
Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Semaphores
Mutual exclusion revisited

Recall the mutual exclusion problem for n threads
Coarse Grained Solution

We used an array of n boolean variables in

define #in ,
X

i∈{1,..,n}
toInt(in[i])

where toInt(false) = 0 and toInt(true) = 1

bool in[1 : n] := ([n]false);
global invariant: 0 ≤ #in ≤ 1
process CS[i = 1 to n] {

while (true) {
noncritical section
hawait(#in = 0) in[i] := true; i
critical section
in[i] — by disjoint variables
hin[i] := false; i } }

c°2003–2009 Typeset February 6, 2009 1

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Data refining – augment, transform, diminish

We will augment with a tracking variable s which is 1 minus
the number in. Its invariant is

s = 1−#in (and hence s ∈ {0, 1})
So s = 1 means that no thread is in the critical section, while
s = 0 means 1 thread is in the critical section.

bool in[1 : n] := ([n]false);
int s := 1;
global invariant: 0 ≤ #in = 1− s ≤ 1
process CS[i = 1 to n] {

while (true) {
noncritical section
hawait(s > 0) in[i] := true; s := s− 1; i
critical section
in[i] (and hence s = 0)
hin[i] := false; s := s + 1i } }

This is very similar to our lock variable solution. The relation
is

lock = (s > 0)

c°2003–2009 Typeset February 6, 2009 2

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Producer and consumer farms
Earlier we looked at a single producer sending information to
a single consumer. Now we allow lots of produers and lots of
consumers. Each message produced is to be consumed exactly
once.
We have n threads; m are producers that produce things and
the rest are consumers that use the things. They communicate
by a shared buffer buf.
Each product should be consumed once and only once.
We now need mutual exclusion on the buffer.
Count the number of things produced (p) and the number
consumed (c)
Global invariant: 0 ≤ p− c ≤ 1
Therefore p = c or p = c + 1.
Global invariant for mut. ex.: 0 ≤ #in ≤ 1
Exercise: Show that the algorithm on the next slide is
interference free. Hint, from 0 ≤ #in ≤ 1 you can see that

in[i]⇒ ¬in[j], for i 6= j

c°2003–2009 Typeset February 6, 2009 3

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

thing buf ;
int p := 0, c := 0 ;
bool in[1 : n] := ([n]false)
Global Inv: 0 ≤ p− c ≤ 1
Global Inv: 0 ≤ #in ≤ 1

process Producer[i = 1 to m] {
while(...) {

hawait(p = c ∧#in = 0) in[i] := true;i
fill buf
p = c ∧ in[i]
hp := p+ 1; in[i] := false;i } }

process Consumer[i = m + 1 to n] {
while(...) {

hawait(p > c ∧#in = 0) in[i] := true;i
empty buf
p = c + 1 ∧ in[i]
hc := c + 1; in[i] := false;i } }

c°2003–2009 Typeset February 6, 2009 4

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

The protocol cycles through 4 states: empty, filling, full,
emptying.

State #in p = c p > c

empty 0 true false
filling 1 true false
full 0 false true
emptying 1 false true

However, the difference between the emptying and filling
states only matters to the thread that is doing the emptying
and filling. All other threads only need to know that they are
excluded from doing anything. The thread that is emptying or
filling of course knows which it is doing. So we only need to
represent three states: empty, full, busy.
We could now data refine using one variable to represent the
state.
Instead, for reasons that you’ll soon see, we use two variables
(e and f) to represent the three states

State #in p = c p > c e f

empty 0 true false 1 0
busy 1 ? ? 0 0
full 0 false true 0 1

c°2003–2009 Typeset February 6, 2009 5

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

The new global invariant is
e, f ∈ {0, 1}

∧ (e = 1⇒ p = c ∧ 0 = #in)
∧ (f = 1⇒ p > c ∧ 0 = #in)
∧ (e = f = 0⇒ 1 = #in)

As an aside, I’ll note two consequences of our global
invariants:

0 ≤ e + f ≤ 1
and

e + f = 1−#in
Now we data refine, replacing in, p, and c with e and f .

c°2003–2009 Typeset February 6, 2009 6

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Producer and consumer farms: Final version

thing buf ;
int p := 0, c := 0 ; ## Global Inv: 0 ≤ p− c ≤ 1
bool in[1 : n] := ([n]false)
int e := 1;
int f := 0;## Global Inv: see previous page for e and f .

process Producer[i = 1 to m] {
while(...) {

Wait until Empty; move to Busy
hawait(e > 0) in[i] := true; e := e− 1; i
fill buf
Move to Full
hp := p+ 1; in[i] := false; f := f + 1; i } }

process Consumer[i = m+1 to n] {
while(...) {

Wait until Full; move to Busy
hawait(f > 0) in[i] := true; f := f − 1; i
empty buf
Move to Empty
hc := c + 1; in[i] := false; e := e + 1; i } }

c°2003–2009 Typeset February 6, 2009 7

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

An exercise
Note that all we have proved is that 0 ≤ p − c ≤ 1. I.e.
that the consumers never get ahead of the producers, and that
the producers never get more than one message ahead of the
consumers. Can you extend the proof to show that no message
is ever received more than once and that no message is ever
overwritten?

c°2003–2009 Typeset February 6, 2009 8

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

What have we learned?
What have we learned from these two examples?
In both cases we ended up using await statements of only two
forms

hawait(s > 0) T s := s− 1i
hU s := s + 1i

where s is an int variable initialized to a nonnegative integer
and where T and U change only ghost variables.
It turns out that all syncronization problems can be solved
using only such statements, thus, we give them a special name
and syntax.

c°2003–2009 Typeset February 6, 2009 9

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

A semaphore is
a shared integer variable, s, manipulated only by three
operations:
declare: sem s := i # i ≥ 0.Default is i = 0.
P (probeer te verlagen = try to decrease):

PT (s) , hawait(s > 0) T s := s− 1i
V (verhoog ' increase):

VU(s) , hU s := s + 1i
invariant s ≥ 0
• s is non-negative
• U and T are sequences of statements that change only ghost

variables
• General semaphore: can take on any nonnegative value.
• The implementation of semaphores using await statements

is great for reasoning about semaphores. In practive,
semaphores are often provided as a language or library
primitive and synchronization constructs such as await
statements are built using semaphores.

Fairness. V may release a waiting thread. Selection may be

c°2003–2009 Typeset February 6, 2009 10

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

• Weakly fair,
• Strongly fair, or
• FIFO

Derived Inference Rules
(R ∧ g > 0) {T} Qg←(g−1)

{R} PT (g) {Q}

R {U} Qg←(g+1)
{R} VU(g) {Q}

c°2003–2009 Typeset February 6, 2009 11

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Binary semaphores
Binary Semaphore: either 0 or 1.
• declare: binsem s := i # i ∈ {0, 1}.Default is i = 0.
• Invariant s ∈ {0, 1}
• P (probeer te verlagen = try to decrease):

PT (s) , hawait(s = 1) T s := 0i
• V (verhoog ' increase):

VU(s) , hU s := 1i
For this course we use general semaphores as
• They are only a little bit more complicated
• They are a bit more useful.

c°2003–2009 Typeset February 6, 2009 12

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Mutual Exclusion
As noted above we use s to count 1 minus the number of
threads in their critical section

int s := 1;
Global Inv: s ∈ {0, 1}

process CS[i = 1 to n] {
while (true) {

noncrit. section
< await(s > 0)

s −= 1;
> ## s = 0
critical section
< s += 1; > }

}

sem s := 1;
Global Inv: s ∈ {0, 1}

process CS[i = 1 to n] {
while (true) {

noncrit. section
P (s) ;
critical section
V (s) ; }

}

c°2003–2009 Typeset February 6, 2009 13

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Semaphores and Rights
Often we can think about semaphores as repositories for rights
(or permissions, if you prefer)
—much as a bank account is a repository for money.
• The value of the semaphore is the number of rights it holds.
• A thread can request to acquire a right from a semaphore by

calling P .
• A right flows from the semaphore to the thread when the

call to P completes.
• A thread can send a right to a semaphore by calling: V .

c°2003–2009 Typeset February 6, 2009 14

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Mutual exclusion
In this case, there is one right, which is the right to enter a
critical section.
Initially the semaphore holds the right.
Each thread obtains the right (P) before entering its critical
section and at the same time deprives the other threads of the
oportunity to obtain the right until it has been released back to
the semaphore (V).
We can see this in a picture. The black dot is the right to
execute a critical section

c°2003–2009 Typeset February 6, 2009 15

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

2 thread barrier synchronization
Initially each thread holds the right to execute its next round.

c°2003–2009 Typeset February 6, 2009 16

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

2 thread barrier synchronization
Two thread case:

sem arrive[2] := [0,0] ;
int s[2] := [0,0], c[2] := [0,0] ;
arrive[i] = 1⇒ c[i] ≥ c[1− i], for all i ∈ {0, 1}

process Worker0 {
while (true) {

c[0] = min(c)
++s[0];
round
++c[0];
V(arrive[0]);
P(arrive[1]);}

}

process Worker1 {
while (true) {

c[1] = min(c)
++s[1];
round
++c[1];
V(arrive[1]);
P(arrive[0]);}

}

Can be extended to n threads by appropriate choice of
semaphores.

c°2003–2009 Typeset February 6, 2009 17

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Barrier Synchronization: Coordinator
• Workers
∗ Signal arrival with V (done)
∗Wait on P (continue[i])

• Coordinator
∗Waits on n of P (done)
∗ Releases all workers with V (continue[i])

sem done := 0 ;
sem continue[n] := ([n] 0) ;
process Worker[i = 0 to n-1] {

while (true) {
round i;
V(done);
P(continue[i]); } }

process Coordinator {
while (true) {

for [i = 0 to n-1] P(done);
for [i = 0 to n-1] V(continue[i]); } }

c°2003–2009 Typeset February 6, 2009 18

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Rights point of view. There are n rights to continue to the
next round.

c°2003–2009 Typeset February 6, 2009 19

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Split Binary Semaphore
• Use semaphores to signal data state rather than thread state.
• split binary semaphore — two or more binary semaphores

that have the property that at most one is 1 at any time.
• Initially only one is 1.
• Invariant 0 ≤ s0 + s1 + ... ≤ 1
• In every execution path, a P operation on one semaphore

is followed (eventually) by a V on a (possibly different)
semaphore.

• Code between P and V executed in mutual exclusion.

Example: Mutual exclusion on a buffer

c°2003–2009 Typeset February 6, 2009 20

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Producer and consumer farms

thing buf ;
int e := 1;
int f := 0;
Global Inv: 0 ≤ e+ f ≤ 1

process Producer[i = 1 to m] {
while(...) {

Calculate the next value
Wait until Empty; move to Busy
P(e)
fill buf
Move to Full
V(f)} }

process Consumer[i = m+1 to n] {
while(...) {

Wait until Full; move to Busy
P(f)
use buf
Move to Empty
V(e) } }

c°2003–2009 Typeset February 6, 2009 21

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Rights point of view. There is one right, which is the right to
use the buffer.

c°2003–2009 Typeset February 6, 2009 22

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Semaphores as Counters
System with N (identical) resources that are to be shared.
• Use semaphore to represent number available,
• P to obtain one right to use a resource,
• V to release one right to use a resource,.

Consider producer-consumer with bounded buffer of size N
and multiple producers and consumers.
Here there are N rights, representing the right to use the
buffer.

We also need 1 right representing the right to access the front
of the buffer and one right representing the right to use the rear
of the buffer.

c°2003–2009 Typeset February 6, 2009 23

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Producer and Consumer

T buf[N];
int front = 0; # next cell to read
int rear = 0; # next cell to write
sem empty = N; # Num. empty cells
sem full = 0; # Num. full cells
sem mutexA = 1;
sem mutexF = 1;

void Add(int x) {
P(empty);
P(mutexA);
buf[rear] := x;
rear := (rear+1) % N;
V(mutexA);
V(full); }

T Fetch() {
P(full);
P(mutexF);
T result := buf[front];
front := (front+1) % N;
V(mutexF);
V(empty);
return result; }

c°2003–2009 Typeset February 6, 2009 24

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Implementing arbitrary synchroniza-
tion with semaphores
Next we look at a technique that lets you implement any set of
await statements using only (binary) semaphores and a few int
variables.
This technique is called passing the baton.
I’ll present the technique by example. The example is ...

The Readers and Writers Problem
• Several threads share a database,
• Readers — several can access concurrently.
• Writers — must have exclusive access.

Suppose that nr counts the number of readers and nw the
number of writers.
Desired invariant

nw = 0 ∨ (nw = 1 ∧ nr = 0)
Two solution forms:
1. Mutual exclusion — use semaphore for lock and count the

readers.

c°2003–2009 Typeset February 6, 2009 25

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

∗ First reader in acquires lock, last reader out releases it.
∗Writer acquires lock and releases when it’s done.

2. Conditional synchronization — Passing the Baton

c°2003–2009 Typeset February 6, 2009 26

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Coarse-grained solution

int nw := 0 ;
int nr := 0 ;
Global Inv: nw == 0 or nw == 1 and nr == 0

process Reader[i = 1 to M] {
while (true) {

...
< await(nw == 0) nr := nr + 1 ; >
read database
<nr := nr - 1;> } }

process Writer[j = 1 to N] {
while (true) {

...
<await(nr==0 and nw==0) nw := nw + 1; >
write database
< nw := nw + 1 ; > } }

c°2003–2009 Typeset February 6, 2009 27

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Passing the Baton
A technique to implement a set of general await statements
using (split binary) semaphores.
As with the producer and consumer farm example, there is one
right, this is the right to run code inside the await statements.
This is the baton.
(The rights to read or write the database are represented by the
program counters, not by semaphores. I.e a reader or writer
has the right to read or write the data base if it has passed its
first await statement, but not its second.)
• sem e := 1; — Control entry to atomic statements.
• For each condition (guard), B:
∗ sem b := 0 ; — to delay threads that do await(B)
∗ A counter int del_b := 0— counts the number of

delayed threads.
• When a thread enters a critical section (an await) it obtains

mutual exclusion.
∗ If it needs to delay, it gives up exclusive access and waits

on b.
• When a thread finishes a critical section (an await) it

checks to see if there is a condition B that is now true and a
c°2003–2009 Typeset February 6, 2009 28

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

thread waiting on b.
∗ If so it wakes up a thread waiting on b but does not give

up mutual exclusion. (This passes the baton). Thus the
thread that was waiting on b has the right to execute. No
other process can execute critical code in the mean-time,
thus B will remain true. It is up to that thread to either
give up exclusive access, or pass the baton again.
∗ If not, it gives up exclusive access.

c°2003–2009 Typeset February 6, 2009 29

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

Reader-Writer baton passing solution

Global data:

int nr := 0, nw := 0 ;
Global Inv: nw == 0 or nw == 1 and nr == 0
sem e := 1; # exclusive access
sem r := 0; # the right to read
sem w := 0; # the right to write
int del_r := 0; # count of delayed readers
int del_w := 0; # count of delayed writers

At the close of each critical section, the following code is
executed. It either passes the baton, or gives up exclusive
access.
SIGNAL:

if (nw == 0 and del_r > 0) {
V(r) ; } # Pass to a reader

else if (nr == 0 and nw == 0 and del_w > 0) {
V(w) ; } # Pass to a writer

else { V(e) ; } # Release entry lock

c°2003–2009 Typeset February 6, 2009 30

Concurrent Programming— Slide Set 4. Semaphores Theodore Norvell

process Reader[i = 1 to M] {
while (true) { ...

< await(nw == 0) nr := nr + 1 ; >
P(e); if (nw != 0) {

del_r++; V(e); P(r); del_w--; }
nr := nr + 1;
SIGNAL;
read database
<nr := nr - 1;>
P(e); nr := nr - 1; SIGNAL; } }

process Writer[j = 1 to N] {
while (true) { ...

<await(nr==0 and nw==0) nw := nw + 1; >
P(e); if (! (nr==0 and nw==0)) {

del_w++; V(e); P(w); del_w--;}
nw := nw + 1;
SIGNAL;
write database
#<nw := nw - 1;>
P(e); nw := nw - 1; SIGNAL; } }

c°2003–2009 Typeset February 6, 2009 31

