 16

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

init: bool r[2] := [false, false] # Request flags
init: int t := 0 # Turn indicator ## invariant t ∈ {0, 1}
init bool n[2] := [false, false] # Nasty spot

P0 :
hr[0] := true;n[0] := true;i
ht := 1;n[0] := false;i
hawait(¬r[1] ∨ t = 0)i
{B0}
CS0
r[0] := false;

P1 :
hr[1] := true;n[1] := true;i
ht := 0;n[1] := false;i
hawait(¬r[0] ∨ t = 1)i
{B1}
CS1
r[1] := false;

Now we define
B0 , r[0] ∧ ¬n[0] ∧ (¬r[1] ∨ t = 0 ∨ n[1])
B1 , r[1] ∧ ¬n[1] ∧ (¬r[0] ∨ t = 1 ∨ n[0])

Is Bi true following the wait? Why?
Check interference freedom

c°2003 — 2009 Typeset January 28, 2009. 17

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

{B0} hr[1] := true;n[1] := true ; i {B0}
{B0} ht := 0;n[1] := false; i {B0}
{B0} r[1] := false; {B0}

Check mutual exclusion
B0 ∧B1

=

µ
r[0] ∧ ¬n[0] ∧ (¬r[1] ∨ t = 0 ∨ n[1])

∧ r[1] ∧ ¬n[1] ∧ (¬r[0] ∨ t = 1 ∨ n[0])
¶

= r[0] ∧ ¬n[0] ∧ r[1] ∧ ¬n[1] ∧ t = 0 ∧ t = 1
= false

Using spin loops
Even though the AMO property is not satisfied by

¬r[1] ∨ t = 0
because the operator is an “or” we can implement the await
statements with spin loops.

c°2003 — 2009 Typeset January 28, 2009. 18

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

One way to look at this is that you can write the spin loop in
this form

loop {
exit when ¬r[1]
exit when t = 0 }

{¬r[1] ∨ t = 0}

Clearly either ¬r[1] or t = 0 will be true upon exit from the
loop.
More conventionally we can write a spin loop

while(r[1] ∧ t 6= 0) /*spin*/ ;

Aside: Consider a statement hawait(a ∧ b)i where a and b are
both written by other threads, is it safe to implement it as

while(¬a ∨ ¬b) /*spin*/ ; ?

c°2003 — 2009 Typeset January 28, 2009. 19

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

A full proof outline
Throughout this presentation I’ve been a bit lax.
Really one ought to create a full proof outline and check all
interference conditions

init: bool r[2] := [false, false] # Request flags
init: int t := 0 # Turn indicator ## invariant t ∈ {0, 1}
init bool n[2] := [false, false] # Nasty spot

P0 :
{true}
hr[0] := true;n[0] := true; i
{C0 : r[0] ∧ n[0]}
ht := 1;n[0] := false; i
{Inv 0 : r[0] ∧ ¬n[0]}
hawait(¬r[1] ∨ t = 0)i
{B0}
CS0
r[0] := false;

P1 :
{true}
hr[1] := true;n[1] := true; i
{C1 : r[1] ∧ n[1]}
ht := 0;n[1] := false; i
{Inv 1 : r[1] ∧ ¬n[1]}
hawait(¬r[0] ∨ t = 1)i
{B1}
CS1
r[1] := false;

c°2003 — 2009 Typeset January 28, 2009. 20

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

We need to prove 9 triples to show P1 does not interfere with
P0’s assertions.

{C0} hr[1] := true;n[1] := true ; i {C0}
{C0} ht := 0;n[1] := false; i {C0}
{C0} r[1] := false {C0}

{Inv 0} hr[1] := true;n[1] := true ; i {Inv 0}
{Inv 0} ht := 0;n[1] := false; i {Inv 0}
{Inv 0} r[1] := false {Inv 0}
{B0} hr[1] := true;n[1] := true ; i {B0}
{B0} ht := 0;n[1] := false; i {B0}
{B0} r[1] := false {B0}

Since C0 and D0 do not refer to variables that are modified by
P1 the first 6 are trivial by disjoint variables.

c°2003 — 2009 Typeset January 28, 2009. 21

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

The not quite Peterson’s algorithm
Peterson’s paper claims that his algorithm is a simple
combination of safe-sluice and after-you.
But it is perhaps not as simple as he said.
If you split the atomic assignment hr[0] := true; t := 1; i the
other way to get

t := 1; r[0] := true ;
then the algorithm does not enforce mutual exclusion.
Exercise: Find a sequence of actions that lets both threads into
their critical sections.
Exercise: Suppose we attempt proof of this algorithm with the
same strategy and the same Bi. Find the interference:

{B0} ht := 0;n[1] := true; i {B0}
{B0} hr[1] := true;n[1] := false; i {B0}
{B0} r[1] := false; {B0}

Exercise: Extend the proof to the N -way Peterson’s algorithm.

The slides leading up to this one are based on work by Peterson
(of course), Dijkstra, Feijn and Bijlsma, and van de Snepsheut.

c°2003 — 2009 Typeset January 28, 2009. 22

