
Concurrent Programming— Slide Set 5. Monitors Theodore Norvell

Monitors — Some History
In all my work on the formalisation of proof methods for sequential programming languages, I knew that I was

only preparing the way for a much more serious challenge, which was to extend the proof technology into the realm

of concurrent program execution. I took as my first model of concurrency a kind of quasi-parallel programming

(co-routines), which was introduced by Ole-Johan Dahl and Kristen Nygaard into Simula (and later Simula 67) for

purposes of discrete event simulation [28, 29]. I knew the Simula concept of an object as a replicable structure of data,

declared in a class together with the methods which are allowed to update its attributes. [...]

As in the case of proof-driven program development, it is the obligation of correctness that should drive the

design of a good programming language feature. Of course, efficiency of implementation is also important. A correct

implementation of the abstraction has to prevent more than one process from updating the concrete representation at

the same time. This is efficiently done by use of Dijkstra’s semaphores protecting critical regions [32]; the resulting

structure was called a monitor [33, 34]. The idea was simultaneously put forward and successfully tested by Per

Brinch Hansen in his efficient implementation of Concurrent PASCAL [35]. The monitor has since been adopted for

the control of concurrency by the more recently fashionable language Java [36], but with extensions that prevent the

use of the original simple proof rules.

From C.A.R. Hoare, ’Assertions: a personal perspective’
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Monitors
Abstract data types (classes) that ensure mutual exclusion
between operations (methods).
• Can’t access ’permanent’ (member) variables except

through operations.
• Operations cannot access variables outside monitor (i.e.,

can only access permanent variables, local variables and
parameters).

• Permanent variables are initialized before any operation can
be invoked (constructor).

• Mutual exclusion is implicit. At most 1 thread occupies the
monitor.

• Implementation: Threads are delayed on an “entry queue”
until the monitor is unoccupied.

• Conditional Synchronization through condition variables.
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Example: Time Of Day

monitor TOD {
int hr := 0, min := 0, sec := 0 ;
## Inv: 0 _< hr < 24
## Inv: 0 _< min < 60
## Inv: 0 _< sec < 60

procedure set( int h, int m, int s ) {
## Pre: 0 _< h < 24 and 0 _< m < 60
## and 0 _< s < 60

hr := h ; min := m ; sec := s ; }

procedure get( int &h, int &m, int &s ) {
h := hr ; m := min ; s := sec ; }

procedure tick() {
sec += 1 ;
min += sec / 60 ; sec := sec % 60 ;
hr += min / 60 ; min := min % 60 ;
hr := hr % 24 ; } }
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A monitor with no condition variables.
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Monitor Invariant
M — an assertion
•M should be true when the monitor is “unoccupied”.
• Captures consistency (sanity, invariant) properties of data.
• In terms of permanent (thread global) variables only.
• Ensure that initialization makes it true.
• Ensure that {M} op {M} (all public methods keep it true)
• Ensure that it is true at any wait points.
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Condition variables — Signal and Wait (SW)
version
cond c;— only used within monitor.
— associated with a “condition queue”
• wait c ; Leave the monitor and wait on c’s condition queue.
• signal c;
∗ Pass occupancy to (and wake up) some thread waiting on
c’s condition queue (if any).
∗Wait on the monitor’s entry queue.

• Since occupancy of the monitor is passed seamlessly from
the signaller to the signalee, any facts about the monitor’s
data will remain true between the start of the signal and the
end of the wait.
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Signal and Wait Discipline
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Example: Bounded Buffer
Pseudo-code

module Bounded_buffer {
char buf [N ]; # buffer
int front := 0; # first full slot
int count := 0; # number of full slots
## Inv: 0 ≤ front < N and 0 ≤ count_ < N
procedure deposit(char data) {

hawait(count < N);
## Inv and count < N
buf [(front + count)%N ] := data;
count+ = 1; ## count > 0
i }

procedure fetch(char data) {
hawait( count > 0) ;
## Inv and count > 0
result := buf [front ];
front := (front + 1)%N ;
count− = 1;## count < N
i} }
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Example: Bounded Buffer

monitor Bounded_buffer { # Signal and Wait version
char buf [N ]; # buffer
int front := 0; # first full slot
int count := 0; # number of full slots
## Inv: 0 ≤ front < N and 0 ≤ count_ < N
cond not_full ; # signaled only when count < N
cond not_empty ; # signaled only when count > 0
procedure deposit(char data) {

if (count == N ) wait(not_full );
## Inv and count < N
buf [(front + count)%N ] := data;
count+ = 1; ## count > 0
signal(not_empty); }

procedure fetch(char data) {
if (count == 0) wait(not_empty);
## Inv and count > 0
result := buf [front ];
front := (front + 1)%N ;
count− = 1; ## count < N
signal(not_full ); } }
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Example: Semaphore

monitor Semaphore {
int s := 0 ; ## Inv: s ≥ 0
cond not_zero ; # signaled only when s > 0

procedure init( int new_s ) {
## Pre: new_s ≥ 0
s := new_s ; }

procedure V() {
s+ = 1 ;
signal( not_zero ) ; }

procedure P() {
if( s = 0 ) wait( not_zero ) ;
## s > 0
s− = 1 ; }

}

c°2003—2009 Typeset February 13, 2009 10



Concurrent Programming— Slide Set 5. Monitors Theodore Norvell

Simple semantics—signal and wait (SW)
We assume that the programmer has associated an assertion Pc

with each condition variable c.
M is the monitor invariant, respected by all public operations.
Pc and M must not depend on the “state” of the queues.
L0 and L1 are assertions that only involves variables local to
the thread (and may differ for each occurence of signal or
wait).

signal axiom : {Pc ∧M ∧ L0} signal(c) {M ∧ L0}
wait axiom : {M ∧ L1} wait(c) {Pc ∧M ∧ L1}

• Since occupancy of the monitor passes from the signaller to
the waiter without interruption, if Pc is true prior to every
signal(c) it will also be true after each wait(c).

• Local variables of the threads are unaffected.
• Since waiting yields occupancy, we must ensure M is true

before waiting.
• Since the signaller reenters when the monitor becomes

unoccupied, it can assume M after the signal is complete.
• Since signalling leaves the monitor unoccupied, if the queue

is empty, we should ensure M is true before signalling.
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Obligations and benefits

signal axiom : {Pc ∧M ∧ L0} signal(c) {M ∧ L0}
wait axiom : {M ∧ L1} wait(c) {Pc ∧M ∧ L1}

Obligation of monitor Benefit to monitor
signal(c) Ensure M and Pc before M is true after
wait(c) Ensure M is true before Pc and M are true after

New Operation
• conditional_wait( c ) , { if( !( Pc ) ) wait( c ) ; }

Length and empty
Sometimes we want to query the queues.
Often want to know if the queue is empty.
New Variable
• length( c ) The number of threads on c’s queue

New Operation
• empty( c ) abbreviates length(c ) == 0
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Example: In Semaphore we might want an invariant
Inv : s > 0⇒ empty(not_zero) ;

to show that threads do not wait without necessity.

Improved semantics—signal and wait (SW)
We allow M and Pc to mention length(d) for any condition
variable d.
If the signaller knows that the queue is not empty, then it does
not need to establish M .
If the signaller knows that the queue is empty, then it does not
need to establish Pc.

signal axiom : {(if empty(c) then M else P 0c) ∧ L0}
signal(c)

{M ∧ L0}
wait axiom : {M 0 ∧ L1} wait(c) {Pc ∧ L1}

where
P 0c , (Pc)length(c)←length(c)−1
M 0 , Mlength(c)←length(c)+1

(Recall that Qx←E means Q with each unbound occurrence of
x replaced by E)
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Sufficient signalling
The rules above only guarantee safety. There is still the worry
that a thread will be stuck forever on a wait
Sufficient signalling: For each wait, there will be a subsequent
signal (unique to that wait).
We can ensure sufficient signalling if M implies that there are
no threads waiting that could be signalled.
For each c we should have M ∧ Pc⇒ length(c) = 0.

Sufficient signalling for semaphores
(Optional example.)
[After Howard ‘Monitor Proofs’, CACM 1976]
Here is a semaphore monitor again. We count:
• successful increments v
• attempts to decrement a
• successful decrements p
• Note that s = v − p

Pseudo code

module Semaphore {
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int v := 0 , a := 0 , p := 0 ;

procedure V() {
hv+ = 1; i

}

procedure P() {
ha+ = 1; i
hawait(v > p) p+ = 1; i

}
}

The invariant:
• a ≥ p — attempts to decrement≥ successful decrements
• v ≥ p — increments ≥ decrements. (I.e. s ≥ 0)
• So far, we have min(a, v) ≥ p.
• a > p⇒ v ≤ p — If any decrementing thread is waiting, it

is because s can not be decremented. Rewriting this we get
a ≤ p ∨ v ≤ p, which is min(a, v) ≤ p

• Sumarizing we have M = (min(a, v) = p).
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The last condition (min(a, v) ≤ p) is not required for safety,
but is required for progess. It says that no thread waits in the P
operation if it could proceed.
Progress: For Pc take a > p = v − 1. (a > p means that there
is a waiting thread —hence ¬empty(c). And p = v − 1 means
s = 1 and so we signal as soon as possible, but no sooner.)
Now M and Pc contradict each other and so (trivially)

M ∧ Pc⇒ anything you like

monitor Semaphore {
int v := 0 , a := 0 , p := 0 ;
## inv: min(a, v) = p
cond c ; # signaled only when a > p = v − 1

procedure V() {
## min(a, v) = p
v+ = 1 ;
## min(a, v − 1) = p
if( p < a )

## a > p = v − 1
signal( c ) ;

else ## p = a ≤ v − 1, therefore p = a < v
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skip
## min(a, v) = p

}

procedure P() {
## min(a, v) = p
a+ = 1 ;
## min(a− 1, v) = p
if( v < a )

## v < a ∧ p = v, therefore min(a, v) = p
wait( c ) ; ## a > p = v − 1

else ## v > p = a− 1
skip

## min(a− 1, v − 1) = p,
## therefore min(a, v) = p+ 1
p+ = 1 ;
## min(a, v) = p

}
}

Exercise: Does our earlier implementation of semaphores have
sufficient signalling? Can you dis/prove it?
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Monitors versus Semaphores.
Passing a P operation indicates that something happened in
the past — i.e. that a semaphore was incremented. It does
not directly say much about the current state of the program.
Consider

init: sem s := 0
P0:

{B}
V(s)

P1:
P(s)
{B was true in the past}

Passing a wait operation means that something is true of the
state right now. Data encapsulation ensures that no other
thread can interfere with the assertion.
Monitors are not more powerful than semaphores. But they are
easier to use.
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Rendezvous
We need a Rendezvous object to mediate communications
between
• Several clients and
• Several servers.

1 or more clients call Reply submitRequest(Request) ;
Each server behaves as follows

while( true ) {
Request req := getRequest() ;
Reply rep ;
compute rep from req
setReply( rep ) ; }

The protocol cycles through 4 states.

enum State {READY , REQ_SENT ,
REQ_RECEIVED , REPLY _SET } ;
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Pseudo-code solution

module Rendezvous {
Request request ;
Reply reply ;
State state := READY ;

procedure Reply submitRequest( Request req ) {
hawait(state == READY )
request := req ; state := REQ_SENT ; i
hawait( state == REPLY _SET )
Reply rep := reply ; state := READY ;
return rep ; i }

procedure Request getRequest() {
hawait( state == REQ_SENT );
Request req := request ;
state := REQ_RECEIVED ;
return req ; i }

procedure void setReply( Reply rep ) {
hreply := rep; state := REPLY _SET ; i } }
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Moving to a condition based solution. Introduce three new
variables.

cond Ready ; # signalled only when state == READY
cond ReplySet ; # s.o.w. state == REPLY _SET
cond ReqSent ; # s.o.w. state == REQ_SENT

Replace the three awaits with

conditional_wait( Ready )
conditional_wait( ReplySet )
conditional_wait( ReqSent )

Replace the assignments to state with

state := READY ; signal( Ready ) ;
state := REPLY _SET ; signal( ReplySet ) ;
state := REQ_SENT ; signal( ReqSent ) ;
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monitor Rendezvous {
Request request ;
Reply reply ;
State state := READY ;
cond Ready ; # s.o.w. state == READY
cond ReplySet ; # s.o.w. state == REPLY _SET
cond ReqSent ; # s.o.w. state == REQ_SENT

procedure Reply submitRequest( Request req ) {
conditional_wait( Ready )
request := req ;
state := REQ_SENT ; signal( ReqSent ) ;
conditional_wait( ReplySet )
Reply rep := reply ;
state := READY ; signal( Ready ) ;
return rep ;}

procedure Request getRequest() {
conditional_wait( ReqSent )
Request req := request ;
state := REQ_RECEIVED ;
return req ; }
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procedure void setReply( Reply rep ) {
reply := rep;
state := REPLY _SET ; signal( ReplySet ) ; } }
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Daisy-Chaining
Waking up a number of waiting threads.
Example Problem: Voters. N threads reach a barrier and must
agree on a bit.

monitor Vote { # INCORRECT ATTEMPT!
int for := 0, against := 0 ;
## Inv: 0 ≤ for ∧ 0 ≤ against ∧ for + against < N
cond allDone ; # s. o. w. for + against = N

procedure bool cast( bool vote ) {
if( vote ) ++for ; else ++against ;
bool result
if( for + against < N ) {

wait( allDone ) ;
result := for > against ; }

else {
result := for > against ;
while( ! empty(allDone) ) signal( allDone ) ;
for := against := 0 ; }

return result ; } }
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Idea is that last thread to vote wakes up all the others and resets
the monitor.
But threads are allowed to leave prior to monitor being reset.
(Note violation of invariant.)
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A correct solution delays each thread until the monitor is
reset. Each thread wakes up the next.
Last thread awakened is the first one out and resets the monitor.
Note that the invariant is not true when the signal occurs —
Must use ‘improved semantics’.

monitor Vote {
int for := 0, against := 0 ;
## Inv. 0 ≤ for ∧ 0 ≤ against ∧ for + against < N
cond allDone ; # s. o. w. for + against == N

procedure bool cast( bool vote ) {
if( vote ) ++for ; else ++against ;
conditional_wait( allDone ) ;
## for + against == N
bool result := for > against ;
if( ! empty( allDone ) ) {

signal( allDone ) ; }
else {

for := against := 0 }
return result ;} }
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Implementing Monitors With
Semaphores (Signal and Wait)
Use ‘passing the baton’
• sem e :=1 ; # Semaphore for mutual exclusion (baton)
• sem qc := 0 ;# Semaphore for each condition c

• int δc := 0 ; # Count of threads waiting for c

Now
• At the start of each public procedure: P(e)
• On return from each public procedure: V(e)
• wait c −→ δc + = 1; V(e); P(qc); δc − = 1;
• signal c −→ if( δc > 0 ) { V( qc ); P( e ); }

Why it works:
• The e semaphore enforces exclusive access to the monitor.
• The thread that has exclusive access can
∗ give up access by returning from a public method, calling

wait or calling signal when no thread is waiting on c, or
∗ pass the exclusive access to another thread by calling

signal when some thread is waiting on c.
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Monitor Variants
Signaling Disciplines

What happens to thread that calls signal?
• Signal and Wait (SW): Signaller moves to entry queue,

signalled thread immediately enters the monitor.
• Signal and Urgent Wait (SU): signaller is put on the entry

queue with high priority.
• Signal and Exit (SX): signaller leaves the monitor

immediately
• Signal and Continue (SC):
∗ Signaller retains occupancy, signaled thread is moved to

the entry queue.
∗ signal(c) is often written notify(c).
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SU — Signal and Urgent wait. SC — Signal and Continue
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Programming with Signal and Continue
Since the signalled thread must compete with other threads on
the entry queue, there is no reason to believe that Pc is true
after wait. We only know it was “recently” true.
To ensure Pc is true we check it after awaking:

do { wait( c ) ; } while( ¬Pc ) ; ## Pc

Therefore:

conditional_wait( c ) , {while( ¬Pc ) wait( c ) ; } ## Pc

Sufficient signalling is now more difficult since a thread may
wait multiple times, it may need to be signalled more times.
Control: It becomes harder to control the order of thread
execution..
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Semantics for Signal and Continue (SC)
Since Pc is not guaranteed on returning from , it need not be
ensured prior to signalling.

signal axiom (SC) : {L00} signal(c) {L0}
wait axiom (SC) : {M 0 ∧ L1} wait(c) {M ∧ L1}

where L1 depends only on local variables and M is the monitor
invariant.

L00 , (L0)length(c)←max(0,length(c)−1)
M 0 , Mlength(c)←length(c)+1
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Example: Bounded Buffer—Signal and Continue (SC)

monitor Bounded_buffer {
char buf [n]; # buffer
int front := 0; # first full slot
int count := 0; # number of full slots
cond not_full ; # signaled only when count < n
cond not_empty ; # signaled only when count > 0

procedure deposit(char data) {
while (count == n) wait(not_full );
buf [(front + count)%n] := data;
count := count + 1;
signal( not_empty ); }

procedure fetch(char &data) {
while( count == 0 ) wait(not_empty);
data := buf [front ] ;
front := (front + 1)%n ;
count := count − 1
signal( not_full ); } }
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Signal-all
signal_all( c ) move all threads waiting on c to the entry
queue.
Makes sense for SC (not for SW)

signal all axiom (SC) : {L02} signalAll(c) {L2}
L02 , (L2)length(c)←0

Variants: Priority waiting.
Better control of which thread is signalled.
Operation Semantics
wait(c, rank) Priority wait, lowest rank awakened first
minrank(c) Value of lowest rank waiting

Example disk controller.

wait until my turn
move disk head to required cylinder
read or write data
signal next waiter

For efficiency, threads are awakened in order of increasing
cylinder (for out-swing) or decreasing cylinder (for in-swing).
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Java’s built-in “Monitors”
• Keyword synchronized declares object (method,

section of code) to be critical section.
• Class with private data and all public methods synchro-

nized is a monitor.
• Signal and continue discipline.
• No explicit condition variables — just call wait().
• Only one wait queue per object. Effectively one condition

variable.
• Signal with notify() or notifyAll().
• wait(), notify(), and notifyAll() belong to class

Object — every object has an entry queue and a wait
queue.
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Java style monitors. One queue is shared by all conditions.

Example: Bounded Buffer:
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class BoundedBuffer {
private char[] buf;
private int front = 0, count = 0, n;

public BoundedBuffer(int n) {
this.n = n ; buf = new char[n] ; }

public synchronized void deposit(char data)
throws InterruptedException {

while (count == n) wait() ;
buf[(front+count) % n] = data ; count++ ;
notifyAll(); }

public synchronized char fetch()
throws InterruptedException {

while (count == 0) wait();
char result = buf[front];
front = (front+1)%n ; count-- ;
notifyAll();
return result; } }
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