
Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Barrier Synchronization
Consider co-in-while structure

while(true) {
co [i = 0 to n− 1] {

code to implement task i } }

To convert to while-in-co form, we must synchronize:

co [i = 0 to n− 1] {
while (true) {

code to implement task i
wait for all n tasks to complete }

}

c°2003 — 2008 Typeset February 4, 2009. 22

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Mutual inclusion

init: int s[n] := [(n)0]; # Number of rounds started.
init: int c[n] := [(n)0] ; # Number of rounds completed.

Pi :
s[i] := 1 ;
Round(i,0)
c[i] := 1 ;
Barrier
s[i] := 2 ;
Round(i,1)
c[i] := 2 ;
Barrier
...

Pj :
s[j] := 1 ;
Round(j,0)
c[j] := 1 ;
Barrier
s[j] := 2 ;
Round(j,1)
c[j] := 2 ;
Barrier
...

Working: s[i] = c[i] + 1

In barrier: s[i] = c[i]

Thus: c[i] ≤ s[i] ≤ c[i] + 1, for all i, is a global invariant.

c°2003 — 2008 Typeset February 4, 2009. 23

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Desired Global Invariant: We require the barrier to delay the
start of round k + 1 until all threads have completed round k.

s[i] = k + 1⇒ c[j] ≥ k, for all i, j, k
Equivalently:

s[i] ≤ c[j] + 1, for all i, j
Define1

min(c) , min
j∈{0,..n}

c[j]

The desired global invariant can be stated as:
s[i] ≤ min(c) + 1, for all i

An Abstract solution

int s[n] := [(n)0], c[n] := [(n)0] ;
process Worker[i = 0 to n− 1] {

while (true) {
s[i] = c[i] = min(c)
s[i] += 1 ;
code to implement task i
c[i] += 1 ;
hawait(min(c) = c[i])i }

}
1 {0, ..n} means the first n natural numbers.

c°2003 — 2008 Typeset February 4, 2009. 24

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Proof sketch:
• Local correctness.
∗We need to show that s[i] = c[i] is a loop invariant.
∗ And also that c[i] = min(c) is a loop invariant.

• Noninterference.
∗ No other thread changes s[i] or c[i], and so s[i] = c[i] is

not interfered with.
∗ Let j 6= i We must check that

` {c[i] = min(c)} c[j] += 1 {c[i] = min(c)}
• Global invariance
∗ ‘s[i] ≤ min(c) + 1, for all i’ is true initially since 0 ≤ 1
∗We must check ‘s[i] ≤ min(c) + 1, for all i’ is preserved

by each assignment. (a) For all i ∈ {0, ..n}
` {s[i] ≤ min(c) + 1 ∧ s[i] = c[i] = min(c)}

s[i] += 1
{s[i] ≤ min(c) + 1}

⇐ Subset the precondition
` {s[i] = min(c)} s[i] += 1 {s[i] ≤ min(c) + 1}

and (b) for all i, j ∈ {0, ..n}
` {s[i] ≤ min(c) + 1} c[j] += 1 {s[i] ≤ min(c) + 1}

c°2003 — 2008 Typeset February 4, 2009. 25

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Lots of Counters
Data refine the abstract solution
• Augment with an infinite array counts. counts [k] is the

number of threads that have completed round k. Formally
we have a global invariant

counts [k] = |{j | c[j] ≥ k}| , for all k > 0

Introduce local variable k to track s[i].
• Transform: Replace ‘min(c) = c[i]’ by ‘counts [k] = n’
• Demote c and s to ghost variables.

int s[n] := [(n)0], c[n] := [(n)0] ;
int counts [1..∞] := ([1..∞]0)
process Worker[i = 0 to n− 1] {

for[k = 1 to∞] {
s[i] += 1 ;
code to implement task i
hcounts [k] += 1; c[i] += 1; i
hawait(counts [k] = n)i
c[i] = min(c) }

}

c°2003 — 2008 Typeset February 4, 2009. 26

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Proof that the transformation of the await condition is correct:
• Recall that counts and c are linked by the abstraction

relation
counts [k] = |{j | c[j] ≥ k}| , for all k

• Now calculate:
counts [k] = n

= The abstraction relation
|{j | c[j] ≥ k}| = n

= Since the size of the c array is n
c[j] ≥ k, for all j ∈ {0, ..n}

= Since k is equal to c[i] at this point
c[j] ≥ c[i], for all j ∈ {0, ..n}

= Definition of min(c)
c[i] = min(c)

c°2003 — 2008 Typeset February 4, 2009. 27

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Three Shared Counters

int count0 := 0, count1 := n, count2 := n ;
process Worker[i = 0 to n− 1] {

while(true)
code to implement task i
< count0 += 1 ; >
< count1 −= 1 ; >
< await (count0 = n) ; >

code to implement task i
< count1 += 1 ; >
< count2 −= 1 ; >
< await (count1 = n) ; >

code to implement task i
< count2 += 1 ; >
< count0 −= 1 ; >
< await (count2 = n) ; > }

}

This still requires atomic increment and decrement operations.

c°2003 — 2008 Typeset February 4, 2009. 28

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

One counter
Since only counts[k] is referenced, (and all k’s are kept almost
in sync), we only need one count variable. A coordinator
resets it to 0 so it can represent the next item of counts.

int s[n] := [(n)0], c[n] := [(n)0] ;
int counts[1..∞] := ([1..∞]0) ;
int count := 0 ;
process Worker[i = 0 to n− 1] {

for[k = 1 to∞] {
count = counts [k]
s[i] += 1 ;
code to implement task i
< count += 1; counts [k] += 1; c[i] += 1; >
< await (count = 0) >
c[i] = min(c) and count = counts [k + 1]} }

process coordinator {
while(true) {

< await(count = n) >
∀i, c[i] = min(c)
count := 0; } }

c°2003 — 2008 Typeset February 4, 2009. 29

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Here count represents counts [k] until the coordinator resets it.
Problems:
1. Still need an atomic increment
2. Unless all threads ‘notice’ count = 0 at ‘about’ the same

time: deadlock.

Solutions
1. Distribute the representation of count among the threads.
∗ Data refine count with an array of 0’s and 1’s that sums

to count:

count =
n−1X
i=0

arrive[i]

2. Tell threads that round is over one at a time.
∗ Use a separate flag to inform each thread

continue[i]⇒ c[i] = min(c)

c°2003 — 2008 Typeset February 4, 2009. 30

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Coordinator
Global invariants: count =

Pn−1
i=0 arrive [i] and

continue[i]⇒ c[i] = min(c), for all i

int count := 0, c[n] = [(n) 0] ; — ghost variables
int arrive[n] := ([n]0) ;
bool continue[n] := ([n]false) ;

process Worker[i = 0 to n− 1] {
while (true) {

code to implement task i;
harrive[i] := 1; count += 1; c[i] += 1; i
hawait(continue[i])i
continue[i] := false; } }

process Coordinator {
while (true) {

for [i = 0 to n− 1] hawait(arrive[i] = 1)i
count = n (and ∴ ∀i, c[i] = min(c))
for [i = 0 to n−1] harrive[i] := 0; count −= 1; i
count = 0 ∧ ∀i, c[i] = min(c)
for [i = 0 to n− 1] continue[i] := true; } }

c°2003 — 2008 Typeset February 4, 2009. 31

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Using only arrive
Global invariants: count =

Pn−1
i=0 arrive [i] and

arrive[i] = 0⇒ c[i] = min(c), for all i

int count := 0, c[n] = [(n) 0] ; — ghost variables
int arrive[n] := ([n]0) ;

process Worker[i = 0 to n− 1] {
while (true) {

code to implement task i;
harrive[i] := 1; count += 1; c[i] += 1; i
hawait(arrive[i] = 0)i} }

process Coordinator {
while (true) {

for [i = 0 to n− 1] hawait(arrive[i] = 1)i
count = n (and ∴ ∀i, c[i] = min(c))
for [i = 0 to n−1] harrive[i] := 0; count −= 1; i

} }

c°2003 — 2008 Typeset February 4, 2009. 32

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Flag Synchronization Principles
• A thread that waits for a synchronization flag to be set

should be the one to clear the flag.
• A flag should not be set until it is known to be clear.

Deadlock
• Exercise: show that neither of the last two algorithms can

deadlock.

Inefficiencies
• Extra thread for Coordinator

• Coordinator is bottleneck.
• Solutions
∗ Combining Tree Barrier
∗ Symmetric Barrier

c°2003 — 2008 Typeset February 4, 2009. 33

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Asymmetric 2-thread barrier — abstract
version
Global invariants

s[i] ≤ c[j] + 1, for all i and j (desired invariant)
c[i] ≤ s[i] ≤ c[i] + 1, for all i (locally true)
c[r] ≤ c[l] (asymmetry)

int c[2] := [0, 0], s[2] := [0, 0] ;

Root repeats:

s[r] += 1 ;
Round
hawait(c[r] < c[l])i
c[r] < c[l]
c[r] += 1;
c[r] = c[l]

Leaf repeats:

c[r] = c[l]
s[l] += 1 ;
Round
c[l] += 1 ;
c[r] < c[l]
hawait(c[r] = c[l]) i

c°2003 — 2008 Typeset February 4, 2009. 34

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Asymmetric 2-thread barrier — state version

as before +
q = 0⇒ c[r] = c[l]

q = 1⇒ c[r] < c[l]

int c[2] := [0, 0], s[2] := [0, 0], q := 0 ;

Root repeats:

s[r] += 1 ;
Round
hawait(q = 1)i
q = 1
< c[r] += 1; q := 0; >

Leaf repeats:

q = 0
s[l] += 1 ;
Round
hc[l] += 1; q := 1; i
hawait(q = 0)i
q = 0

c°2003 — 2008 Typeset February 4, 2009. 35

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Asymmetric 2-thread barrier — flag version

as before +
arrive ⇒ q = 1

continue ⇒ q = 0

q = 2⇒ c[r] = c[l]

int c[2] := [0, 0], s[2] := [0, 0], q := 0 ;
boolean arrive := false, continue := false;

Root repeats:

s[r] += 1 ;
Round
hawait(arrive)i
q = 1
hc[r] += 1; q := 2;
arrive := false; i
q = 2
hcontinue := true; q := 0; i

Leaf repeats:

q = 0
s[l] += 1;
Round
hc[l] += 1; q := 1;
arrive := true; i
hawait(continue)i
continue := false;

c°2003 — 2008 Typeset February 4, 2009. 36

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Asymmetric 2-thread barrier — no ghosts
2 threads. One is the “root” one is the “leaf”

Root

Leaf

Arrive

Root

Leaf

Continue

time

boolean arrive := false, continue := false;

Root repeats:

Round
hawait(arrive)i
arrive := false;
continue := true;

Leaf repeats:

Round
arrive := true;
hawait(continue) i
continue := false;

c°2003 — 2008 Typeset February 4, 2009. 37

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Combining tree barrier
Threads are arranged in a binary tree.
Each node waits for its children to tell it they are at the barrier.
Then it tells its parent that it, and thus its children, have
reached the barrier.
Until the root knows that all threads have reached the barrier.
Then each parent tells its children to proceed.
And then proceeds itself.

Root

Branch

Leaf Leaf Leaf Leaf

Branch
Arrive Arrive Arrive Arrive

Root

Branch

Leaf Leaf Leaf Leaf

Branch

Arrive Arrive

Root

Branch

Leaf Leaf Leaf Leaf

Branch

Root

Branch

Leaf Leaf Leaf Leaf

Branch

ContinueContinue

ContinueContinue Continue

c°2003 — 2008 Typeset February 4, 2009. 38

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Symmetric barrier
Idea
• Every thread does the same number of steps.
• Threads tell others that they are done and that other threads

are done, until all threads know that all others are done

Two thread barrier

init: int arrive[2] := [0, 0];

Thread i
hawait(arrive[i] = 0)i
arrive[i] := 1;
hawait(arrive[j] = 1) i
arrive[j] := 0;

Thread j
hawait(arrive[j] = 0)i
arrive[j] := 1;
hawait(arrive[i] = 1)i
arrive[i] := 0;

c°2003 — 2008 Typeset February 4, 2009. 39

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Multiple thread version.
For 2k threads each thread engages in k stages, each similar to
the above. At each stage it sends information about itself and
about all other threads it “knows about” to another thread.
• After m stages, the thread ‘knows’ that 2m threads have

reached the barrier.
• Thread i sends information to thread i ⊕ 2m in stage m.

(counting from 0).
• (i⊕ 2m means (i + 2m)modn)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

0,1

0,1,2,3

1 2 3 4
5 6

4,5

c°2003 — 2008 Typeset February 4, 2009. 40

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Multiple thread. Implementation
Count the number stages passed.
ª is subtraction mod n; k is dlog2(n)e
Global invariant:
for all r ∈ N, j ∈ {0, 1, ..., n− 1}, p ∈ ©0, 1, ..., 2rmod k − 1ª ,

arrive[j] ≥ r⇒ c[j ª p] ≥ br/kc

init: int arrive[i] := [(n)k − 1] ;
Thread i repeats
s[i] += 1 ;
round
c[i] += 1 ;
int m := 0 ;
Inv. (∀p ∈ {0.1, ...2m − 1} · c[iª p] ≥ c[i])
while(m < k) {

arrive[i] += 1 ;
arrive[i] = c[i]× k +m
hawait(arrive[iª 2m] ≥ arrive [i])i
m += 1 ; }

Needs infinite capacity ints, though.

c°2003 — 2008 Typeset February 4, 2009. 41

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Data Parallel Algorithms
Parallel Prefix: ∀i · 0 ≤ i < n⇒ sum[i] =

Pi
j=0 a[j]

int a[n], sum[n], old[n] ;
process Sum[i = 0 to n− 1] {

int d := 1; # distance
sum[i] := a[i]; # initialize to a
barrier (i);
while (d < n) {

old[i] := sum[i];
barrier(i);
if ((i− d) >= 0) sum[i] += old[i− d];
barrier(i);
d += d; } } # double the distance

c°2003 — 2008 Typeset February 4, 2009. 42

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Jacobi Iteration (Laplace’s eqn):

real grid[0:n+1,0:n+1], newgrid[0:n+1,0:n+1];
bool converged := false;
process Grid[i = 1 to n, j = 1 to n] {

while (!converged) {
newgrid[i,j] :=
(grid[i-1,j] + grid[i+1,j] +
grid[i,j-1] + grid[i,j+1]) / 4;
<converged := (test for convergence);>
barrier();
grid[i,j] := newgrid[i,j];
barrier(); } }

c°2003 — 2008 Typeset February 4, 2009. 43

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Bag of Tasks

while (there are more tasks to do) {
get task from the bag;
execute the task, possibly
generating new ones;
}

• Task is independent unit of work.
• Bag represents collection of tasks.
• Scalable — set number of workers to number of processors.
• Load balanced — if a tasks takes longer, other workers will

do more tasks.

c°2003 — 2008 Typeset February 4, 2009. 44

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

Example: Adaptive Quadrature

process Worker[w = 1 to PR] {
while(true) {

barrier () ;
double l, r, fl, fr, lrarea, m, fm, larea, rarea;
while (true) {

<idle ++ ; >
< await (bag.size() > 0 || idle == PR)

if(idle==PR) break ;
bag.get((l, r, fl, fr, lrarea)) >

< idle--; >
m := (l+r)/2; fm := f(m);
larea := (fl + fm) * (m - l) / 2;
rarea := (fm + fr) * (f - m) / 2;
if(abs(larea+rarea - lrarea) > EPS) {

<bag.put((l, m, fl, fm, larea));>
<bag.put(((m, r, fm, fr, rarea));> }

else {
<total += larea+rarea;> } }

barrier(); } }

c°2003 — 2008 Typeset February 4, 2009. 45

Concurrent Programming— Slide Set 3. Locks and Barriers Theodore Norvell

process Coordinator() {
while(true) {

idle := 0 ;
total := 0 ;
put the next top level task in the bag
barrier() ;
assert the bag is empty
output total
barrier() ; } }

c°2003 — 2008 Typeset February 4, 2009. 46

